
Cryptography
CS 555
Topic 34: SSL/TLS

1

Recap

• Digital Signatures
• Attacks on Plain RSA Signatures
• RSA-FDH
• Secure Identification Scheme + Fiat Shamir Transform
• Digital Signature Standard

2

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you
Alice… - Bob

We need to
break up -Bob

3

Signcryption: Authenticity + Confidentiality

• Public Key: pk=(vk,ek)
• vk is used to verify messages
• ek is used to encrypt messages

• Secret Key: sk=(dk,sk)
• dk is used to decrypt messages
• sk is used to sign messages

• Goal: Design a mechanism that allows a sender S to send a message m to a
receiver R

• Integrity
• Secrecy

4

Attempt 1: Encrypt then Authenticate

• Sender S computes c = Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑚𝑚 and sends R

𝑆𝑆, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑐𝑐
• Receiver R decrypts c and then validates the signature

• This is the approach we used to build Authenticated Encryption with MACs
• Any problems here?

5

Attempt 1: Encrypt then Authenticate

6Bob
Alice

I wrote you
this poem…

I wrote you
this poem…

𝐵𝐵𝐵𝐵𝐵𝐵, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐁𝐁 𝑐𝑐 Devil, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐃𝐃𝐞𝐞𝐃𝐃𝐃𝐃𝐃𝐃 𝑐𝑐

Attempt 1: Encrypt then Authenticate

• Sender S computes c = Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑚𝑚 and sends R

𝑆𝑆, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑐𝑐
• Receiver R decrypts c and then validates the signature

• This is the approach we used to build Authenticated Encryption with MACs
• Another Issue:

• How can R convince judge that sender S signed the message m?
• Judge can verify that S signed the ciphertext, but needs R’s key to decrypt c.

7

Attempt 2: Authenticate then Encrypt

• Sender S computes σ = Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑚𝑚 and sends R

𝑆𝑆, Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑚𝑚 ∥ σ
• Receiver R decrypts ciphertext to obtain m and then validates the signature σ

• Solve the issue of non-repudiation. Receiver obtains a signature σ for m
• Any other Issues?

8

Attempt 2: Authenticate then Encrypt

9Bob

Alice

You are
despicable

𝐵𝐵𝐵𝐵𝐵𝐵, Enc𝐞𝐞𝐞𝐞𝐃𝐃𝐞𝐞𝐃𝐃𝐃𝐃𝐃𝐃 𝑚𝑚 ∥ σ

You are
despicable

Attempt 3:

• Sender S computes σ = Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑚𝑚 ∥ 𝑅𝑅 and sends R

𝑆𝑆, Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑆𝑆 ∥ 𝑚𝑚 ∥ σ

• This works 
• So does encrypt then authenticate with c = Enc𝐞𝐞𝐞𝐞𝐑𝐑 𝑆𝑆 ∥ 𝑚𝑚

𝑆𝑆, 𝑐𝑐, Sign𝐬𝐬𝐞𝐞𝐒𝐒 𝑐𝑐 ∥ 𝑅𝑅
• Rule of Thumb:

• When signing a message with your secret key include identity of receiver
• When encrypting message with someone’s public key include your identity in

message

10

Transport Security Layer (TLS)

• Standardized protocol based on processor SSL (Secure Socket Layer)

• Used for https connections by your browser

• Multiple Versions
• TLS 1.0, 1.1, 1.2
• (version 1.3 in progress https://tools.ietf.org/html/draft-ietf-tls-tls13-18)

• We will focus only on high level details

11

https://tools.ietf.org/html/draft-ietf-tls-tls13-18

Transport Security Layer (TLS)

• First Goal: Agree on a set of keys
• For Confidentiality
• Also Authentication

• Handshake Precondition:
• Client has a subset of {pk1,…pkn} --- public keys for several Certificate Authorities
• Server has a key-pair (pks,sks) for a KEM

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

12

Transport Security Layer (TLS)

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

2. S responds by selecting the most recent version of the protocol it
supports as well as an appropriate ciphersuite
1. Also sends pkS and certificate 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖→𝑆𝑆 (signed message form certificate

authority i validating pkS)
2. A nonce NS

3. C checks to see if it has pki for CAi.
1. Yes? Verify the certificate and ensure that it is not expired/revoked
2. No? Abort/Ask Again

13

Transport Security Layer (TLS)

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

2. S responds by selecting the most recent version of the protocol it supports as well as
an appropriate ciphersuite
1. Also sends pkS and certificate 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖→𝑆𝑆 (signed message form certificate authority i validating pkS)
2. A nonce NS

3. C checks to see if it has pki for CAi.
1. Assuming pkS is validated…
2. C runs 𝑐𝑐, 𝑝𝑝𝑚𝑚𝑝𝑝 ← Encaps𝑝𝑝𝑝𝑝𝑆𝑆 1𝑛𝑛 (pmk is pre-master key)
3. C sends c to S (who will later use c and skS to recover pmk)
4. C computes mk=KDF(pmk,NC,NS) (mk is master key)
5. C computes four keys kC,kC’,kS,kS’= PRG(mk)
6. C computes 𝜏𝜏𝐶𝐶 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐 and sends 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 to S

14

Transport Security Layer (TLS)

1. Client C begins by sending S a message indicating
1. Protocol Versions + Ciphertext suites that he can run
2. A random “nonce” NC

2. S responds by selecting the most recent version of the protocol it supports as well as
an appropriate ciphersuite
1. Also sends pkS and certificate 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖→𝑆𝑆 (signed message form certificate authority i validating pkS)
2. A nonce NS

3. C checks to see if it has pki for CAi.
1. Assuming pkS is validated…
2. C runs 𝑐𝑐, 𝑝𝑝𝑚𝑚𝑝𝑝 ← Encaps𝑝𝑝𝑝𝑝𝑆𝑆 1𝑛𝑛 (pmk is pre-master key)
3. C sends c to S who recovers pmk
4. C computes mk=KDF(pmk,NC,NS) (mk is master key)
5. C computes four keys kC,kC’,kS,kS’= PRG(mk)
6. C computes 𝜏𝜏𝐶𝐶 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐 and sends 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 to S

15

Client Sends
Message

Sever Sends
Message

Encryption kC kS

MAC kC’ kS’

Transport Security Layer (TLS)
3. C checks to see if it has pki for CAi.

1. Assuming pkS is validated…
2. C runs 𝑐𝑐,𝑝𝑝𝑚𝑚𝑝𝑝 ← Encaps𝑝𝑝𝑝𝑝𝑆𝑆 1𝑛𝑛 (pmk is pre-master key)
3. C sends c to S who recovers pmk
4. C computes mk=KDF(pmk,NC,NS) (mk is master key)
5. C computes four keys kC,kC’,kS,kS’= PRG(mk)
6. C computes 𝜏𝜏𝐶𝐶 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐 and sends 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 to S

4. Sever
1. Computes 𝑝𝑝𝑚𝑚𝑝𝑝 ← Decaps𝑠𝑠𝑝𝑝𝑆𝑆 𝑐𝑐
2. Computes mk=KDF(pmk,NC,NS) (mk is master key)
3. Computes four keys kC,kC’,kS,kS’= PRG(mk)
4. Validates 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 by

1. Decrypt 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 with to obtain 𝜏𝜏𝐶𝐶
2. If Vrfy𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 ≠ 1 or Vrfy𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐, 𝜏𝜏𝐶𝐶 ≠ 1 then abort
3. Otherwise server and client agree so far on communication

16

Transport Security Layer (TLS)

4. Sever
1. Computes 𝑝𝑝𝑚𝑚𝑝𝑝 ← Decaps𝑠𝑠𝑝𝑝𝑆𝑆 𝑐𝑐
2. Computes mk=KDF(pmk,NC,NS) (mk is master key)
3. Computes four keys kC,kC’,kS,kS’= PRG(mk)
4. Validates 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 by

1. Decrypt 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 with to obtain 𝜏𝜏𝐶𝐶
2. If Vrfy𝑝𝑝𝑘𝑐𝑐 𝜏𝜏𝐶𝐶 , MAC𝑝𝑝𝑘𝑐𝑐 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 𝜏𝜏𝐶𝐶 ≠ 1 or Vrfy𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐, 𝜏𝜏𝐶𝐶 ≠ 1 then abort
3. Otherwise server and client agree so far on communication

5. S computes 𝜏𝜏𝑆𝑆 ← MAC𝑚𝑚𝑝𝑝 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑐𝑐′ and sends
𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑆𝑆 𝜏𝜏𝑆𝑆 , MAC𝑝𝑝𝑘𝑆𝑆 𝐸𝐸𝑡𝑡𝑐𝑐𝑝𝑝𝑆𝑆 𝜏𝜏𝐶𝐶 to C

5. Client validates 𝜏𝜏𝑆𝑆; otherwise aborts

17

Security Intuition

• C verifies certificate so it knows it is talking to S

• Knows that only legitimate S can learn pmk and mk

• If protocol finishes successfully then C knows that it shares four keys
kC,kC’,kS,kS’ with S

• MAC on transcript?
• Ensures consistency
• Man-in-the-Middle attacker may attempt to modify ciphersuite
• E.g., force C and S to use old version of cipher with security bugs etc…

18

Transport Security Layer (TLS)

• Record Layer Protocol once C and S share keys they start
communication

• Sequence numbers prevent replay attacks
• TLS 1.2 used authenticate-then-encrypt (can be problematic)

19

Client Sends
Message

Sever Sends
Message

Encryption kC kS

MAC kC’ kS’

Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
𝑘 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑡𝑡𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 ∥ 𝑐𝑐 , where t = Mac𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚

Can be problematic for some CPA-Secure schemes…

20

Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
𝑘 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑡𝑡𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
𝑘 𝑚𝑚 ∥ 𝑐𝑐 , where t = Mac𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚

𝐷𝐷𝑐𝑐𝑐𝑐𝐾𝐾 𝑐𝑐 =
1. �𝑚𝑚 = Dec𝐾𝐾𝐸𝐸

𝑘 𝑐𝑐 . If �𝑚𝑚 is not padded correctly return “bad padding”
2. Parse as 𝑚𝑚 ∥ 𝑐𝑐. If Vrfy𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚, 𝑐𝑐 = 1 return m. otherwise output
“authentication failure”

21

Building Authenticated Encryption

𝐷𝐷𝑐𝑐𝑐𝑐𝐾𝐾 𝑐𝑐 =
1. �𝑚𝑚 = Dec𝐾𝐾𝐸𝐸

𝑘 𝑐𝑐 . If is not padded correctly return “bad padding”
2. Parse as 𝑚𝑚 ∥ 𝑐𝑐. If Vrfy𝐾𝐾𝑀𝑀

𝑘 𝑚𝑚, 𝑐𝑐 = 1 return m. otherwise output
“authentication failure”

It is hard to ensure that the error messages cannot be distinguished!
• Timing Attacks
• Debugging
• Generic Integration of MAC scheme with Encryption scheme?

22

Next Class: Multiparty Computation

• Finished with Katz and Lindell!
• Read Wikipedia entry on Secure Multi-party computation
• Read Katz and Lindell page 187-188 (commitment schemes)

• OK, almost done 

23

	Cryptography�CS 555
	Recap
	What Does It Mean to “Secure Information”
	Signcryption: Authenticity + Confidentiality
	Attempt 1: Encrypt then Authenticate
	Attempt 1: Encrypt then Authenticate
	Attempt 1: Encrypt then Authenticate
	Attempt 2: Authenticate then Encrypt
	Attempt 2: Authenticate then Encrypt
	Attempt 3:
	Transport Security Layer (TLS)
	Transport Security Layer (TLS)
	Transport Security Layer (TLS)
	Transport Security Layer (TLS)
	Transport Security Layer (TLS)
	Transport Security Layer (TLS)
	Transport Security Layer (TLS)
	Security Intuition
	Transport Security Layer (TLS)
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Next Class: Multiparty Computation

