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Topic 36: Zero-Knowledge Proofs




Recap

e Commitment Schemes
e Coin Flipping
e Oblivious Transfer

; Ml - on{SecurityModels,



Secure Multiparty Computation (Adversary
Models)

 Semi-Honest (“honest, but curious”)
e All parties follow protocol instructions, but...
e dishonest parties may be curious to violate privacy of others when possible

e Fully Malicious Model

e Adversarial Parties may deviate from the protocol arbitrarily
e Quit unexpectedly
e Send different messages

It is much harder to achieve security in the fully malicious model

e Convert Secure Semi-Honest Protocol into Secure Protocol in Fully
Malicious Mode?
e Tool: Zero-Knowledge Proofs
* Prove: My behavior in the protocol is consistent with honest party



Computational Indistinguishability

 Consider two distributions X, and Y, (e.g., over strings of length £).

e Let D be a distinguisher that attempts to guess whether a string s came from
distribution X, or Y,.

The advantage of a distinguisher D is
Advp e = |Prs x [D(s) = 1] = Prscy,[D(s) = 1]|

Definition: We say that an ensemble of distributions {Xn%neN and {Y_ },,ey are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

Advp , < negl(n)
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Pvs NP

e P problems that can be solved in polynomial time

NP --- problems whose solutions can be verified in polynomial time
e Examples: SHORT-PATH, COMPOQOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,

« DDH
e Input: 4 = g*1,B=g*2andZ
e Goal: Decide if Z = g*1*2 or Z # g*1*2,
 NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)

e Withess

e Ashort (polynomial size) string which allows a verify to check for membership
* DDH Witness: x,,X,.



Decisional Diffie-Hellman Problem (DDH)

e Letz, = g*1*2 and letz, = g", where x;,x, and r are random
e Attacker is given A = g*1, B = g*2 and z, (for a random bit b)
e Attackers goal is to guess b

e DDH Assumption: For all PPT A there is a negligible function negl such that
A succeeds with probability at most % + negl(n).

Suppose that Alice knows that z, = g*1*2 and wants to convince Bob that
this is true.

* Method 1: Send x, (or x,) to Bob wo can verify that A = g*1 and that
z, = B*1 = g*1*2,



Decisional Diffie-Hellman Problem (DDH)

* Letz, = g*1*2 and let z; = g", where x,,x, and r are random
* Attacker is given A = g*1, B = g*2 and z, (for a random bit b)
e Attackers goal is to guess b

 DDH Assumption: For all PPT A there is a negligible function negl such
that A succeeds with probability at most 72 + negl(n).

Suppose that Alice knows that z, = g*1*2 and wants to convince Bob
that this is true.

Suppose that Alice also doesn’t want Bob to learn any information
about x; or x,. Is this possible?



/ero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g., )

 Completeness: If claim is true honest prover can always convince
honest verifier to accept.

e Soundness: If claim is false then Verifier should reject with probability
at least %. (Even if the prover tries to cheat)

e Zero-Knowledge: Verifier doesn’t learn anything about prover’s input
from the protocol (other than that the claim is true).

* Formalizing this last statement is tricky
e Zero-Knowledge: should hold even if the attacker is dishonest!



/ero-Knowledge Proof

Trans(l“,V’,P,x,w,rp,rv) transcript produced when V’ and P interact

e V' is given input x (the problem instance e.g., A = g*1, B = g*2 and z, )

e Pis given input x and w (a witness for the claim e.g., x, or x,)

* V" and P use randomness r, and r, respectively

e Security parameter is n e.g., for encryption schemes, commitment schemes etc...

X,, =Trans(1",V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate X, without a

withess w. Formally,
X, nen =c {SV'(') (x, 1n)}neN



/ero-Knowledge Proof

Trans(1“,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
e V’is given input x (the problem instance e.g., A = g~
e P the claim e.g.,

% SimulatorSis hot ™ &sakY
e S¢ . . ption schemes
given witness w

Oracle V’(x,trans) will output the
next message V' would output
given current transcript trans

X over transcript

n

(Blackbox Zero-Knowledge): There is a/PPT simulator S such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate X, without a

witness w. Formally,
{Xn}nEN =C {SV’() X 1n)}nEN

11



/ero-Knowledge Proof for DDH

A=g"B =B

challenge c € {0,1}

v

|y ifc=0
Responser = {y +x, ifc=1
Bob (verifier); : Alice (prover);
A= g*, 1 ifc=0and A’ = g" and B' = B" X, (orxz)
B = g*2 and Decisiond =4 1 ifc=1and AA' = g" and B' = B"/Z A= g*,
7 = gtz 0 otherwise B = g*2 and

" Z — gxle
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/ero-Knowledge Proof for DDH

A'=g",B =B

challenge c € {0,1}

v

|y ifc=0
Responser—{y_l_x1 ifc=1
Bob (verifier); : Alice (prover);
A= g*, 1 ifc=0and A’ = g" and B' = B" X, (orxz)
B = g*2 and Decisiond =4 1 ifc=1and AA' = g" and B' = B"/Z A= g*,
7 = gtz 0 otherwise B = g*2 and

" Z — gxle

Correctness: If Alice and Bob are honest then Bob will always accept 13



Zero-Knowledge Proof for DD

A=g"B =B

challenge c € {0,1}

Response r = {y?ll— Xy lfi;zg 1
Bob (verifier); ‘ Alice (prover);
A= g*n, { 1 ifc=0andA' = g" and B' = B" X, (orx,)
B = g*2 and Decisiond =< 1 ifc=1and AA'=g" and B'=B"/Z A= g*1,
7 = g¥i¥e 0 otherwise B = g*2 and

" Z — gxle

Correctness: If Alice and Bob are honest then Bob will always accept 14



Zero-Knowledge Proof for DD

A=g"B =B

challenge c € {0,1}

Response r = {y?ll— Xy lfi;zg 1
Bob (verifier); ) Alice (prover);
A= g*n, { 1 ifc=0and A' = g" and B' = B" X, (orx,)
B = g*2 and Decisiond =< 1 ifc=1andAA' = g" and B' =B"/Z A= g*1,
7 = g¥i¥e 0 otherwise B = g*2 and

>
»

7 = gx1x2

Correctness: If Alice and Bob are honest then Bob will always accept 15



/ero-Knowledge Proof for DC (c=1)

Br/Z — g(y+x1)x2 /gxle

A =g’,B' =B — VX
-9
/
challenge c € {0,1} =B
fee0
Response r = {y?ll— Xy lfi; c=1
Bob (verifier); ) Alice (prover);
A=g*, 1 ifc=0and A' = g" and B’ = B" X, (orx,)
B=g*and Decisiond=11 ifc=1and AA' = g" anc4 B'=B"/Z| A=g™,
7 = g¥i¥e 0 otherwise B = g*2 and

>
»

Z — gxle

Correctness: If Alice and Bob are honest then Bob will always accept 16



/ero-Knowledge Proof for DDH

A'=g",B =B

challenge c € {0,1}

v

Response 1 = {yi’- . lfl.;;g ,
Bob (verifier); : Alice (prover);
A = g™, 1 ifc=0and A’ = g" and B' = B" X, (orx,)
B = g*2 and Decisiond = { 1 ifc=1and AA' = g" and B'=B"/Z A = g*1,
7 + g¥i¥z 0 otherwise B = g*2 and

»
»

7 + g¥i*2
Soundness: If Z + g*1*2 then (honest) Bob will reject w.p. % (even if
Alice cheats) 17



/ero-Knowledge Proof

Case 1: for all y either

A" + g’ orB' + BY

¥t — Prireject] = Pr[c = 0] = >

challenge c € {0,1}

Response r = {y?ll— . lfi;zg .
Bob (verifier); ) Alice (prover);
A= g*n, 1 ifc=0 anj;l;l: g" and B' = B" X, (orx,)
B = g*2 and Decisiond =4 1 if c=1an =g and B"=B"/Z A= g*1,
7 # g¥i% 0 otherwise B = g*2 and
. Z + g*1%2

Soundness: If Z + g*1*2 cheats then (honest) Bob will reject w.p. % (even if
Alice cheats) 18



/ero-Knowledge Proof for

Casel:A' = g” and, B' =

B

If Bob accepts (c=1) then

UEN & 1) r =x,+y since
2>A4A' = g¥™™1

challenge c € {(

_ BT —
2) Z = Br —
if c Xo(XqF+Y)—vXs — A X5(X
Responserz{y%;_x1 fif g 2( 1 y) YRy — g 2( 1)
Bob (verifier);
A=g™, 1 ifc=0and A' = g" and B’ = B" x; (orx)
B = g*2 and : A=g*,
_Zg: gx1xz Decisiond =1 1 lf c=1land AA" = gr anc4 B' = BT/Z B = gxz and
0 otherwise 7 # g¥i%z

>
»

Soundness: If Z + g*1*2 cheats then (honest) Bob will reject w.p. % (even if
Alice cheats) 19




/ero-Knowledge Proof for DDH

( A'=g”B =B ifb=0
1 ., B” _
A =gY/AB = A otherwise

\

challenge c € {0,1}

_Jy if c=b
Response I” {J_ otherwise
Bob (verifier); > Simulator;
A= gil, 1 ifc=0and A' = g" and B' = B" }C?bei’{tbltb'
= . x . dandom
BZ :‘?gleﬁznd Decisiond =4 1 ifc=1and AA"'=g" and B'=B"/Z  ,_ gxl’y
0 otherwise B = g* and
> Z — gx1x2

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 7 #.1)
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/ero-Knowledge Proof for DDH
( A'=g”,B'=B” ifb=0

< A = gY/A,B' = — otherwise
\ Z

challenge c € {0,1}

_ly if c=b
Response T {J_ otherwise
Bob (verifier); “ Simulator S;
A= gil, 1 ifc=0and A' = g" and B' = B" }C?bei’{tbltb’
B=g"and Decisiond =1 1 ifc=1andAA' = g" andB' =B"/Z 07
Z =g . A=g",
0 otherwise B = g* and
> Z — gx1x2

Zero-Knowledge: If this is a valid tuple then {X, },,en = {SV'(') (x, 1")}neN
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/ero-Knowledge Proof for DDH
( A'=g”,B'=B” ifb=0

< A = gY/A,B' = — otherwise
L YA

challenge c € {0,1}

_ly if c=b
Response T {J_ otherwise
Bob (verifier); “ Simulator;
A= gil, 1 ifc=0and A' = g" and B' = B" }C?bei’{tbltb’
= . x . dandom
BZ :%;j;d Decisiond =4 1 ifc=1and AA"'=g" and B'=B"/Z  ,_ gxl’y
0 otherwise B = g* and
> Z — gx1x2

Zero-Knowledge: If this is NOT a valid tuple then {X,},en = {SV'V(x, 1")}nEN
(Otherwise, we can use distinguisher to break DDH) 2



/ero-Knowledge Proof for all NP

e CLIQUE
e Input: Graph G=(V,E) and integer k>0
e Question: Does G have a clique of size k?

e CLIQUE is NP-Complete
e Any problem in NP reduces to CLIQUE
e A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that form a clique



/ero-Knowledge Proof for all NP

L
Com(O () A) ' Com(l'rA,L)>

Com(l TLA) . COm(b, TLZ,“L)

x-



/ero-Knowledge Proof for all NP

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that for a clique

Prover commits to a permutation o over V

1

2. Prover commits to the adjacency matrix A4 (s) of o(G)
3. Verifier sends challenge c (either 1 or 0)
4

If c=0 then prover reveals o and adjacency matrix 4,¢)
1. Verifier confirms that adjacency matrix is correct for o (G)

5. If c=1 then prover reveals the submatrix formed by first
rows/columns of A, ) corresponding to o (vy), ..., o (V)
1. Verifier confirms that the submatrix forms a clique.



/ero-Knowledge Proof for all NP

 Completeness: Honest prover can always make honest verifier accept

* Soundness: If prover commits to adjacency matrix 4,4y of 0(G) and
can reveal a clique in submatrix of A, ) then G itself contains a k-
cliqgue. Proof invokes binding property of commitment scheme.

e Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal cligue. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.



Next Class: Multiparty Computation

 Read Wikipedia entry on Garbled Circuits
e https://en.wikipedia.org/wiki/Garbled circuit

27


https://en.wikipedia.org/wiki/Garbled_circuit
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