Cryptography CS 555

Topic 36: Zero-Knowledge Proofs

Recap

- Commitment Schemes
- Coin Flipping
- Oblivious Transfer
- Secure Multiparty Computation (Security Models)

Secure Multiparty Computation (Adversary Models)

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs
 - Prove: My behavior in the protocol is consistent with honest party

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Computational Indictinguishability

- Consider two d
- Let D be a distinuition X_l

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

ℓ). came from

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

P vs NP

- P problems that can be solved in polynomial time
- NP --- problems whose solutions can be verified in polynomial time
 - Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
 - DDH
 - Input: $A = g^{x_1}$, $B = g^{x_2}$ and Z
 - **Goal:** Decide if $Z = g^{x_1x_2}$ or $Z \neq g^{x_1x_2}$.
 - NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
- Witness
 - A short (polynomial size) string which allows a verify to check for membership
 - DDH Witness: x₁,x₂.

Decisional Diffie-Hellman Problem (DDH)

- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given $A = g^{x_1}$, $B = g^{x_2}$ and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Suppose that Alice knows that $z_b = g^{x_1x_2}$ and wants to convince Bob that this is true.

• Method 1: Send x₁ (or x₂) to Bob wo can verify that $A = g^{x_1}$ and that $z_b = B^{x_1} = g^{x_1 x_2}$.

Decisional Diffie-Hellman Problem (DDH)

- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given $A = g^{x_1}$, $B = g^{x_2}$ and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Suppose that Alice knows that $z_b = g^{x_1x_2}$ and wants to convince Bob that this is true.

Suppose that Alice also doesn't want Bob to learn any information about x_1 or x_2 . Is this possible?

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)

(P is given witness for claim e.g.,)

- **Completeness:** If claim is true honest prover can always convince honest verifier to accept.
- Soundness: If claim is false then Verifier should reject with probability at least ½. (Even if the prover tries to cheat)
- Zero-Knowledge: Verifier doesn't learn anything about prover's input from the protocol (other than that the claim is true).
- Formalizing this last statement is tricky
- Zero-Knowledge: should hold even if the attacker is dishonest!

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

- V' is given input x (the problem instance e.g., $A = g^{x_1}$, $B = g^{x_2}$ and z_b)
- P is given input x and w (a witness for the claim e.g., x_1 or x_2)
- V' and P use randomness r_p and r_v respectively
- Security parameter is n e.g., for encryption schemes, commitment schemes etc...

 $X_n = \text{Trans}(1^n, V', P, x, w)$ is a distribution over transcripts (over the randomness r_p, r_v)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

- V' is given input x (the problem instance e.g., $A = g^{\chi}$
- P
 V Simulator S is not given witness w
 r the claim e.g., espectively prion schemes,

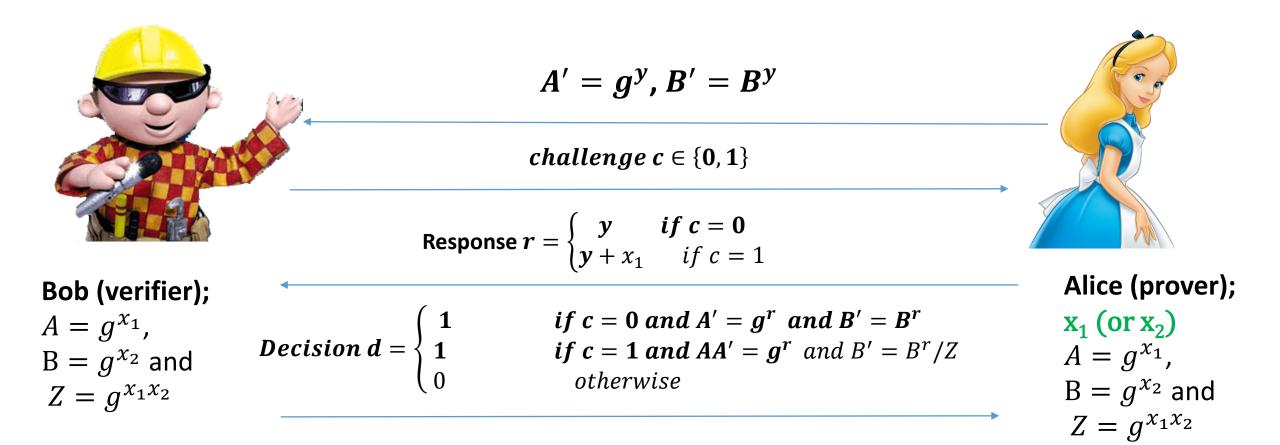
 X_n

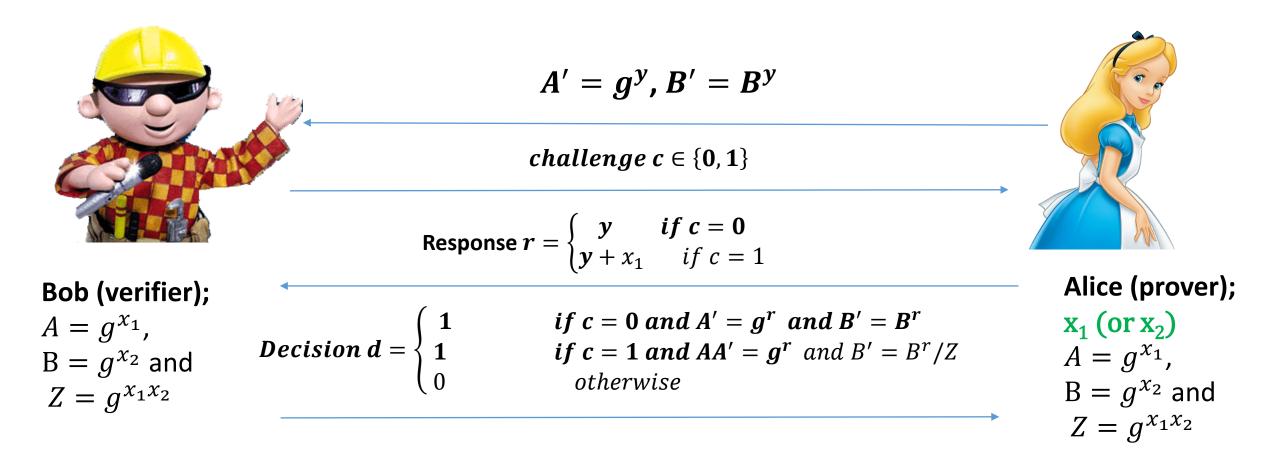
n over transcript

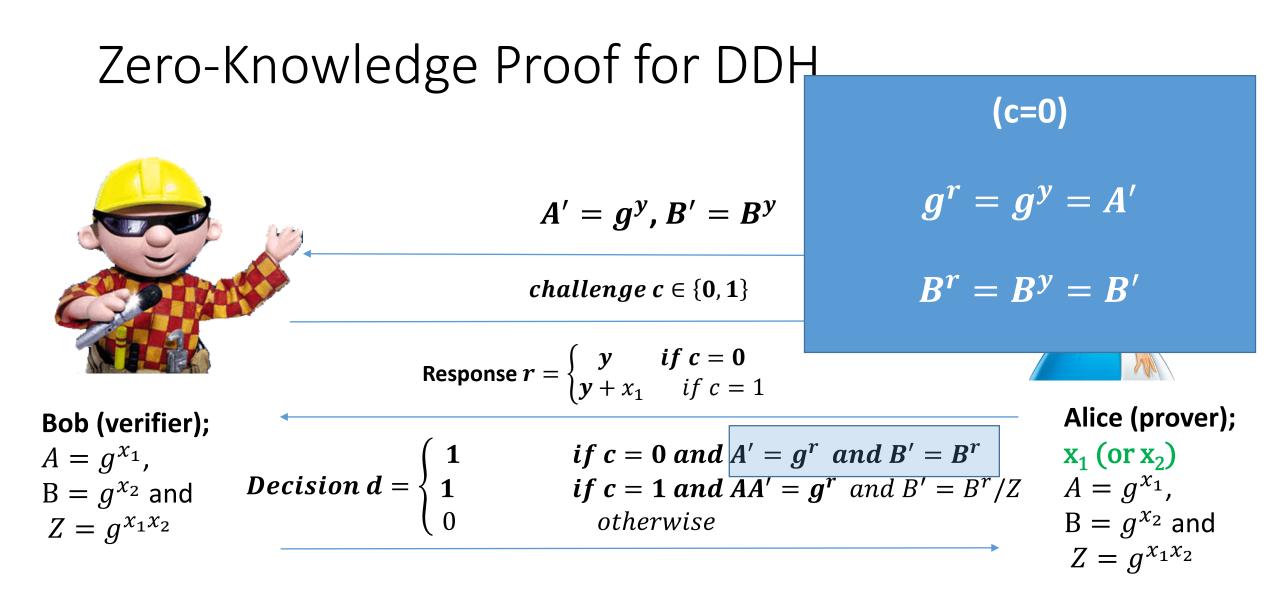
Oracle V'(x,trans) will output the next message V' would output given current transcript trans

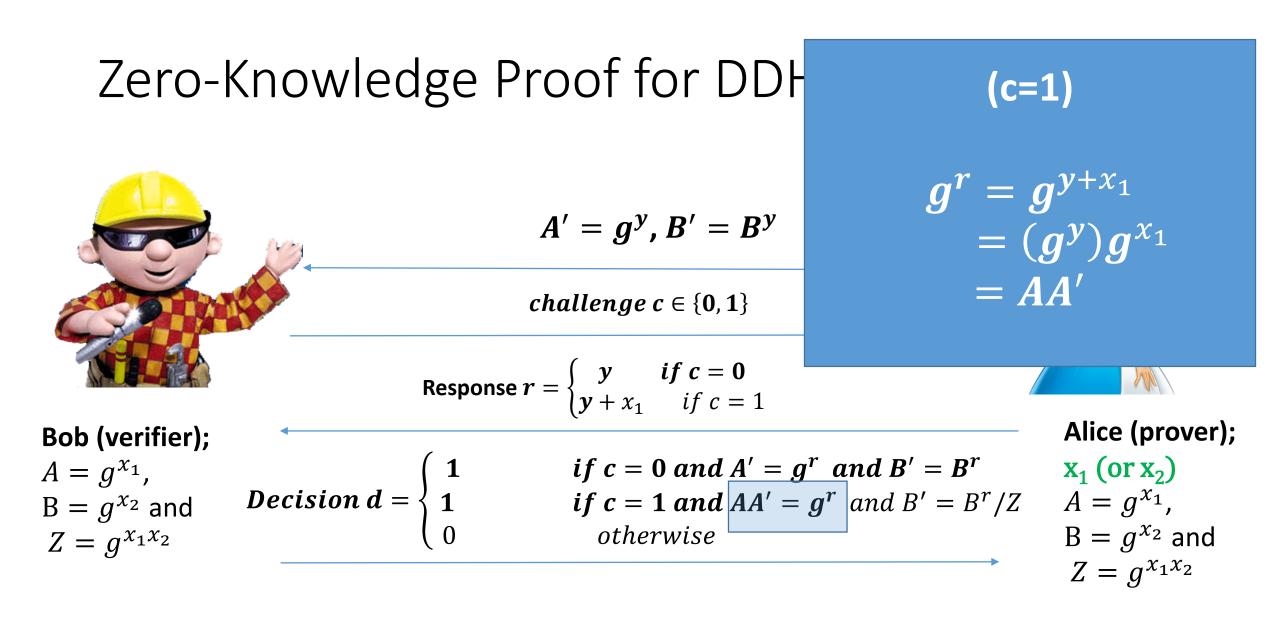
(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

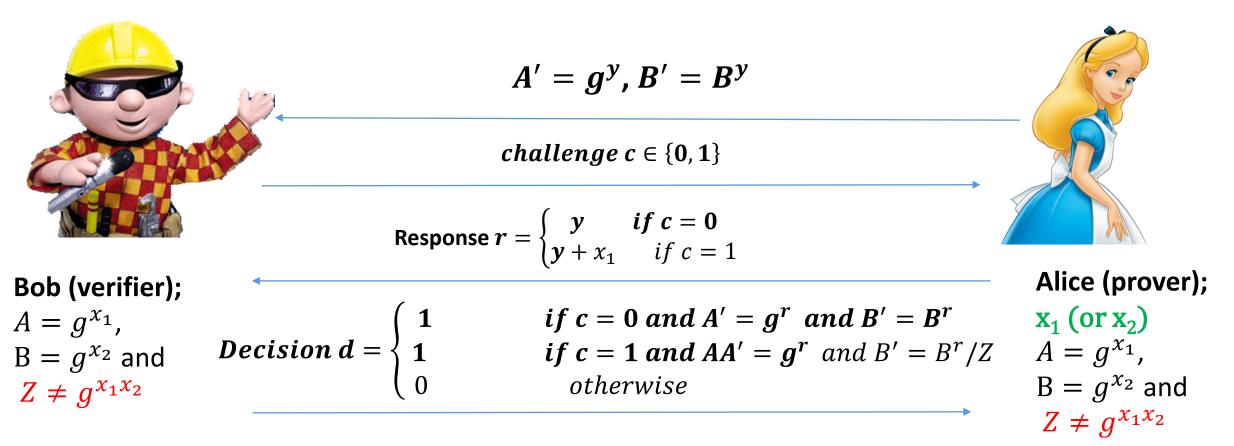




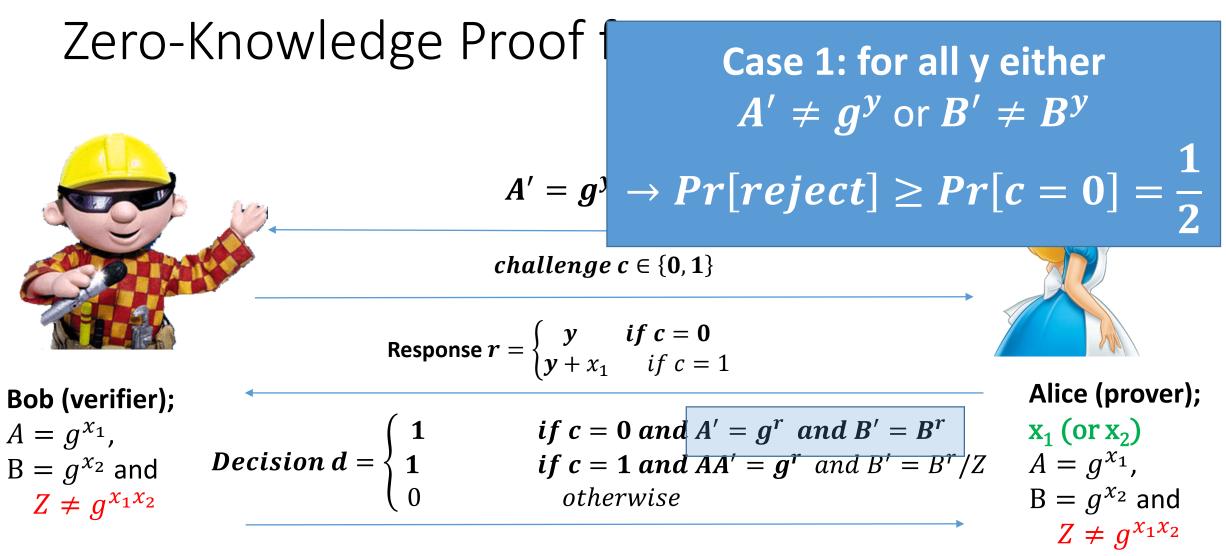




Zero-k	Knowledge Proof for DD (c=1	L)
$\mathbf{Bob} \text{ (verifier);}$ $A = g^{x_1},$	$A' = g^{y}, B' = B^{y}$ $Challenge \ c \in \{0, 1\}$ $Response \ r = \begin{cases} y & if \ c = 0 \\ y + x_{1} & if \ c = 1 \end{cases}$ $B^{r}/Z = g^{(y+1)}$ $= B^{r}$ $B^{r}/Z = g^{r}$	
$B = g^{x_2} \text{ and } Z = g^{x_1 x_2}$	$\begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} $	$B = g^{x_2} \text{ and}$ $Z = g^{x_1 x_2}$



Soundness: If $Z \neq g^{x_1x_2}$ then (honest) Bob will reject w.p. ½ (even if Alice cheats)



Soundness: If $Z \neq g^{x_1x_2}$ cheats then (honest) Bob will reject w.p. ½ (even if Alice cheats)

Zero-Knowledge Proof for

$$A' = g^{y}, B'$$

$$A' = g^{y+x_{1}}$$

$$A' = g^{y}, B'$$

$$A' = g^{y+x_{1}}$$

$$A' = g^{y}, B'$$

$$A' = g^{y+x_{1}}$$

$$A' = g^{y+x_{1}}$$

$$A' = g^{y}, B'$$

$$B' = g^{x_{2}}, B'$$

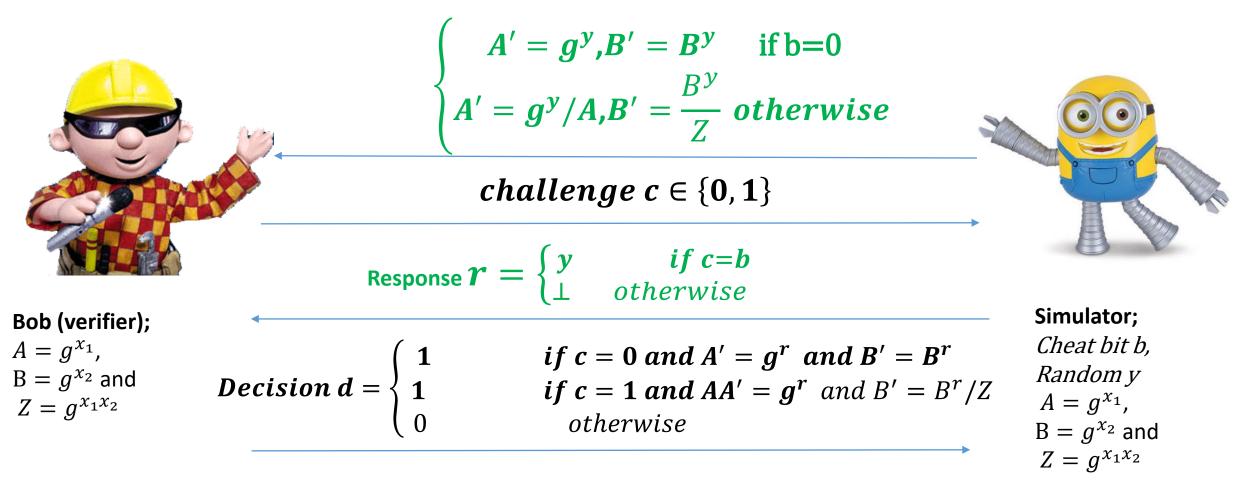
$$B' = g^{x_{2}}, B'$$

$$B' = g^{x_{2}}, B'$$

$$B' = g^{x_{1}}, B'$$

$$B$$

Soundness: If $Z \neq g^{x_1x_2}$ cheats then (honest) Bob will reject w.p. ½ (even if Alice cheats)



Zero-Knowledge: Simulator can produce identical transcripts (Repeat until $r \neq \perp$)

$$\begin{cases}
A' = g^{y}, B' = B^{y} & \text{if } b=0 \\
A' = g^{y}/A, B' = \frac{B^{r}}{Z} & \text{otherwise}
\end{cases}$$

$$challenge \ c \in \{0, 1\}$$

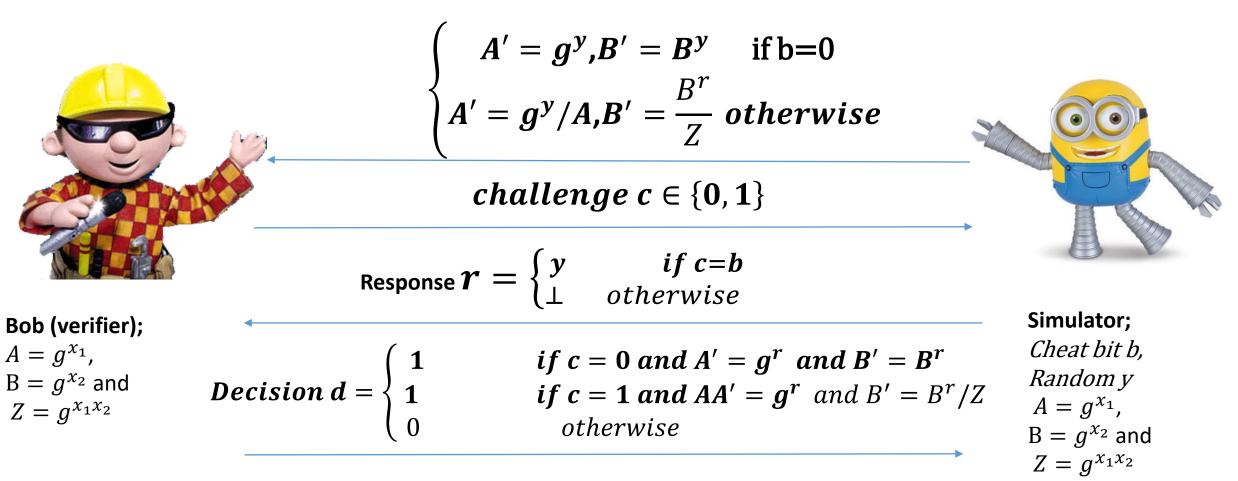
$$Response \ r = \begin{cases}
y & \text{if } c=b \\
\bot & \text{otherwise}
\end{cases}$$

$$Simulator \ S; \\Cheat \ bit \ b, \\Random y \\
A = g^{x_{1}}, \\B = g^{x_{2}} \text{ and} \\
Z = g^{x_{1}x_{2}}
\end{cases}$$

$$Decision \ d = \begin{cases}
1 & \text{if } c = 0 \text{ and } A' = g^{r} \text{ and } B' = B^{r} \\
1 & \text{otherwise}
\end{cases}$$

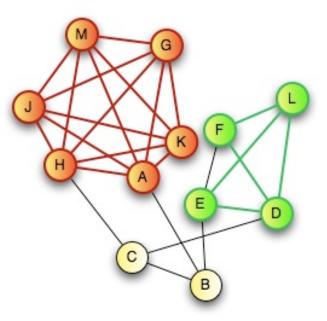
$$Simulator \ S; \\Cheat \ bit \ b, \\Random y \\
A = g^{x_{1}}, \\B = g^{x_{2}} \text{ and} \\Z = g^{x_{1}x_{2}}
\end{cases}$$

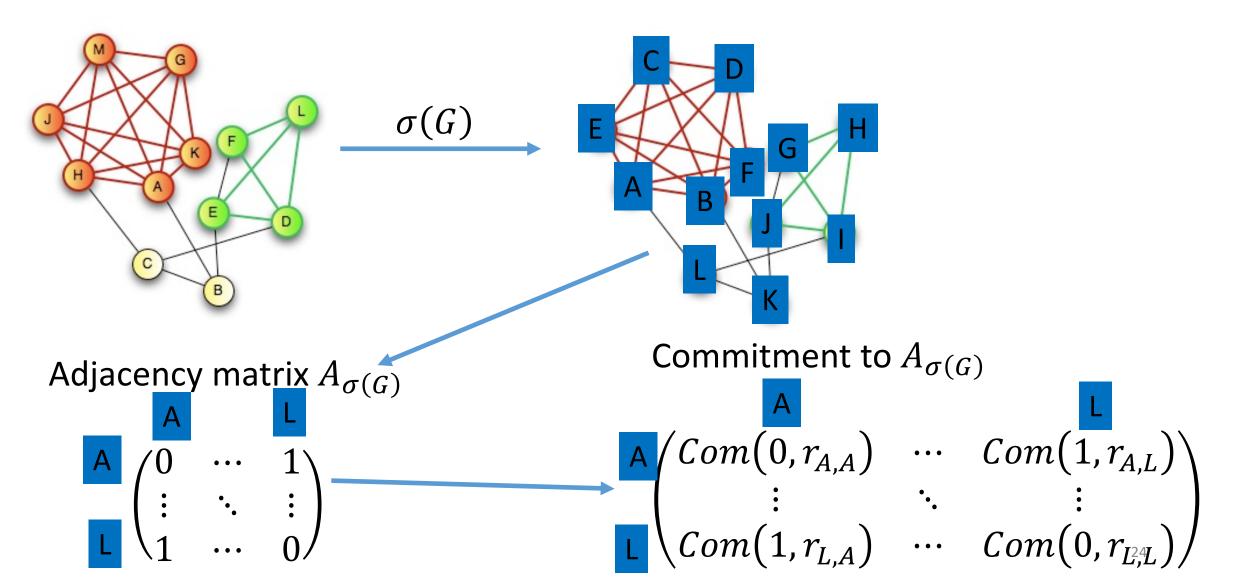
Zero-Knowledge: If this is a valid tuple then $\{X_n\}_{n \in \mathbb{N}} \equiv \{S^{V'(.)}(x, 1^n)\}_{n \in \mathbb{N}}$



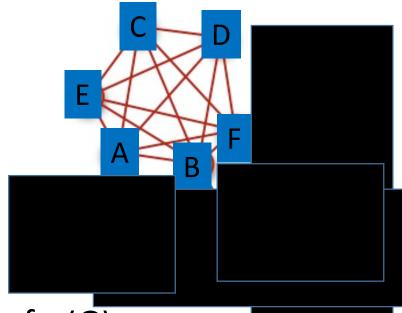
Zero-Knowledge: If this is NOT a valid tuple then $\{X_n\}_{n \in \mathbb{N}} \equiv {}_{\mathcal{C}} \{S^{V'(.)}(x, 1^n)\}_{n \in \mathbb{N}}$ (Otherwise, we can use distinguisher to break DDH)

- CLIQUE
 - Input: Graph G=(V,E) and integer k>0
 - Question: Does G have a clique of size k?
- CLIQUE is NP-Complete
 - Any problem in NP reduces to CLIQUE
 - A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction
- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that form a clique





- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that for a clique
- 1. Prover commits to a permutation σ over V
- 2. Prover commits to the adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$
- 3. Verifier sends challenge c (either 1 or 0)
- 4. If c=0 then prover reveals σ and adjacency matrix $A_{\sigma(G)}$
 - 1. Verifier confirms that adjacency matrix is correct for $\sigma(G)$
- 5. If c=1 then prover reveals the submatrix formed by first rows/columns of $A_{\sigma(G)}$ corresponding to $\sigma(v_1), \dots, \sigma(v_k)$
 - 1. Verifier confirms that the submatrix forms a clique.



- Completeness: Honest prover can always make honest verifier accept
- **Soundness**: If prover commits to adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$ and can reveal a clique in submatrix of $A_{\sigma(G)}$ then G itself contains a k-clique. Proof invokes binding property of commitment scheme.
- Zero-Knowledge: Simulator cheats and either commits to wrong adjacency matrix or cannot reveal clique. Repeat until we produce a successful transcript. Indistinguishability of transcripts follows from hiding property of commitment scheme.

Next Class: Multiparty Computation

- Read Wikipedia entry on Garbled Circuits
- https://en.wikipedia.org/wiki/Garbled_circuit