Cryptography CS 555

Topic 35: Multi-Party Computation

Recap

- Digital Signatures
- CCA-Secure Public Key Encryption
- SSL/TLS

Commitment Schemes

A commitment scheme allows one party to "commit" to a message **m** by sending a commitment **com** with the following security properties

- Hiding: the commitment doesn't reveal anything about m
- **Binding:** it is infeasible for the committer to output a commitment **com** that can later be revealed as two different messages m and m'

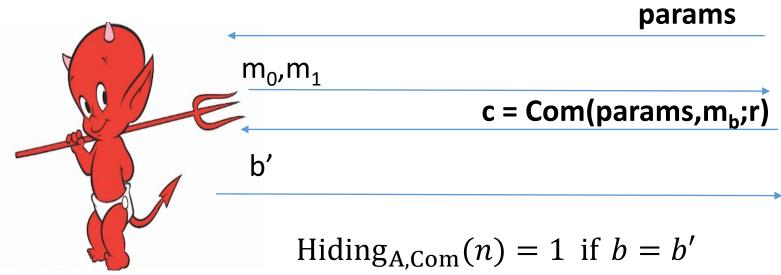
Physical Analogy: Sealed envelope.

- Hiding: Receiver cannot see message inside the envelope
- **Binding:** Sender cannot change message inside the envelope

Commitment Scheme

- Three Algorithms
 - $Gen(1^n)$ (Key-generation algorithm)
 - Input: Security parameter n
 - Output: public parameters **params** of commitment scheme
 - Com(*params*, *m*; *r*) (Commitment algorithm)
 - Input: parameters params, message $m \in \mathcal{M}$ and random bits r
 - Output: commitment *com*
 - Vrfy(params, com, m, r) (Verification Algorithm: Deterministic)
 - Input: parameters params, message $m \in \mathcal{M}$ and random bits r
 - Output: 1/0 for "success" or "failure"
- To open a commitment **com** the committer can reveal m and r
- Canonical Verification: Check to see if com = Com(params, m; r)

Commitment Hiding Experiment (Hiding_{A,Com}(n))



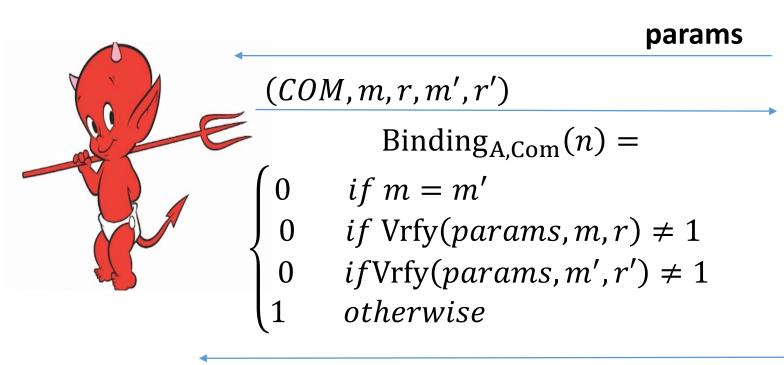
params = Gen(.) Bit b

$$\forall PPT \ A \ \exists \mu \ (negligible) \ s. t$$

 $\Pr[\text{Hiding}_{A,\text{Com}}(n) = 1] \le \frac{1}{2} + \mu(n)$

5

Commitment Hiding Experiment (Binding_{A,Com}(n))



params = Gen(.) Bit b

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Binding}_{A,\text{Com}}(n) = 1] \le \mu(n)$

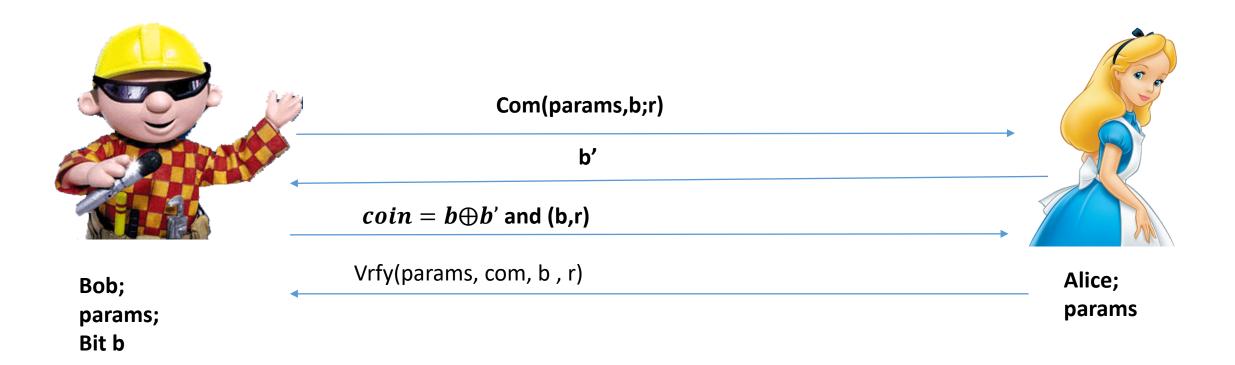
Secure commitment scheme

Definition: A commitment scheme Com is secure if for all PPT attackers A there is a negligible function $\mu(n)$ such that

$$\Pr[\text{Hiding}_{A,\text{Com}}(n) = 1] \le \frac{1}{2} + \mu(n)$$

And

$$\Pr[\text{Binding}_{A,\text{Com}}(n) = 1] \le \mu(n)$$



Security: Dishonest party cannot bias the coin

Secure Commitment Scheme with Random Oracle

$$Com(params, m; r) = H(m \parallel r)$$

Theorem: In the random oracle model this is a secure commitment scheme.

Proof Hiding [sketch]: Any PPT attacker can make p(n) queries to RO.

- Case 1: Attacker never queries $H(* \parallel r)$
 - Attacker learns no information about m in an information theoretic sense
- Case 2: Attacker queries $H(* \parallel r)$
 - Happens with probability at most $\frac{p(n)}{2^n}$

Secure Commitment Scheme with Random Oracle

 $Com(params, m; r) = H(m \parallel r)$

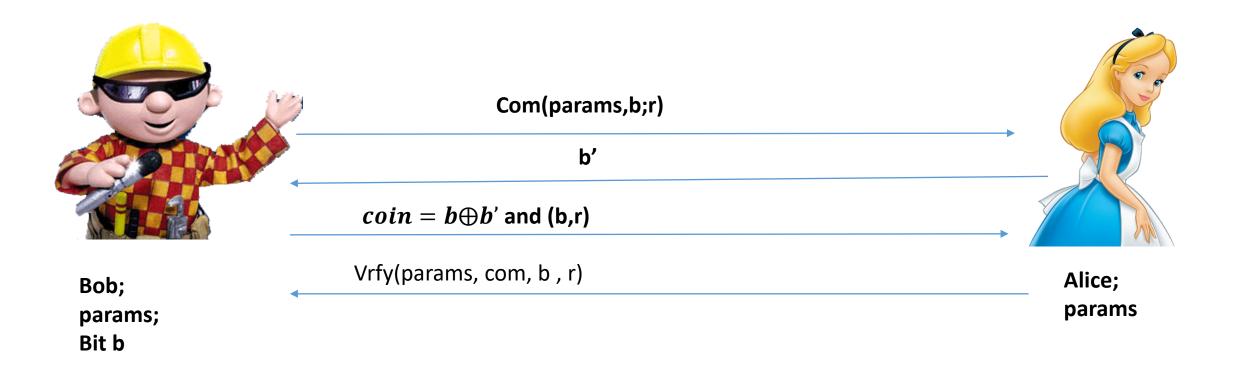
Theorem: In the random oracle model this is a secure commitment scheme.

Proof Binding [sketch]: To win the binding game the attacker must find (m,m',r,r') such that

$$H(m \parallel r) = H(m' \parallel r')$$

If attacker makes p(n) queries to random oracle the probability of finding a collision is at most

$$\frac{p(n)^2}{2^n}$$



Theorem: If the commitment scheme is secure and Bob is honest then Alice cannot bias the coin. If $|\Pr[Alice Responds]| \ge \frac{1}{p(n)}$ then $\left|\Pr[coin = 1|Respond] - \frac{1}{2}\right| \le negl(n)$

Theorem: If the commitment scheme is hiding then a PPT Alice cannot bias the coin. If $|\Pr[Alice Responds]| \ge \frac{1}{p(n)}$ then $\left|\Pr[coin = 1|Respond] - \frac{1}{2}\right| \le negl(n)$

Proof: Use Alice to break the commitment scheme. WLOG suppose that $Pr[coin = 1] > \frac{1}{2} + \frac{1}{p(n)}$

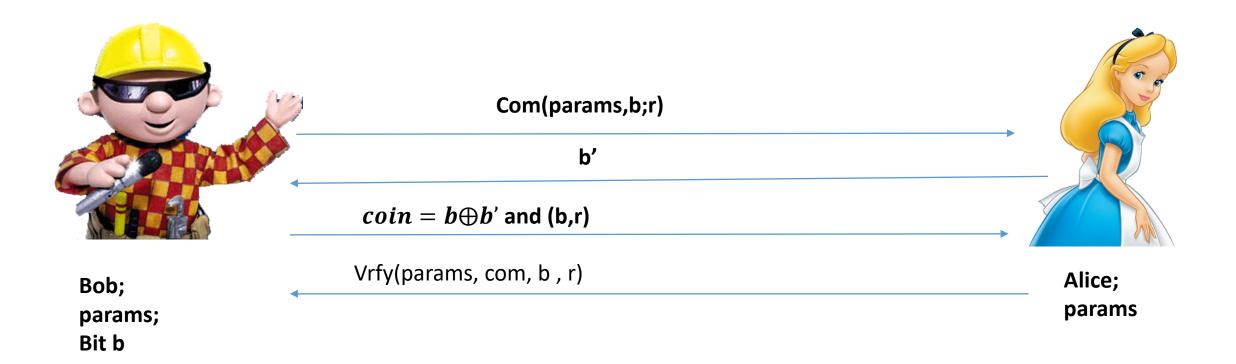
- 1. Send $m_0=0, m_1=1$ to judge in hiding experiment Hiding_{A,Com}(n)
- 2. Receive **c** = **Com(params,m**_b;**r)** from judge.
- 3. Send c to Alice
- 4. Alice sends us b' $coin = b \oplus b'$
- **5.** Ouput: $b'' = b' \oplus 1$

Theorem: If the commitment scheme is hiding and Bob is honest then a PPT Alice cannot bias the coin. $\left|\Pr[coin = 1] - \frac{1}{2}\right| \le negl(n)$

Proof: Use Alice to break the commitment scheme. WLOG suppose that $\Pr[coin = 1] > \frac{1}{2} + \frac{1}{p(n)}$

- Alice sends us b' observe that $coin = b \oplus b'$
- Ouput: $b'' = b' \oplus 1$

$$\Pr[b'' = \boldsymbol{b}] = \Pr[\boldsymbol{b}' \oplus \boldsymbol{1}] = coin \oplus \boldsymbol{b}']$$
$$= \Pr[\boldsymbol{1}] = coin] > \frac{1}{2} + \frac{1}{p(n)}$$



Theorem: If the commitment scheme is secure, Alice is honest **and Bob never aborts** then Bob cannot bias the coin. $\left|\Pr[coin = 1] - \frac{1}{2}\right| \le negl(n)$.

Fair Coin Flipping

Theorem: If the commitment scheme is secure, Alice is honest **and Bob never aborts** then Bob cannot bias the coin. $\left|\Pr[coin = 1] - \frac{1}{2}\right| \le negl(n)$.

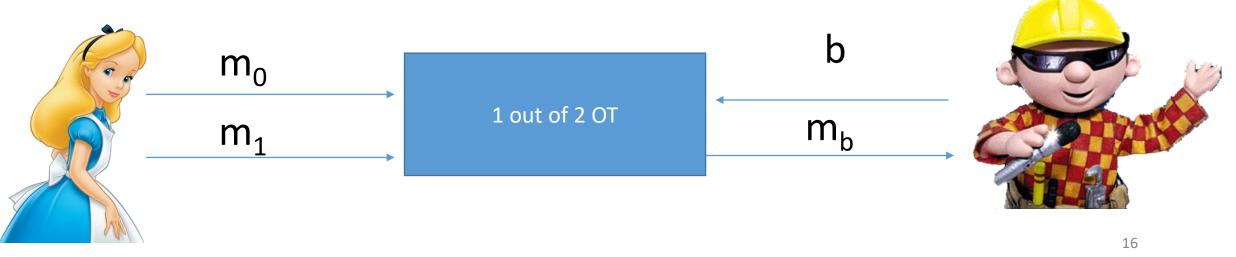
Proof: Use Bob to break **binding** property of commitment scheme. WLOG suppose that $Pr[coin = 1] > \frac{1}{2} + \frac{1}{p(n)}$.

- 1. Simulate Bob who sends c=**Com(params,b;r)**
- 2. Select b' uniformly at random and send b' to Bob
- 3. Receive b",r" from Bob, if Vrfy(b",r") \neq 1 then **abort**
- 4. Rewind Bob to step 2 and send (1-b') to Bob
- 5. Receive b''', r''' from Bob, if Vrfy(b'', r'') $\neq 1$ then **abort**
- 6. Output (Com,b",r",b"",r") to win Binding game

Oblivious Transfer (OT)

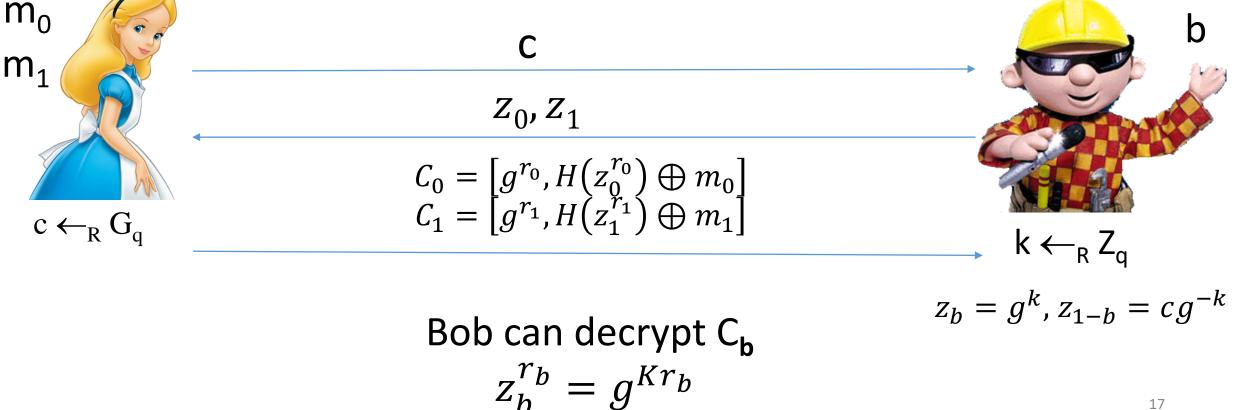
• 1 out of 2 OT

- Alice has two messages m₀ and m₁
- At the end of the protocol
 - Bob gets exactly one of m₀ and m₁
 - Alice does not know which one
- Oblivious Transfer with a Trusted Third Party



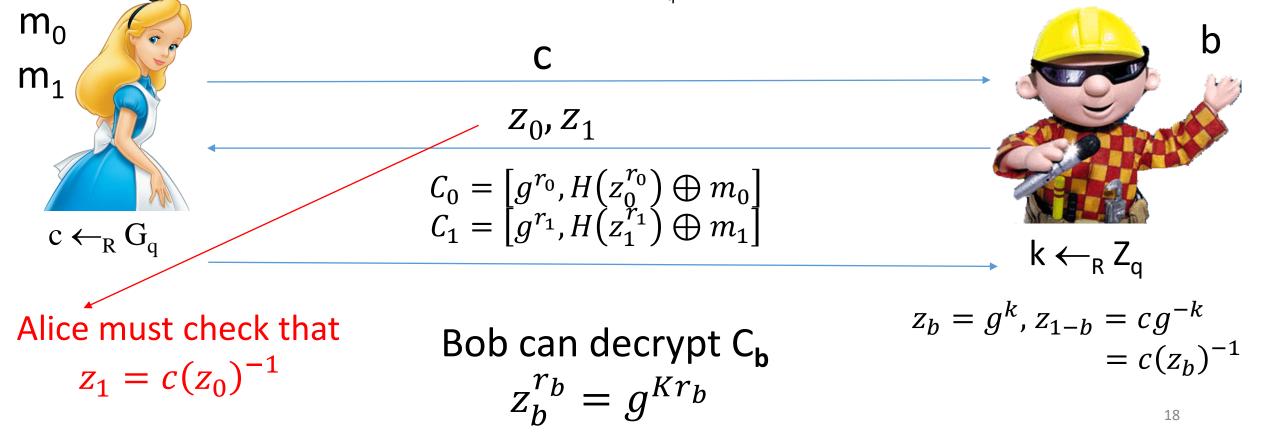
Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_{α} in which CDH problem is hard

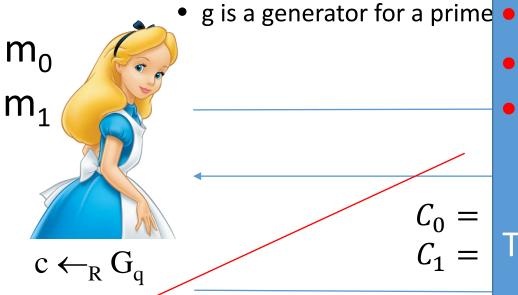


• Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_a in which CDH is Hard



• Oblivious Transfer withou Alice does not learn b because



$$z_1 = c(z_0)^{-1}$$
 and
 $z_0 = c(z_1)^{-1}$ and
 z_1, z_0 are distributed uniformly at random
subject to these condition

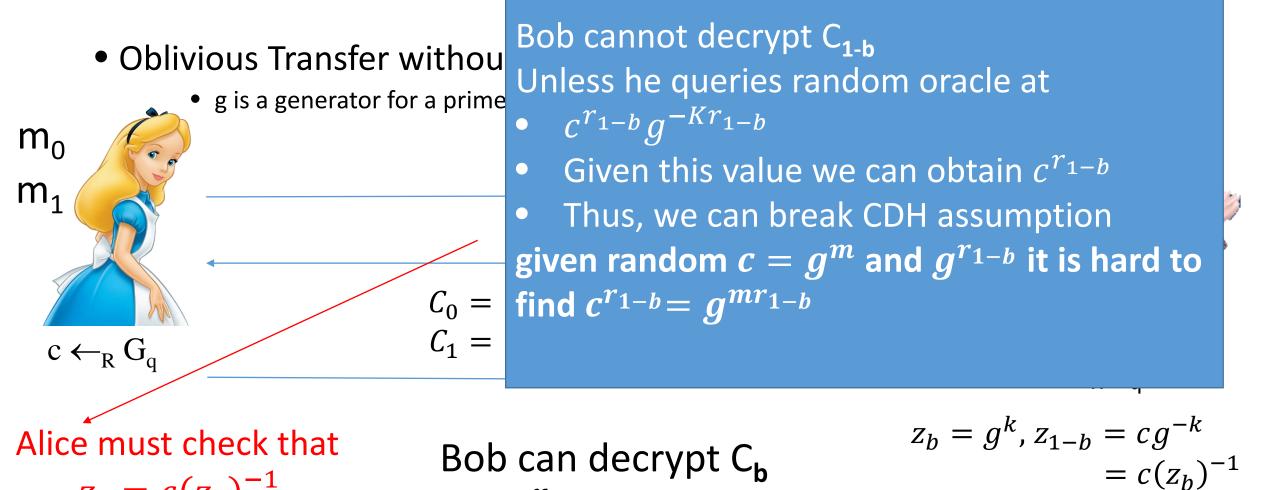
This is an information theoretic guarantee!

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{r_b} = g^{Kr_b}$

$$z_b = g^k, z_{1-b} = cg^{-k}$$

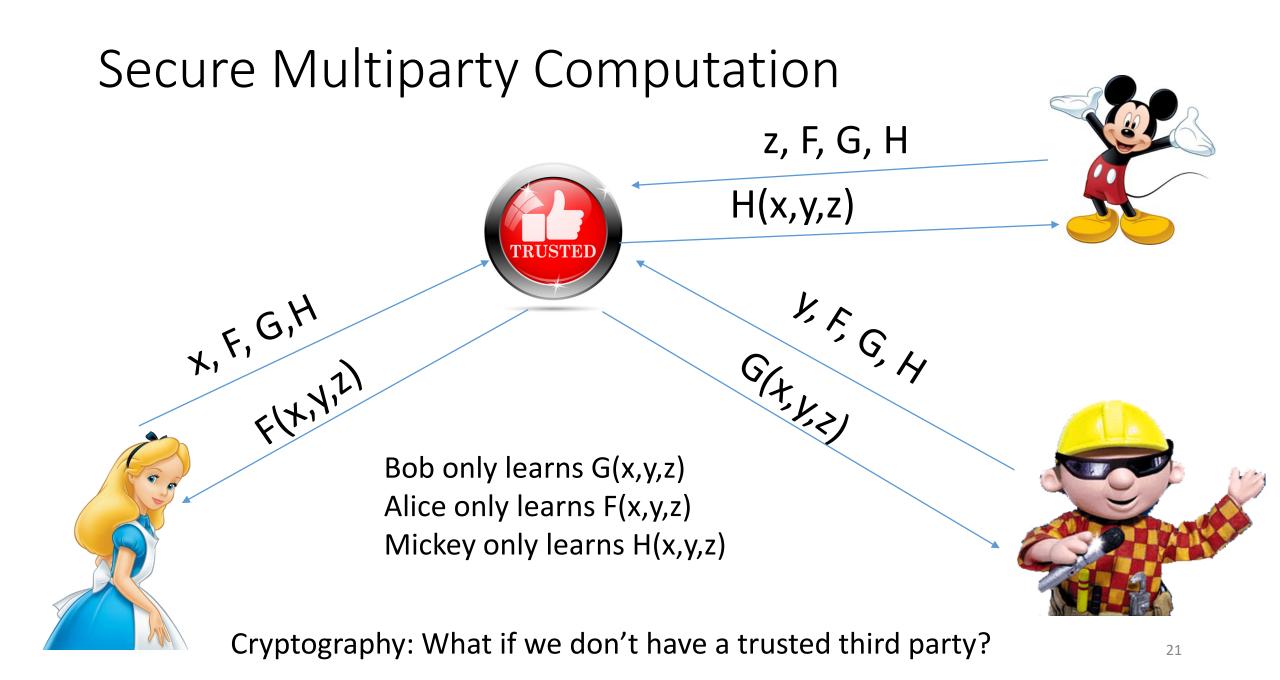
= $c(z_b)^{-1}$



Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{r_b} = g^{Kr_b}$

20



Secure Multiparty Computation (Crushes) Z="Alice", F, G, H H(x,y,z)="no match" x="Bob", F, G, Hx="match"F[x, N, Z]="match"TRUSTED Y="Alice" G(X,Y,Z)=" F.G.H Match" Bob only learns G(x,y,z) Alice only learns F(x,y,z) Mickey only learns H(x,y,z)Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z). But Alice/Bob cannot infer anything about Z. Mickey cannot infer y, and learns that $x \neq$ "Mickey" 22

Secure Multiparty Computation (Cruchoc)

Key Point: The output H(x,y,z) may leak info about inputs. Thus, we X = "Bob", F, G, H X = "match" F[X, N, Z] = "match"cannot prevent Mickey from learning anything about x,y but Mickey should not learn anything else besides H(x,y,z)!

> **Though Question: How can we formalize this** property?

Mickey cannot infer y, and learns that $x \neq$ "Mickey"

Alice of

Micke

Adversary Models

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs

Next Class: Zero-Knowledge Proofs

- Read Wikipedia entry on Zero-Knowledge Proofs
- https://en.wikipedia.org/wiki/Zero-knowledge_proof