
Reminder: Homework 4
Due: Friday at the beginning of class

1

Cryptography
CS 555

Topic 33: Digital Signatures Part 2

2

Recap

• El-Gamal/RSA-OAEP
• Digital Signatures

• Similarities and differences with MACs
• Security
• Hash then MAC
• One-Time-Signatures

3

Digital Signature Scheme

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒑𝒑 ∈ 𝓚𝓚

• σ ← Signsk(𝑚𝑚,𝑅𝑅) (Signing algorithm)
• Input: Secret key sk message m, random bits R
• Output: signature σ

• b ≔ Vrfypk(𝑚𝑚,σ) (Verification algorithm --- Deterministic)
• Input: Public key pk, message m and a signature σ
• Output: 1 (Valid) or 0 (Invalid)

• Correctness: Vrfypk(m, Signsk(𝑚𝑚,𝑅𝑅))=1 (except with negligible probability)

Alice must run key generation
algorithm in advance an publishes the

public key: pk

Assumption: Adversary only gets to
see pk (not sk)

4

Signature Experiment (Sig − forgeA,Π n)

5

Random bit b
(pk,sk) = Gen(.)

σ ,𝑚𝑚 ∉ 𝔔𝔔 = 𝑚𝑚1,𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚,σ)

Plain RSA Signatures

• Plain RSA
• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝒎𝒎𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

• Verification Works because
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 𝑒𝑒 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑒𝑒 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚

7

No Message Attack

• Goal: Generate a forgery using only the public key
• No intercepted signatures required

• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q

• Pick random σ ∈ ℤ
N
∗

• Set 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵 .
• Output 𝑚𝑚,σ

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

8

Forging a Signature on Arbitrary Message

• (Last Attack): Attacker does not control message m in forgery
• What if we can convince honest party to sign random messages?

• Authentication by signing random nonces

• Attacker selects message 𝑚𝑚 ∈ ℤ
N
∗

• Attacker selects 𝑟𝑟1 ∈ ℤ
N
∗ at random and sets 𝑟𝑟2 = 𝑚𝑚 𝑟𝑟1 −1

• Attacker requests signatures σ1 and σ2for 𝑟𝑟1and 𝑟𝑟2 (respectively)

9

Forging a Signature on Arbitrary Message

• Attacker selects message 𝑚𝑚 ∈ ℤ
N
∗

• Attacker selects 𝑟𝑟1 ∈ ℤ
N
∗ at random and sets 𝑟𝑟2 = 𝑚𝑚 𝑟𝑟1 −1

• Attacker requests signatures σ1 and σ2for 𝑟𝑟1and 𝑟𝑟2 (respectively)

• Attacker outputs signature σ = σ1 σ2 mod N for m
σ𝑒𝑒 = σ1 𝑒𝑒 σ2 𝑒𝑒mod N

= 𝑟𝑟1 𝑟𝑟2mod N
= 𝑟𝑟1𝑚𝑚 𝑟𝑟1 −1mod N
= 𝑚𝑚

10

RSA-FDH (Full Domain Hash)

• Public Key (pk): N = pq, e and hash function 𝑯𝑯: 𝟎𝟎,𝟏𝟏 ∗ → ℤ
𝐍𝐍
∗

• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

• Verification Works because
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 𝑒𝑒 mod N = 𝑯𝑯 𝒎𝒎 𝑒𝑒𝑒𝑒mod N

= 𝑯𝑯 𝒎𝒎 [𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑒𝑒 𝝓𝝓 𝑵𝑵]mod N = 𝑯𝑯 𝒎𝒎 mod N

11

RSA-FDH (Full Domain Hash)

• What properties does H are required for security of RSA-FDH?

• Collision Resistance is necessary

• If attacker finds m and m’ such that 𝐻𝐻 𝑚𝑚 = 𝐻𝐻 𝑚𝑚′ then he can win
Sig-Forge game.

• How?

12

RSA-FDH (Full Domain Hash)

• What properties does H are required for security of RSA-FDH?

• Collision Resistance is necessary
• Should be infeasible to find m,σ such that

𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
• Why?

• No-message attack
• σ is a valid signature for m

13

RSA-FDH (Full Domain Hash)

• What properties does H are required for security of RSA-FDH?

• Collision Resistance is necessary
• Should be infeasible to find m,σ such that 𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
• Should be infeasible to find 𝑚𝑚,𝑚𝑚1,𝑚𝑚2 such that

𝑯𝑯 𝒎𝒎 = 𝑯𝑯 𝒎𝒎𝟏𝟏 𝑯𝑯 𝒎𝒎𝟐𝟐 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
• Why?

• σ = σ1 σ2 mod N is a valid signature for m

14

RSA-FDH (Full Domain Hash)

• What properties does H are required for security of RSA-FDH?

• Collision Resistance is necessary
• Should be infeasible to find m,σ such that 𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
• Should be infeasible to find 𝑚𝑚,𝑚𝑚1,𝑚𝑚2 such that

𝑯𝑯 𝒎𝒎 = 𝑯𝑯 𝒎𝒎𝟏𝟏 𝑯𝑯 𝒎𝒎𝟐𝟐 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

• Random Oracle H satisfies all three properties

15

RSA-FDH (Full Domain Hash)

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is
modeled as a random oracle then RSA-FDH is secure.
Proof Sketch: Use Sig-Forge attacker A to build RSA-INV attacker A’

16

RSA-FDH (Full Domain Hash)

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is
modeled as a random oracle then RSA-FDH is secure.
Proof Sketch:
Observation 1: If the attacker A outputs (m, σ) and never queries H(m) then
the odds of A winning are negligible.
Observation 2: We can guess that attacker A will output attempted forgery
for message mi, where mi is the i’th query to random oracle H(.)

17

RSA-FDH (Full Domain Hash)

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is
modeled as a random oracle then RSA-FDH is secure.
Proof Sketch: Suppose that we guess that attacker A will output attempted
forgery for message mi, where mi is the i’th query to random oracle H(.).
• We are right with probability 1/q(n).
• Abort if the attacker A ever requests a signature for mi (i.e., guess is wrong)

18

RSA-FDH (Full Domain Hash)

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is modeled as
a random oracle then RSA-FDH is secure.
Proof Sketch: will simulate A
• RSA-Inv attacker B starts with (N,e,y).
• Goal of B: Decrypt y using the signature forging adversary.
• Programmability of Random Oracle: When signature attacker makes its ith

random oracle query H(mi) respond with y instead of H(mi)
• Signature attacker cannot tell the difference since y is random!

19

RSA-FDH (Full Domain Hash)

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is modeled as a random oracle
then RSA-FDH is secure.
Proof Sketch: Start with (N,e,y) our goal is to decrypt y using the signature forging adversary.
• Programmability of Random Oracle: When signature attacker makes its ith random oracle query

H(mi) respond with y instead of H(mi)
• Signature attacker cannot tell the difference!

• Forgery: A valid forgery for message mi is now 𝒚𝒚𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵 (the decryption of y)
Pr RSA−INV𝐵𝐵(𝑛𝑛) = 1 =

1
𝑞𝑞(𝑛𝑛)

Pr Sig−Forge𝐴𝐴(𝑛𝑛) = 1 − negl(𝑛𝑛)

20

RSA-FDH (Full Domain Hash)

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒑𝒑 𝒎𝒎 = 𝑯𝑯 𝒎𝒎 𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊𝑯𝑯 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Remark: In practice output of H needs to be close to all of ℤ
𝐍𝐍

∗ (otherwise
known attacks exist)

H = SHA-1 doesn’t work for two reasons
1. The output is too short
2. SHA-1 is no longer collision resistant

21

Identification Scheme

• Interactive protocol that allows one party to prove its identify
(authenticate itself) to another

• Two Parties: Prover and Verifier
• Prover has secret key sk and Verifier has public key pk

1. Prover runs P1(sk) to obtain (I,st) ---- initial message I, state st
• Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r to
Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I

22

Identification Scheme

1. Prover runs P1(sk) to obtain (I,st) ---- initial message I, state st
1. Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r
to Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I
An eavesdropping attacker obtains a transcript (I,r,s) of all the message
sent.
Transcript Oracle: Transsk(.) runs honest execution and outputs
transcript.

23

Identification Game (IdentA,Π n)

24

𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛

(pk,sk) = Gen(.)

𝐓𝐓𝐕𝐕𝐓𝐓𝐒𝐒𝐓𝐓𝒔𝒔𝒑𝒑 .

𝐓𝐓𝐕𝐕𝐓𝐓𝐒𝐒𝐓𝐓𝒔𝒔𝒑𝒑 .
𝐼𝐼

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr IdentA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛

Public Key: pk

𝒐𝒐 ← 𝜴𝜴𝒑𝒑𝒑𝒑

𝐓𝐓𝐕𝐕𝐓𝐓𝐒𝐒𝐓𝐓𝒔𝒔𝒑𝒑 .
𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛

𝑠𝑠

𝑰𝑰𝒅𝒅𝒆𝒆𝑰𝑰𝒐𝒐𝐀𝐀,𝚷𝚷 𝐒𝐒 = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝑽𝑽 𝒑𝒑𝒑𝒑, 𝒐𝒐, 𝒔𝒔 = 𝑰𝑰
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

Fiat-Shamir Transform

• Identification Schemes can be transformed into signatures
• Signsk(m)

• First compute (I,st)= P1(sk) (as prover)
• Next compute the challenge 𝒐𝒐 = 𝑯𝑯(𝑰𝑰,𝒎𝒎) (as verifier)
• Compute the response s = P2(sk,st,r)
• Output signature (r,s)

• Vrfypk(m,(r,s))
• Compute I := V(pk,r,s)
• Check that H(I,m)=r

Theorem 12.10: If the identification scheme is secure and H is a
random oracle then the above signature scheme is secure.

25

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑝𝑝 and sends initial
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑝𝑝

26

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑝𝑝 and sends initial
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑝𝑝
𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑟𝑟𝑟𝑟+𝑝𝑝 𝑚𝑚𝑚𝑚𝑒𝑒 𝑞𝑞 ∗ 𝑔𝑔−𝑟𝑟𝑟𝑟 = 𝑔𝑔𝑝𝑝

27

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

• Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑝𝑝 and sends initial message I to
verifier

• Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to prover
• Prover runs P1(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to Verifier
• Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑝𝑝

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group
generator) then Schnorr identification scheme is secure.

28

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑝𝑝 = 𝑔𝑔𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑟𝑟𝑟𝑟 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption?
• Theory: DSA Still lack compelling proof of security from standard crypto assumptions
• Practice: DSA has been used/studied for decades without attacks

29

Presenter
Presentation Notes
𝐹 𝑔 𝐻(𝑚) 𝑠 −1 ℎ 𝑟 𝑠 −1 =𝐹 𝑔 𝐻 𝑚 𝑘 𝑥𝑟+𝐻(𝑚)−1 𝑔 𝑥𝑟𝑘 𝑥𝑟+𝐻(𝑚)−1 =𝐹 𝑔 (𝐻 𝑚 +𝑥𝑟)𝑘 𝑥𝑟+𝐻(𝑚)−1 =𝐹 𝑔 𝑘 =𝑟

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑝𝑝 = 𝑔𝑔𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑟𝑟𝑟𝑟 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Remark: If signer signs two messages with same random 𝑘𝑘 ∈ ℤ
q

then attacker can find
secret key sk!
• Theory: Shouldn’t happen
• Practice: Will happen if a weak PRG is used
• Sony PlayStation (PS3) hack in 2010.

30

Presenter
Presentation Notes
s1≔ 𝑘 −1 𝑥𝑟+𝐻(𝑚1) 𝑚𝑜𝑑 𝑞 s2≔ 𝑘 −1 𝑥𝑟+𝐻(𝑚2) 𝑚𝑜𝑑 𝑞 s1−s2= 𝑘 −1 𝐻 𝑚1 −𝐻(𝑚2) 𝑚𝑜𝑑 𝑞 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑘

Next Class: Digital Signatures Part 2

• Read Katz and Lindell: 12.8

31

	Reminder: Homework 4
	Cryptography�CS 555
	Recap
	Digital Signature Scheme
	Signature Experiment (Sig−forge A,Π n)
	Plain RSA Signatures
	No Message Attack
	Forging a Signature on Arbitrary Message
	Forging a Signature on Arbitrary Message
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	Identification Scheme
	Identification Scheme
	Identification Game (Ident A,Π n)
	Fiat-Shamir Transform
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Next Class: Digital Signatures Part 2

