Reminder: Homework 4

Due: Friday at the beginning of class



Cryptography
CS 555

Topic 33: Digital Signatures Part 2




Recap

e El-Gamal/RSA-OAEP

e Digital Signatures
e Similarities and differences with MACs
e Security
e Hash then MAC
* One-Time-Signatures



Digital Signature Scheme

* Three Algorithms

* Gen(1", R) (Key-generation algorithm)
e Input: Random Bits R
e Output: (pk,sk) € K

e 0 « Sign, (m, R) (Signing algorit
e |nput: Secret key sk message m, random bitst
e Qutput: signature o

* b= Vrfy, (m, o) (Verification algorithm --- Deterministi

* Input: Public key pk, message m and a signature o .
e Output: 1 (Valid) or 0 (Invalid) Assumption: Adversary only gets to
see pk (not sk)

Alice must run key generation
algorithm in advance an publishes the
public key: pk

* Correctness: Vrfy ,(m, Sign, (m, R) )=1 (except with negligible probability)



Signature Experiment (Sig — forge, ;(n))

Public Key: pk

m,

o1 = Signg(m, )

‘mz

o, = Signg(m, )

o,m&Xd ={m;,m,..}

_ Sig —forge, p(n) = Vrfy ,(m, o) V Random bit b [P0\

. . (pk,sk) =Gen(.) < &

VPPT A Ju (negligible) s.t
Pr|Sig — forgep n(n) = 1| < u(n)




Plain RSA Signatures

e Plain RSA

» Public Key (pk): N = pq, e such that GCD(e, qb(N)) =1
e (N) = (p —1)(qg — 1) for distinct primes p and q

» Secret Key (sk): N, d such that ed=1 mod ¢(N)

Sign , (m) = m mod N
- — e
Vrfy, , (m, o) = {1 if m = |c°mod N]

0 otherwise
e Verification Works because
Signg, (m)¢ mod N| = [m®@mod N] = [mledm0d ¢Mlmod N| = m



No Message Attack

* Goal: Generate a forgery using only the public key
* No intercepted signatures required
 Public Key (pk): N = pq, e such that GCD(e, qb(N)) =1
e d(N) = (p—1)(q — 1) for distinct primes p and q
e Pick random o € Z:
e Setm = [0® mod N|.
e Output (m, o)
1 ifm=|c*modN
Vrtypi(m, o) = {O 4 ([)therwise]



Forging a Signature on Arbitrary Message

* (Last Attack): Attacker does not control message m in forgery

 What if we can convince honest party to sigh random messages?
e Authentication by signing random nonces

e Attacker selects message m € Z:
* Attacker selects r; € Z° at random and sets 1, = m(ry)~t

» Attacker requests signatures o, and o,for r;and r, (respectively)



Forging a Signature on Arbitrary Message

* Attacker selects message m € Z_
* Attacker selects r; € Z at random and sets r, = m(ry)~*
 Attacker requests signatures o, and o,for r;and r, (respectively)

* Attacker outputs signature 6 = [0, 0, mod N] for m
0 = [(01)¢(03)°mod N

71 mod NJ

_rlm(rl)_lmod N]

=m




RSA-FDH (Full Domain Hash)

 Public Key (pk): N = pq, e and hash function H: {0,1}* — /A
* Secret Key (sk): N, d such that ed=1 mod ¢(N)

Sign_,.(m) = Him)% mod N

1 ifH(m) = [0® mod N|

vrf ,0) =
CYpr (M, o) 0 otherwise

e Verification Works because
|Sign, (M) mod N| = [H(m)*?mod N]
= [H(m)led mod ¢W)imod N| = [H(m)mod N]



RSA-FDH (Full Domain Hash)

« What properties does H are required for security of RSA-FDH?
 Collision Resistance is necessary

e If attacker finds m and m’ such that H(m) = H(m') then he can win
Sig-Forge game.

e How?



RSA-FDH (Full Domain Hash)

« What properties does H are required for security of RSA-FDH?

 Collision Resistance is necessary

e Should be infeasible to find m, o such that
H(m) = o mod N
e Why?
* No-message attack
e o is avalid signature for m



RSA-FDH (Full Domain Hash)

« What properties does H are required for security of RSA-FDH?

 Collision Resistance is necessary
* Should be infeasible to find m, o such that H(m) = 6 mod N

e Should be infeasible to find m, m,, m, such that
H(m) = Him,) Him,) mod N

e Why?

e 0 = |0, 6, mod N] is a valid signature for m



RSA-FDH (Full Domain Hash)

« What properties does H are required for security of RSA-FDH?

 Collision Resistance is necessary
* Should be infeasible to find m, o such that H(m) = 6 mod N

e Should be infeasible to find m, m,, m, such that
H(m) = Him,) Him,) mod N

« Random Oracle H satisfies all three properties



RSA-FDH (Full Domain Hash)

Sign_,.(m) = Him)% mod N
1 ifH(m) = [0® mod N|

Vrf m,o) =
Ypi(1M, 0) 0 otherwise

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is
modeled as a random oracle then RSA-FDH is secure.

Proof Sketch: Use Sig-Forge attacker A to build RSA-INV attacker A’



RSA-FDH (Full Domain Hash)

Sign , (m) = H(m)% mod N
1 ifH(m) = [0c® mod N|

vrf ,0) =
CYpr(m, 0) 0 otherwise

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is
modeled as a random oracle then RSA-FDH is secure.

Proof Sketch:

Observation 1: If the attacker A outputs (m, o) and never queries H(m) then
the odds of A winning are negligible.

Observation 2: We can guess that attacker A will output attempted forgery
for message m,, where m, is the i’th query to random oracle H(.)



RSA-FDH (Full Domain Hash)

Sign , (m) = H(m)% mod N
1 ifH(m) = [0c® mod N|

vrf ,0) =
CYpr(m, 0) 0 otherwise

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is
modeled as a random oracle then RSA-FDH is secure.

Proof Sketch: Suppose that we guess that attacker A will output attempted
forgery for message m, where m. is the i"th query to random oracle H(.).

e We are right with probability 1/q(n).
* Abort if the attacker A ever requests a signature for m. (i.e., guess is wrong)



RSA-FDH (Full Domain Hash)

Sign , (m) = H(m)% mod N
1 ifH(m) = [0°® mod N|

Vrf ,0) =
c1Ypr(m, o) 0 otherwise

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is modeled as
a random oracle then RSA-FDH is secure.

Proof Sketch: will simulate A
e RSA-Inv attacker B starts with (N,e,y).

e Goal of B: Decrypt y using the signature forging adversary.

* Programmability of Random Oracle: When signature attacker makes its it"
random oracle query H(m,) respond with y instead of H(m,)

e Signature attacker cannot tell the difference since y is random!



RSA-FDH (Full Domain Hash)

Sign, (m) = H(m)* mod N
1 ifH(m) = [0c® mod N]

vrf ,0) =
CYpic(m, o) 0 otherwise

Theorem 12.7: If the RSA problem is hard relative to GenRSA and if H is modeled as a random oracle
then RSA-FDH is secure.

Proof Sketch: Start with (N,e,y) our goal is to decrypt y using the signature forging adversary.

* Programmability of Random Oracle: When signature attacker makes its ith random oracle query
H(m,) respond with y instead of H(m,)

e Signature attacker cannot tell the difference!

* Forgery: A valid forgery for message m. is now y% mod N (the decryption of y)
Pr[RSA-INVg(n) = 1] =
§ q(n)

Pr[Sig-Forge,(n) = 1] — negl(n)



RSA-FDH (Full Domain Hash)

Sign , (m) = H(m)% mod N

1 ifH(m) = [0c® mod N|

vrf ,0) =
CYpr(m, 0) 0 otherwise

Remark: In practice output of H needs to be close to all of Z* (otherwise
known attacks exist)

H = SHA-1 doesn’t work for two reasons
1. The output is too short
2. SHA-1is no longer collision resistant ©



ldentification Scheme

* Interactive protocol that allows one party to prove its identify

(authenticate itself) to another

 Two Parties: Prover and Verifier

1.

e Prover has secret key sk and Verifier has public key pk

Prover runs P,(sk) to obtain (I,st) ---- initial message I, state st
e Sends | to Verifier

Verifier picks random message r from distribution {1,,, and sends r to
Prover

Prover runs P,(sk,st,r) to obtain s and sends s to verifier
Verifier checks if V(pk,r,s)=I



ldentification Scheme

1. Prover runs P,(sk) to obtain (I,st) ---- initial message |, state st
1. Sends | to Verifier

2. Verifier picks random message r from distribution (., and sends r
to Prover

3. Prover runs P,(sk,st,r) to obtain s and sends s to verifier

4. Verifier checks if V(pk,r,s)=l
An eavesdropping attacker obtains a transcript (I,r,s) of all the message
sent.

Transcript Oracle: Trans,,(.) runs honest execution and outputs
transcript.



[dentification Game (Ident, (n))

Public Key: pk
Again
Transg,(.)

1 Again
‘ Transg;(.) '
I B
) r< 0,
- Again }
Transg, ()

1if V(pk,r,s) =1

Ident, y(n) =

VPPT A 3u (negligible) s.t Pr[Ildent, ;(n) = 1] < u(n) .



Fiat-Shamir Transform

 |dentification Schemes can be transformed into signatures
e Sign,, (m)

e First compute (l,st)= P,(sk) (as prover)

e Next compute the challenge r = H(I,m) (as verifier)
e Compute the response s = P,(sk,st,r)

e Qutput signature (r,s)

° Vrfypk(ml(rrs))
e Compute | := V(pk,r,s)
e Check that H(l,m)=r

Theorem 12.10: If the identification scheme is secure and H is a
random oracle then the above signature scheme is secure.



Schnorr Identification Scheme

 Verifier knows h=g*
* Prover knows x such that h=g*

1. Prover runs P,(x) to obtain (k € Z I = ") and sends initial
message | to verifier

2. Verifier picks random r € Zq (q is order of the group) and sends r to
prover

3. Prover runs P,(x,k,r) to obtain s := [rx + k mod q] and sends s to
Verifier

4. Verifier checksif g5« (h™1)" =1 = gk



Schnorr Identification Scheme

 Verifier knows h=g*
* Prover knows x such that h=g*

1. Prover runs P,(x) to obtain (k € Z I = ") and sends initial
message | to verifier

2. Verifier picks random r € Z (g is order of the group) and sends r to
prover

3. Prover runs P,(x,k,r) to obtain s := [rx + k mod q] and sends s to
Verifier
4. Verifier checks if g5 x (h™1)" =1 = g~
gs * (h—l)r — grx+k mod q g—xr — gk



Schnorr Identification Scheme

 Verifier knows h=g*
e Prover knows x such that h=g*

* Prover runs P,(x) to obtain (k eZ I = gk)and sends initial message | to
verifier ’

e \Verifier picks random r € Zq (q is order of the group) and sends r to prover
* Prover runs P1(x,k,r) to obtain s := [rx + k mod q] and sends s to Verifier
» Verifier checks if g * (h™1)" = [ = g~

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group
generator) then Schnorr identification scheme is secure.



Digital Signature Algorithm (DSA)

e Secret key is x, public key is h=g*

* Signg(m)
* Pickrandom (k € Z )andsetr = F(g*) = [g* mod q]
« Computes == [k~ 1(xr + H(m)) mod q]
e Qutput signature (r,s)

* Vrfy,(m,(r,s)) check to make sure that
y = F(gH(m)s‘lhrs‘l)

Theorem: If H and F are modeled as random oracles then DSA is secure.

Weird Assumption?

* Theory: DSA Still lack compelling proof of security from standard crypto assumptions
* Practice: DSA has been used/studied for decades without attacks


Presenter
Presentation Notes
𝐹  𝑔 𝐻(𝑚) 𝑠 −1   ℎ 𝑟 𝑠 −1   
=𝐹  𝑔 𝐻 𝑚 𝑘 𝑥𝑟+𝐻(𝑚)−1   𝑔 𝑥𝑟𝑘 𝑥𝑟+𝐻(𝑚)−1   
=𝐹  𝑔 (𝐻 𝑚 +𝑥𝑟)𝑘 𝑥𝑟+𝐻(𝑚)−1   
=𝐹  𝑔 𝑘  =𝑟


Digital Signature Algorithm (DSA)

e Secret key is x, public key is h=g*

* Signg(m)
* Pickrandom (k € Z )andsetr = F(g*) = [g* mod q]
« Computes == [k~ 1(xr + H(m)) mod q]
e Qutput signature (r,s)

* Vrfy,(m,(r,s)) check to make sure that
y = F(gH(m)s‘lhrs‘l)

Remark: If si$ner signs two messages with same random k € Z then attacker can find
secret key sk! 9

* Theory: Shouldn’t happen
* Practice: Will happen if a weak PRG is used
e Sony PlayStation (PS3) hack in 2010.


Presenter
Presentation Notes
s1≔  𝑘 −1  𝑥𝑟+𝐻(𝑚1)  𝑚𝑜𝑑 𝑞 
s2≔  𝑘 −1  𝑥𝑟+𝐻(𝑚2)  𝑚𝑜𝑑 𝑞 
s1−s2=  𝑘 −1  𝐻 𝑚1 −𝐻(𝑚2)  𝑚𝑜𝑑 𝑞 
𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑘


Next Class: Digital Signatures Part 2

e Read Katz and Lindell;: 12.8



	Reminder: Homework 4
	Cryptography�CS 555
	Recap
	Digital Signature Scheme
	Signature Experiment ( Sig−forge A,Π   n )
	Plain RSA Signatures
	No Message Attack
	Forging a Signature on Arbitrary Message
	Forging a Signature on Arbitrary Message
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	RSA-FDH (Full Domain Hash)
	Identification Scheme
	Identification Scheme
	Identification Game ( Ident A,Π   n )
	Fiat-Shamir Transform
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Next Class: Digital Signatures Part 2

