
Cryptography
CS 555

Topic 36: Zero-Knowledge Proofs
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Recap

• Commitment Schemes
• Coin Flipping
• Oblivious Transfer
• Secure Multiparty Computation (Security Models)
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Secure Multiparty Computation (Adversary 
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully 

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party
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Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from 

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are 
computationally indistinguishable if for all PPT distinguishers D, there is a negligible 
function negl(n), such that we have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)
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Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ
means that the ensembles are 

computationally indistinguishable. 



P vs NP

• P problems that can be solved in polynomial time

• NP --- problems whose solutions can be verified in polynomial time
• Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR, 
• DDH

• Input: 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and Z
• Goal: Decide if Z = 𝑔𝑔𝑥𝑥1𝑥𝑥2 or Z ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 .

• NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT) 
• Witness

• A short (polynomial size) string which allows a verify to check for membership
• DDH Witness: x1,x2.
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Decisional Diffie-Hellman Problem (DDH)

• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that 

A succeeds with probability at most ½ + negl(n).

Suppose that Alice knows that 𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and wants to convince Bob that 
this is true.
• Method 1: Send x1 (or x2) to Bob wo can verify that 𝐴𝐴 = 𝑔𝑔𝑥𝑥1 and that

𝑧𝑧𝑏𝑏 = B𝑥𝑥1 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 .
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Decisional Diffie-Hellman Problem (DDH)

• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝐴𝐴 = 𝑔𝑔𝑥𝑥1 , B = 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such 

that A succeeds with probability at most ½ + negl(n).

Suppose that Alice knows that 𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and wants to convince Bob 
that this is true.
Suppose that Alice also doesn’t want Bob to learn any information 
about 𝑥𝑥1 or 𝑥𝑥2. Is this possible?
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Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g., )

• Completeness: If claim is true honest prover can always convince 
honest verifier to accept.

• Soundness: If claim is false then Verifier should reject with probability 
at least ½. (Even if the prover tries to cheat)

• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input 
from the protocol (other than that the claim is true). 

• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!
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Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact 
• V’ is given input x (the problem instance e.g., 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 )
• P is given input x and w (a witness for the claim e.g., x1 or x2)
• V’ and P use randomness rp and rv respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc… 

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every 
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a 
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ
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𝑿𝑿𝒏𝒏 = Trans(1n,V’,P’,x,w) is a distribution over transcripts (over the randomness rp,rw)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every 
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a 
witness w. Formally,
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Simulator S is not 
given witness w

Oracle V’(x,trans) will output the 
next message V’ would output 
given current transcript trans



Zero-Knowledge Proof for DDH
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Zero-Knowledge Proof for DDH
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Correctness: If Alice and Bob are honest then Bob will always accept



Zero-Knowledge Proof for DDH
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Correctness: If Alice and Bob are honest then Bob will always accept

(c=0)

𝒈𝒈𝒓𝒓 = 𝒈𝒈𝒚𝒚 = 𝑨𝑨′

𝑩𝑩𝒓𝒓 = 𝑩𝑩𝒚𝒚 = 𝑩𝑩′



Zero-Knowledge Proof for DDH
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Correctness: If Alice and Bob are honest then Bob will always accept

(c=1)

𝒈𝒈𝒓𝒓 = 𝒈𝒈𝒚𝒚+𝑥𝑥1
= 𝒈𝒈𝒚𝒚 𝒈𝒈𝑥𝑥1
= 𝑨𝑨𝑨𝑨′
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Correctness: If Alice and Bob are honest then Bob will always accept

(c=1)

𝑩𝑩𝒓𝒓/𝒁𝒁 = 𝒈𝒈 𝒚𝒚+𝑥𝑥1 𝑥𝑥2/𝑔𝑔𝑥𝑥1𝑥𝑥2
= 𝒈𝒈𝒚𝒚𝑥𝑥2

= 𝑩𝑩′
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Soundness: If 𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Soundness: If 𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 cheats then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 

Case 1: for all y either
𝑨𝑨′ ≠ 𝒈𝒈𝒚𝒚 or 𝑩𝑩′ ≠ 𝑩𝑩𝒚𝒚

→ 𝑷𝑷𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 ≥ 𝑷𝑷𝑷𝑷 𝒄𝒄 = 𝟎𝟎 =
𝟏𝟏
𝟐𝟐
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2

Alice (prover);
x1 (or x2) 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2

𝑨𝑨′ = 𝒈𝒈𝒚𝒚, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Soundness: If 𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 cheats then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 

Case 1: 𝑨𝑨′ = 𝒈𝒈𝒚𝒚 and, 𝑩𝑩′ = 𝑩𝑩𝒚𝒚
If Bob accepts (c=1) then 

1) r =x1+y  since
𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒚𝒚+𝒙𝒙𝟏𝟏
2) 𝒁𝒁 = ⁄𝑩𝑩𝒓𝒓

𝑩𝑩′ =
𝒈𝒈x2 x1+y −𝑦𝑦x2 = 𝒈𝒈x2 x1
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Simulator;
Cheat bit b,
Random y
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

�
𝑨𝑨𝑨 = 𝒈𝒈𝒚𝒚,𝑩𝑩′ = 𝑩𝑩𝒚𝒚 if b=0

𝑨𝑨𝑨 = 𝒈𝒈𝒚𝒚/𝑨𝑨,𝑩𝑩′ =
𝐵𝐵𝑦𝑦

𝑍𝑍
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 𝑟𝑟 ≠⊥)
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Simulator S;
Cheat bit b,
Random y
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

�
𝑨𝑨𝑨 = 𝒈𝒈𝒚𝒚,𝑩𝑩′ = 𝑩𝑩𝒚𝒚 if b=0

𝑨𝑨𝑨 = 𝒈𝒈𝒚𝒚/𝑨𝑨,𝑩𝑩′ =
𝐵𝐵𝑟𝑟

𝑍𝑍
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Zero-Knowledge: If this is a valid tuple then 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡ 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

Simulator;
Cheat bit b,
Random y
𝐴𝐴 = 𝑔𝑔𝑥𝑥1, 
B = 𝑔𝑔𝑥𝑥2 and
𝑍𝑍 = 𝑔𝑔𝑥𝑥1𝑥𝑥2

�
𝑨𝑨𝑨 = 𝒈𝒈𝒚𝒚,𝑩𝑩′ = 𝑩𝑩𝒚𝒚 if b=0

𝑨𝑨𝑨 = 𝒈𝒈𝒚𝒚/𝑨𝑨,𝑩𝑩′ =
𝐵𝐵𝑟𝑟

𝑍𝑍
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝒂𝒂𝒂𝒂𝒂𝒂 𝑩𝑩′ = 𝑩𝑩𝒓𝒓
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑨𝑨𝑨𝑨′ = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵′ = 𝐵𝐵𝑟𝑟/𝑍𝑍
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Zero-Knowledge: If this is NOT a valid tuple then 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡ 𝐶𝐶 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ
(Otherwise, we can use distinguisher to break DDH)
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• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique
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A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐿𝐿,𝐿𝐿

A L

L

A
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• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first 

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … ,𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.
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Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and 

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong 
adjacency matrix or cannot reveal clique. Repeat until we produce a  
successful transcript. Indistinguishability of transcripts follows from 
hiding property of commitment scheme.
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Next Class: Multiparty Computation

• Read Wikipedia entry on Garbled Circuits
• https://en.wikipedia.org/wiki/Garbled_circuit
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https://en.wikipedia.org/wiki/Garbled_circuit

	Cryptography�CS 555
	Recap
	Secure Multiparty Computation (Adversary Models)
	Computational Indistinguishability
	Computational Indistinguishability
	P vs NP
	Decisional Diffie-Hellman Problem (DDH)
	Decisional Diffie-Hellman Problem (DDH)
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for DDH
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Next Class: Multiparty Computation

