
Cryptography
CS 555
Topic 34: SSL/TLS
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Recap

• Digital Signatures 
• Attacks on Plain RSA Signatures
• RSA-FDH
• Secure Identification Scheme + Fiat Shamir Transform
• Digital Signature Standard
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What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you 
Alice… - Bob

We need to 
break up -Bob
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Signcryption: Authenticity + Confidentiality

• Public Key: pk=(vk,ek)
• vk is used to verify messages
• ek is used to encrypt messages

• Secret Key: sk=(dk,sk)
• dk is used to decrypt messages
• sk is used to sign messages

• Goal: Design a mechanism that allows a sender S to send a message m to a 
receiver R

• Integrity
• Secrecy
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Attempt 1: Encrypt then Authenticate

• Sender S computes c = Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑚𝑚 and sends R

𝑆𝑆, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑐𝑐
• Receiver R decrypts c and then validates the signature

• This is the approach we used to build Authenticated Encryption with MACs
• Any problems here?
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Attempt 1: Encrypt then Authenticate

6Bob
Alice

I wrote you 
this poem…

I wrote you 
this poem…

𝐵𝐵𝐵𝐵𝐵𝐵, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐁𝐁 𝑐𝑐 Devil, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐃𝐃𝐞𝐞𝐃𝐃𝐃𝐃𝐃𝐃 𝑐𝑐



Attempt 1: Encrypt then Authenticate

• Sender S computes c = Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑚𝑚 and sends R

𝑆𝑆, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑐𝑐
• Receiver R decrypts c and then validates the signature

• This is the approach we used to build Authenticated Encryption with MACs
• Another Issue:

• How can R convince judge that sender S signed the message m?
• Judge can verify that S signed the ciphertext, but needs R’s key to decrypt c.
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Attempt 2: Authenticate then Encrypt

• Sender S computes σ = Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑚𝑚 and sends R

𝑆𝑆, Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑚𝑚 ∥ σ
• Receiver R decrypts ciphertext to obtain m and then validates the signature σ

• Solve the issue of non-repudiation. Receiver obtains a signature σ for m
• Any other Issues?
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Attempt 2: Authenticate then Encrypt

9Bob

Alice

You are 
despicable

𝐵𝐵𝐵𝐵𝐵𝐵, Enc𝐞𝐞𝐞𝐞𝐃𝐃𝐞𝐞𝐃𝐃𝐃𝐃𝐃𝐃 𝑚𝑚 ∥ σ

You are 
despicable



Attempt 3:

• Sender S computes σ = Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑚𝑚 ∥ 𝑅𝑅 and sends R

𝑆𝑆, Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑆𝑆 ∥ 𝑚𝑚 ∥ σ

• This works 
• So does encrypt then authenticate with c = Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑆𝑆 ∥ 𝑚𝑚

𝑆𝑆, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑐𝑐 ∥ 𝑅𝑅
• Rule of Thumb: 

• When signing a message with your secret key include identity of receiver
• When encrypting message with someone’s public key include your identity in 

message
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Transport Security Layer (TLS)

• Standardized protocol based on processor SSL (Secure Socket Layer)

• Used for https connections by your browser

• Multiple Versions 
• TLS 1.0, 1.1, 1.2  
• (version 1.3 in progress https://tools.ietf.org/html/draft-ietf-tls-tls13-18 )

• We will focus only on high level details
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Transport Security Layer (TLS)

• First Goal: Agree on a set of keys
• For Confidentiality 
• Also Authentication

• Handshake Precondition:
• Client has a subset of {pk1,…pkn} --- public keys for several Certificate Authorities
• Server has a key-pair (pks,sks) for a KEM

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC
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Transport Security Layer (TLS)

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

2. S responds by selecting the most recent version of the protocol it 
supports as well as an appropriate ciphersuite
1. Also sends pkS and certificate 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖→𝑆𝑆 (signed message form certificate 

authority i validating pkS)
2. A nonce NS

3. C checks to see if it has pki for CAi. 
1. Yes? Verify the certificate and ensure that it is not expired/revoked
2. No? Abort/Ask Again

13



Transport Security Layer (TLS)

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

2. S responds by selecting the most recent version of the protocol it supports as well as 
an appropriate ciphersuite
1. Also sends pkS and certificate 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖→𝑆𝑆 (signed message form certificate authority i validating pkS)
2. A nonce NS

3. C checks to see if it has pki for CAi. 
1. Assuming pkS is validated…
2. C runs 𝑐𝑐, 𝑝𝑝𝑚𝑚𝑝𝑝 ← Encaps𝑝𝑝𝑝𝑝𝑆𝑆 1𝑛𝑛 (pmk is pre-master key)
3. C sends c to S (who will later use c and skS to recover pmk)
4. C computes mk=KDF(pmk,NC,NS)     (mk is master key)
5. C computes four keys kC,kC’,kS,kS’= PRG(mk)
6. C computes 𝜏𝜏𝐶𝐶 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐 and sends 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 to S
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Transport Security Layer (TLS)

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

2. S responds by selecting the most recent version of the protocol it supports as well as 
an appropriate ciphersuite
1. Also sends pkS and certificate 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖→𝑆𝑆 (signed message form certificate authority i validating pkS)
2. A nonce NS

3. C checks to see if it has pki for CAi. 
1. Assuming pkS is validated…
2. C runs 𝑐𝑐, 𝑝𝑝𝑚𝑚𝑝𝑝 ← Encaps𝑝𝑝𝑝𝑝𝑆𝑆 1𝑛𝑛 (pmk is pre-master key)
3. C sends c to S who recovers pmk
4. C computes mk=KDF(pmk,NC,NS)     (mk is master key)
5. C computes four keys kC,kC’,kS,kS’= PRG(mk)
6. C computes 𝜏𝜏𝐶𝐶 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐 and sends 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 to S
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Sever Sends 
Message

Encryption kC kS

MAC kC’ kS’



Transport Security Layer (TLS)
3. C checks to see if it has pki for CAi. 

1. Assuming pkS is validated…
2. C runs 𝑐𝑐,𝑝𝑝𝑚𝑚𝑝𝑝 ← Encaps𝑝𝑝𝑝𝑝𝑆𝑆 1𝑛𝑛 (pmk is pre-master key)
3. C sends c to S who recovers pmk
4. C computes mk=KDF(pmk,NC,NS)     (mk is master key)
5. C computes four keys kC,kC’,kS,kS’= PRG(mk)
6. C computes 𝜏𝜏𝐶𝐶 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐 and sends 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 to S

4. Sever
1. Computes 𝑝𝑝𝑚𝑚𝑝𝑝 ← Decaps𝑠𝑠𝑝𝑝𝑆𝑆 𝑐𝑐
2. Computes mk=KDF(pmk,NC,NS)     (mk is master key)
3. Computes four keys kC,kC’,kS,kS’= PRG(mk)
4. Validates 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 by

1. Decrypt 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 with to obtain 𝜏𝜏𝐶𝐶
2. If Vrfy𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 ≠ 1 or Vrfy𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐, 𝜏𝜏𝐶𝐶 ≠ 1 then abort
3. Otherwise server and client agree so far on communication 
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Transport Security Layer (TLS)

4. Sever
1. Computes 𝑝𝑝𝑚𝑚𝑝𝑝 ← Decaps𝑠𝑠𝑝𝑝𝑆𝑆 𝑐𝑐
2. Computes mk=KDF(pmk,NC,NS)     (mk is master key)
3. Computes four keys kC,kC’,kS,kS’= PRG(mk)
4. Validates 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 by

1. Decrypt 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 with to obtain 𝜏𝜏𝐶𝐶
2. If Vrfy𝑝𝑝𝑘𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 ≠ 1 or Vrfy𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐, 𝜏𝜏𝐶𝐶 ≠ 1 then abort
3. Otherwise server and client agree so far on communication 

5. S computes 𝜏𝜏𝑆𝑆 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐′ and sends 
𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑆𝑆 𝜏𝜏𝑆𝑆 , MAC𝑝𝑝𝑘𝑆𝑆 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑆𝑆 𝜏𝜏𝐶𝐶 to C

5. Client validates 𝜏𝜏𝑆𝑆; otherwise aborts
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Security Intuition

• C verifies certificate so it knows it is talking to S

• Knows that only legitimate S can learn pmk and mk

• If protocol finishes successfully then C knows that it shares four keys 
kC,kC’,kS,kS’ with S

• MAC on transcript?
• Ensures consistency
• Man-in-the-Middle attacker may attempt to modify ciphersuite
• E.g., force C and S to use old version of cipher with security bugs etc…
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Transport Security Layer (TLS)

• Record Layer Protocol once C and S share keys they start 
communication

• Sequence numbers prevent replay attacks
• TLS 1.2 used authenticate-then-encrypt (can be problematic)

19

Client Sends 
Message

Sever Sends 
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Encryption kC kS

MAC kC’ kS’



Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
𝑘 𝑚𝑚 be a secure MAC. Let 

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑡𝑡𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 ∥ 𝑐𝑐 , where t = Mac𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚

Can be problematic for some CPA-Secure schemes…
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Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
𝑘 𝑚𝑚 be a secure MAC. Let 

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑡𝑡𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 ∥ 𝑐𝑐 , where t = Mac𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚

𝐷𝐷𝑐𝑐𝑐𝑐𝐾𝐾 𝑐𝑐 =
1. �𝑚𝑚 = Dec𝐾𝐾𝐸𝐸

𝑘 𝑐𝑐 . If �𝑚𝑚 is not padded correctly return “bad padding”
2. Parse as 𝑚𝑚 ∥ 𝑐𝑐. If Vrfy𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚, 𝑐𝑐 = 1 return m. otherwise output 
“authentication failure”
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Building Authenticated Encryption

𝐷𝐷𝑐𝑐𝑐𝑐𝐾𝐾 𝑐𝑐 =
1. �𝑚𝑚 = Dec𝐾𝐾𝐸𝐸

𝑘 𝑐𝑐 . If is not padded correctly return “bad padding”
2. Parse as 𝑚𝑚 ∥ 𝑐𝑐. If Vrfy𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚, 𝑐𝑐 = 1 return m. otherwise output 
“authentication failure”

It is hard to ensure that the error messages cannot be distinguished!
• Timing Attacks
• Debugging
• Generic Integration of MAC scheme with Encryption scheme?
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Next Class: Multiparty Computation

• Finished with Katz and Lindell!
• Read Wikipedia entry on Secure Multi-party computation
• Read Katz and Lindell page 187-188 (commitment schemes)

• OK, almost done 
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