Course Business

- I am traveling April 25-May 3rd
 - Will still be available by e-mail to answer questions
- Final Exam Review on Monday, April 24th
- Guest Lectures on April 26 and 28 (TBD)
- Final Exam on Monday, May 1st (in this classroom)
 - Adib will proctor
- Practice Final Exam released soon

Cryptography CS 555

Topic 37: Yao's Garbled Circuits

Credit: Some slides from Vitaly Shmatikov

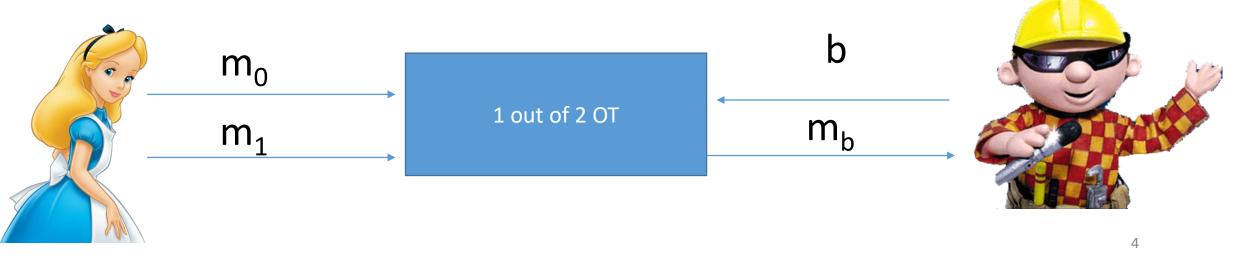
Recap

- Zero-Knowledge Proofs
- Commitment Schemes
- Oblivious Transfer
- Secure Multiparty Computation (Security Models)

Recap: Oblivious Transfer (OT)

• 1 out of 2 OT

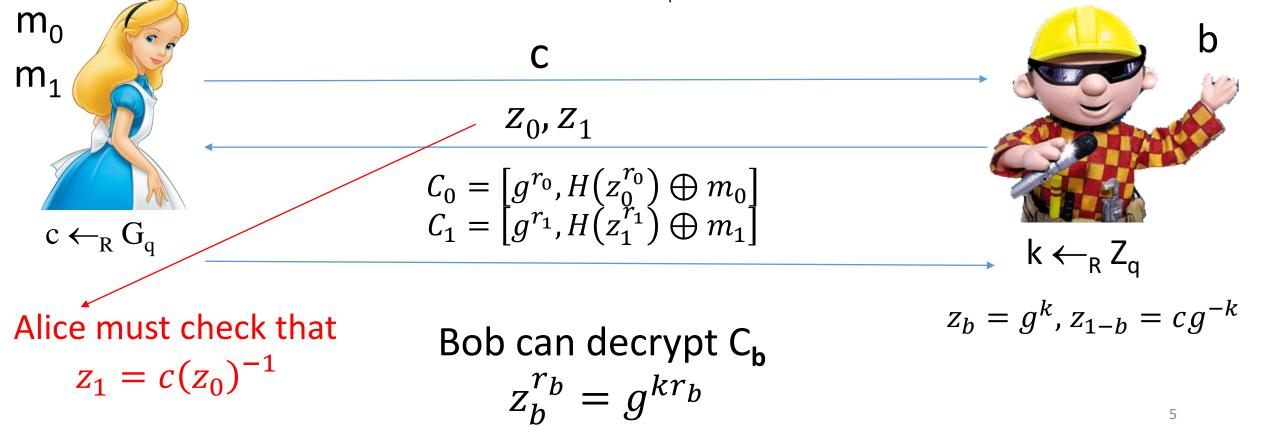
- Alice has two messages m₀ and m₁
- At the end of the protocol
 - Bob gets exactly one of m₀ and m₁
 - Alice does not know which one
- Oblivious Transfer with a Trusted Third Party



Recap: Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party

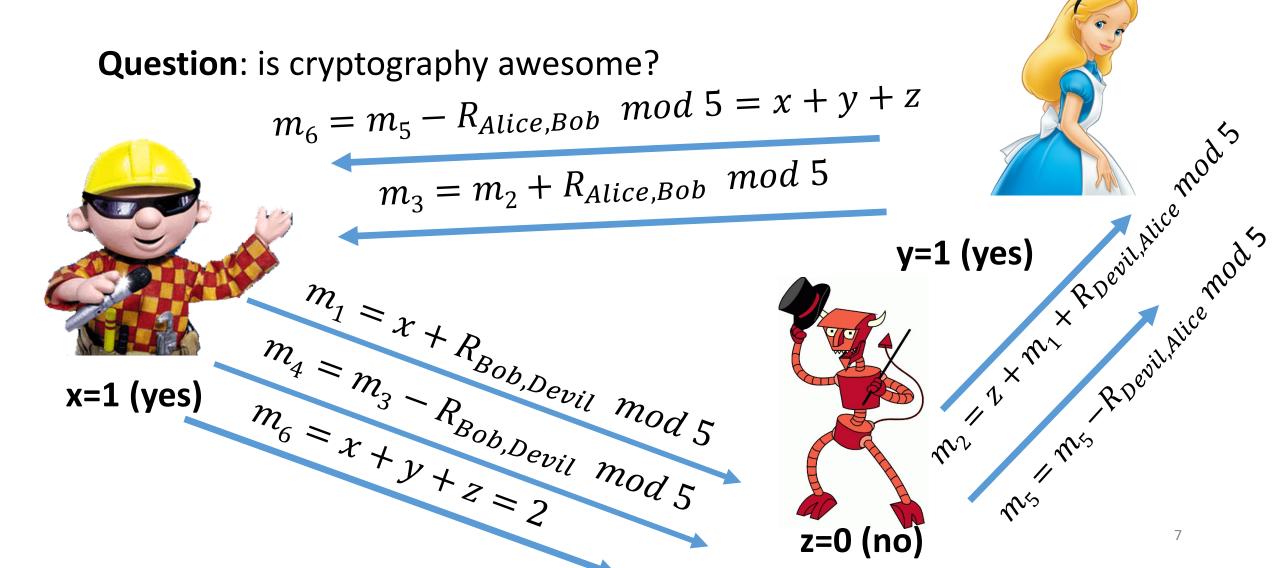
• g is a generator for a prime order group G_q in which CDH problem is hard



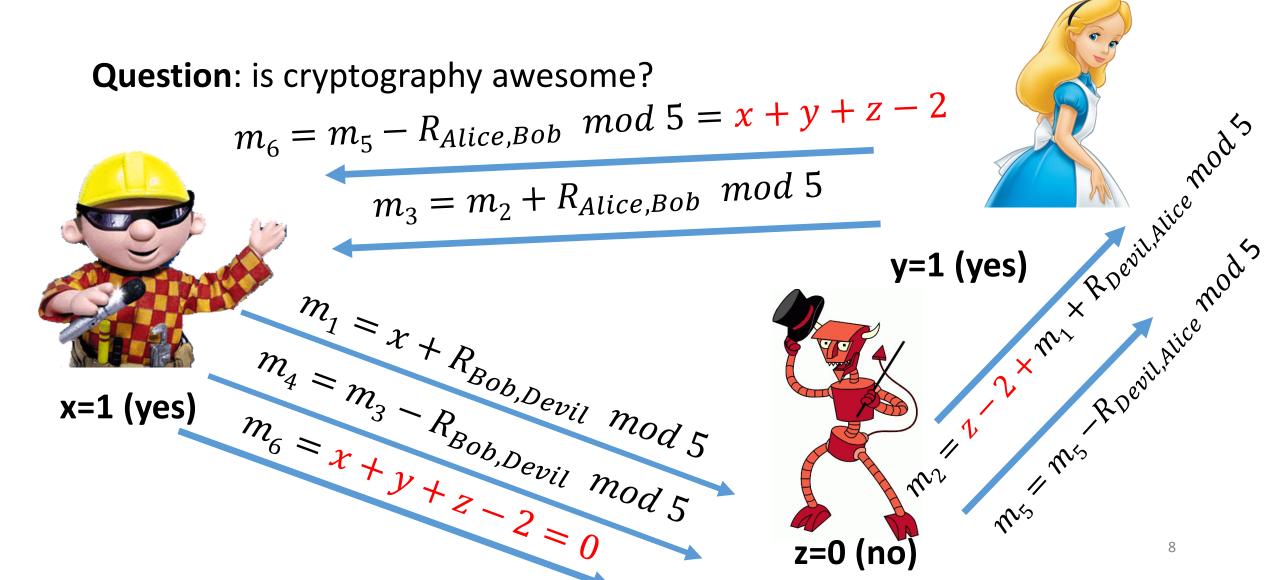
Secure Multiparty Computation (Adversary Models)

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs

Voting in the Semi-Honest Model



Malicious Model?

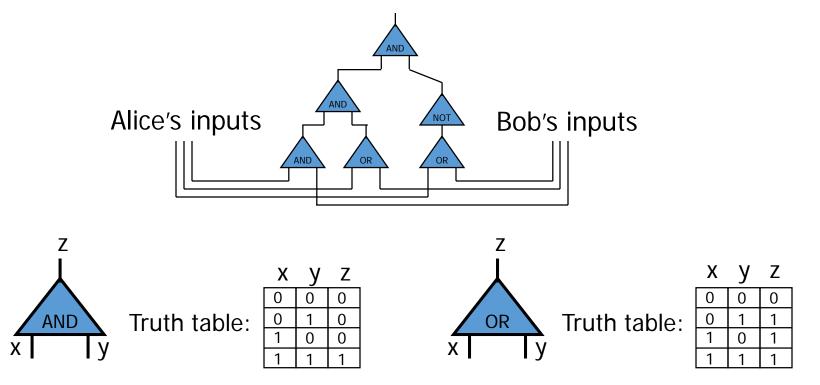


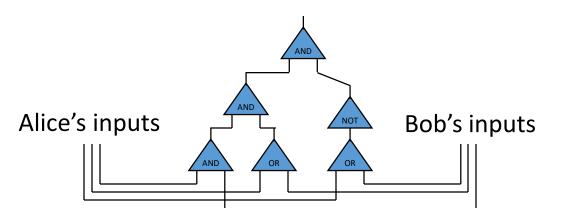
Yao's Protocol

Vitaly Shmatikov

Yao's Protocol

- Compute any function securely
 - ... in the semi-honest model
- First, convert the function into a boolean circuit





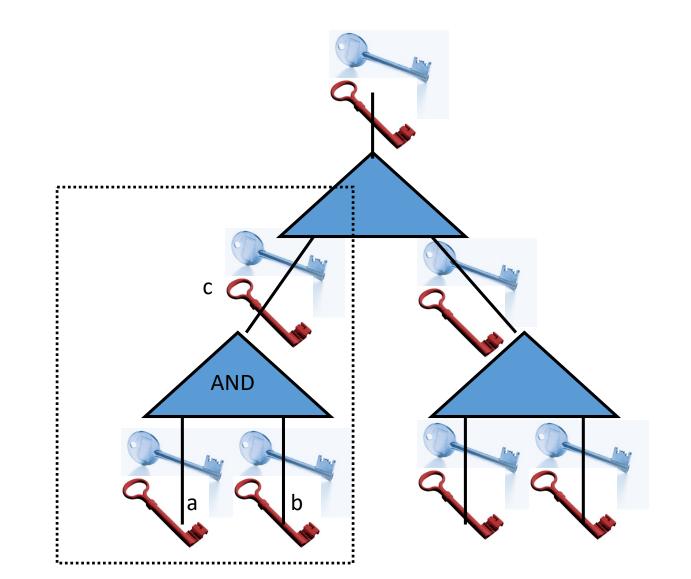
Overview:

- 1. Alice prepares "garbled" version C' of C
- 2. Sends "encrypted" form **x'** of her input **x**
- 3. Allows bob to obtain "encrypted" form **y'** of his input **y**
- 4. Bob can compute from C', x', y' the "encryption" z' of z=C(x,y)
- 5. Bob sends z' to Alice and she decrypts and reveals to him z

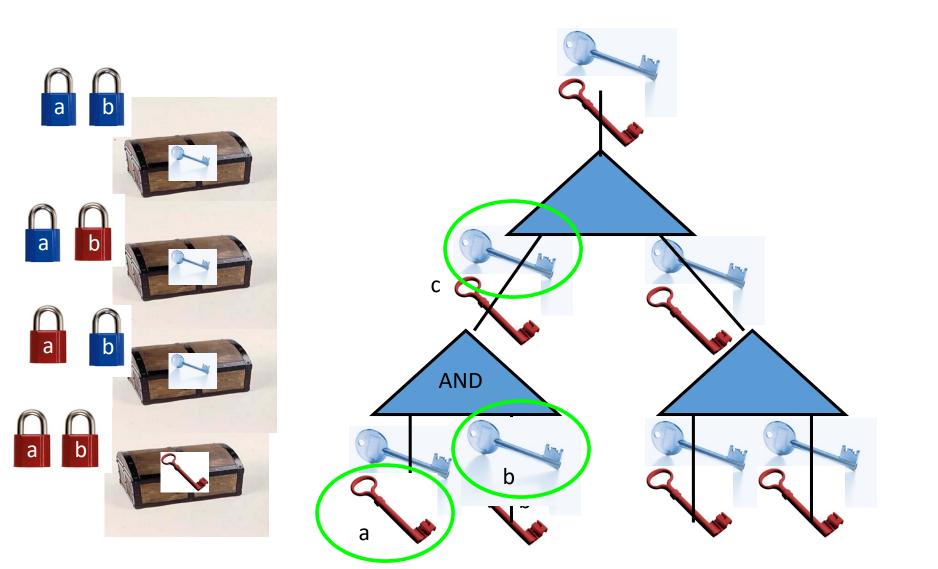
Crucial properties:

- 1. Bob never sees Alice's input x in unencrypted form.
- 2. Bob can obtain encryption of y without Alice learning y.
- 3. Neither party learns intermediate values.
- 4. Remains secure even if parties try to cheat.

Intuition

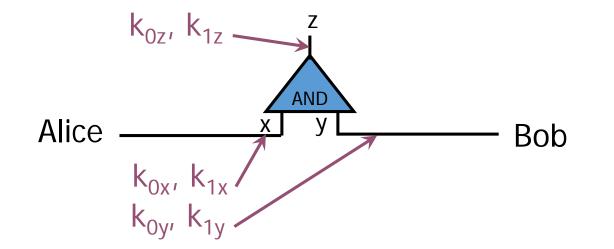


Intuition



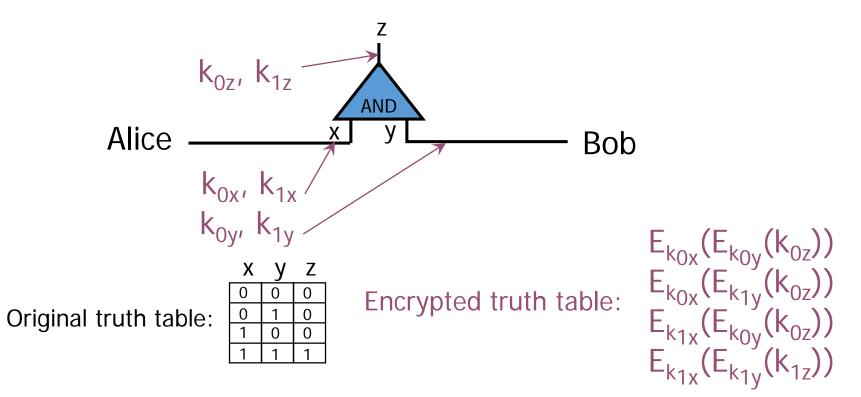
1: Pick Random Keys For Each Wire

- Next, evaluate <u>one gate</u> securely
 - Later, generalize to the entire circuit
- Alice picks two random keys for each wire
 - One key corresponds to "0", the other to "1"
 - 6 keys in total for a gate with 2 input wires



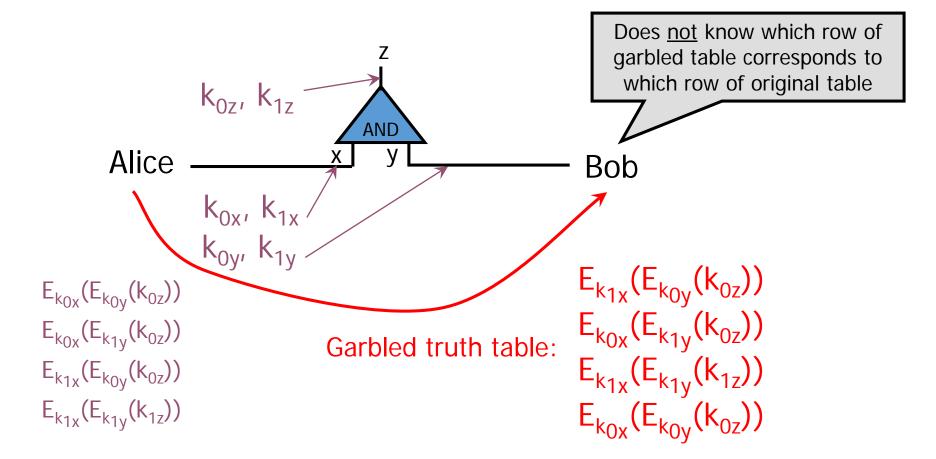
2: Encrypt Truth Table

 Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys



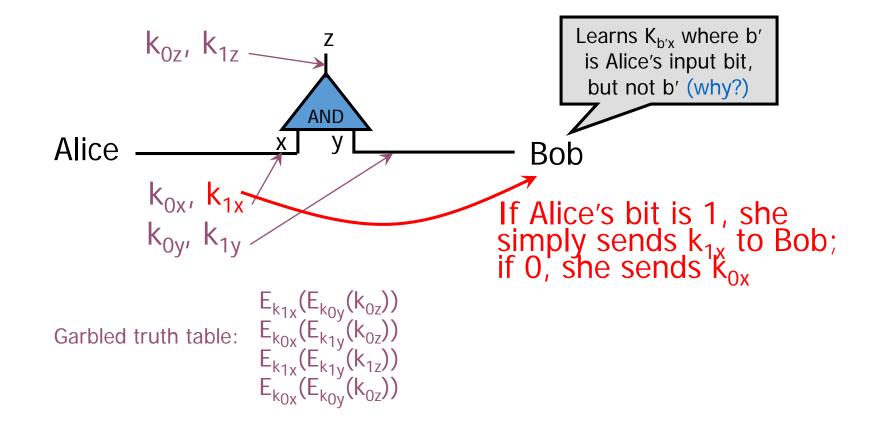
3: Send Garbled Truth Table

• Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob



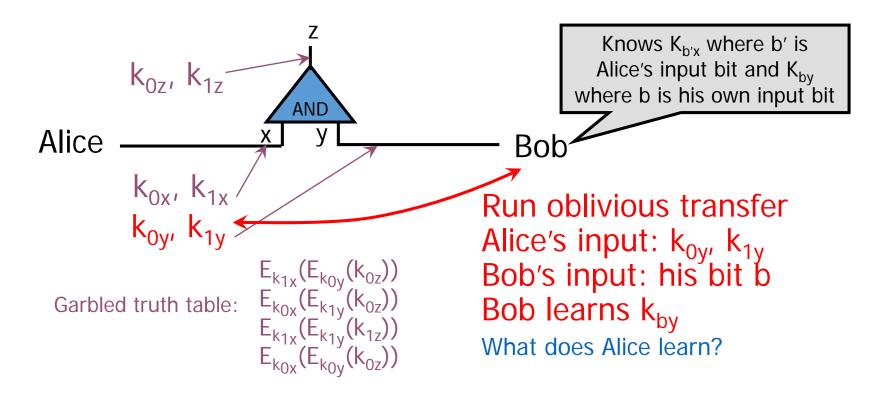
4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is



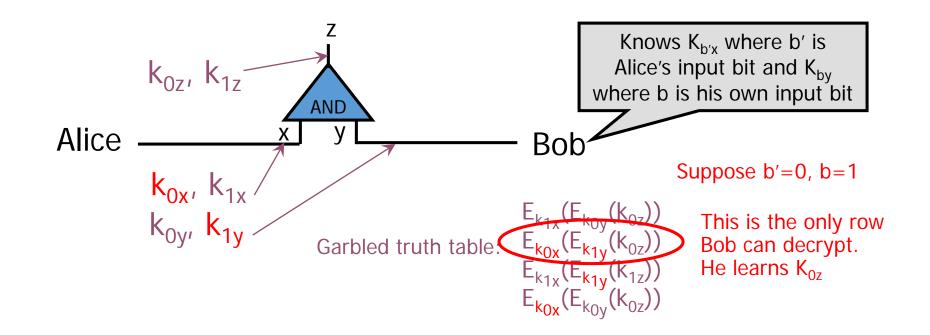
5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
 - Alice's input is the two keys corresponding to Bob's wire
 - Bob's input into OT is simply his 1-bit input on that wire



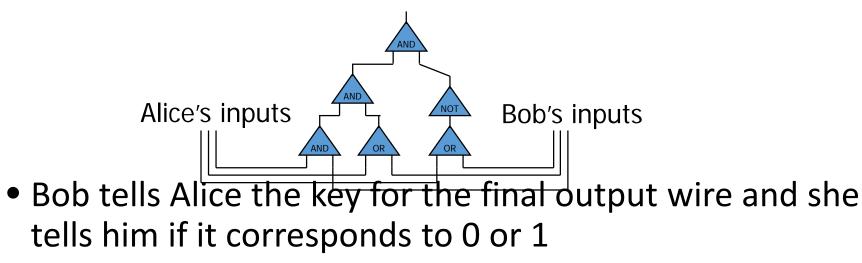
6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?



7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
 - For each wire in the circuit, Bob learns only one key
 - It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)



• Bob does not tell her intermediate wire keys (why?)

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge
- If m gates in the circuit and n inputs from Bob, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!

Computational Indistinguishability

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$Adv_{D,n} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right| \le negl(n)$$

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

- Let $B_n = trans_B(n, x, y)$ (resp. $A_n = trans_A(n, x, y)$) be the protocol transcript from Bob's perspective (resp. Alice's perspective) when his input is x and Alice's input is y (assuming that Alice follows the protocol).
- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n \in \mathbb{N}} \equiv_C \{S_A(n, f_A(x, y))\}_{n \in \mathbb{N}}$ $\{B_n\}_{n \in \mathbb{N}} \equiv_C \{S_B(n, f_B(x, y))\}_{n \in \mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's output $f_B(x, y)$)

Security (Semi-Honest Model)

- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n\in\mathbb{N}} \equiv_C \{S_A(n, x, f_A(x, y))\}_{n\in\mathbb{N}}$ $\{B_n\}_{n\in\mathbb{N}} \equiv_C \{S_B(n, y, f_B(x, y))\}_{n\in\mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's output $f_B(x, y)$)

Theorem (informal): If the oblivious transfer protocol is secure, and the underlying encryption scheme is CPA-secure then Yao's protocol is secure in the semi-honest adversary model.

Fully Malicious Security?

- 1. Alice could initially garble the wrong circuit C(x,y)=y.
- 2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
- 3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: $c_A = com(xlr_A)$ and $c_B = com(ylr_B)$.

- Alice and Bob can use zero-knowledge proofs to convince other party that they are behaving honestly.
- **Example**: After sending a message A Alice proves that the message she just sent is the same message an honest party would have sent with input x s.t. c_A=com(xlr_A)
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)

Fully Malicious Security

- Assume Alice and Bob have both committed to their input: c_A=com(xlr_A) and c_B=com(ylr_B).
 - Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)
 - Alice has c_B and can unlock c_A
 - Bob has c_A and can unlock c_B
- 1. Alice sets $C_f = GarbleCircuit(f,r)$.
 - 1. Alice sends to Bob.
 - 2. Alice convinces Bob that C_f = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)
- 2. For each original oblivious transfer if Alice's inputs were originally x_0, x_1
 - 1. Alice and Bob run OT with y_0, y_1 where $y_i = Enc_k(x_i)$
 - 2. Bob uses a zero-knowledge proof to convince Alice that he received the correct y_i (e.g. matching his previous commitment c_B)
 - 3. Alice sends K to Bob who decrypts y_i to obtain x_i

Next Class: Differential Privacy

• No Reading 🙂