Cryptography
CS 555

Topic 31: RSA Attacks + Fixes




Recap

e CPA/CCA Security for Public Key Crypto
* Key Encapsulation Mechanism
e El-Gamal



Recap

* Plain RSA

» Public Key (pk): N = pq, e such that GCD(e, ¢p(N)) = 1
e (N) = (p —1)(q — 1) for distinct primes p and g

 Secret Key (sk): N, d such that ed=1 mod ¢(N)

Enc,,(m) = m® mod N
Dec.(c) = c*mod N

e Decryption Works because
[c®*mod N] = [m®@mod N] = [mléd mod #NMImed N| = [m mod N]



Recap RSA-Assumption

RSA-Experiment: RSA-INV,

1.

Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:
3. )
4. Attacker wins (RSA-INV, =1) if x® = y mod N

Attacker A is given N, e, y and outputs x € Z~

VPPT A Ju (negligible) s.t Pr[RSA-INVA | = 1] < u(n)



(Review) Attacks on Plain RSA

* We have not introduced security models like CPA-Security or CCA-security
for Public Key Cryptosystems

 However, notice that (Plain) RSA Encryption is stateless and deterministic.
—Plain RSA is not secure against chosen-plaintext attacks

* Plain RSA is also highly vulnerable to chosen-ciphertext attacks
o Attacker intercepts ciphertext c of secret message m
o Attacker generates ciphertext ¢’ for secret message 2m
o Attacker asks for decryption of ¢’ to obtain 2m
e Divide by 2 to recover original message m



(Plain) RSA Discussion

 However, notice that (Plain) RSA Encryption is stateless and deterministic.

—Plain RSA is not secure against chosen-plaintext attacks

* In a public key setting the attacker does have access to an encryption
oracle

* Encrypted messages with low entropy are vulnerable to a brute-force

attack.
e If m < B then attacker can recover m after at most B queries to encryption oracle
(using public key)



Recovering Encrypted Message faster than
Brute-Force

: 1
Claim: Let m < 2" be a secret message. For some constant @ = > + €.
We can recover minin time T = 29™ with high probability.

Forr=1,...,T
let x. = [cr~®mod N], wherer=¢ = (r"1)®mod N
Sort L = {(r,x,)}]_; (by the x_values)
For s=1,....T
if [s®mod N| = x_.for some r then
return [sr mod N|



Recovering Encrypted Message faster than
Brute-Force

: 1
Claim: Let m < 2"be a secret message. For some constant a = > + €.
We can recover minin time T = 29" with high probability.

Roughly v/B steps to find a secret message m < B



More Weaknesses: Plain RSA with small e

* (Small Messages) If me < N then we can decrypt c = m® mod N directly
e.g., m=c(l/e)

e (Partially Known Messages) If an attacker knows first 1-(1/e) bits of
secret message m = m4||? ? then he can recover m given

Enc,, (m) = m®*mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), €) we can find all m such that p(m) = 0 mod

N and | m|<N(1/e)



More Attacks: Encrypting Related Messages

e Sender encrypts m and m + 9, where offset 6 is known to attacker

e Attacker intercepts
¢; = Enc,,(m) = m® mod N
and
¢, = Enc,y(m + 6) = (m + 6)° mod N
e Attacker defines polynomials
f1(x) =x®—c,mod N

and
fo(x) =(x+68)°—c,mod N



More Attacks: Encrypting Related Messages

¢; = Enc,,(m) = m® mod N
¢, = Enc,y(m + 6) = (m + 6)° mod N
e Attacker defines polynomials
f1(x) =x®—c,mod N

and
fr(x) =(x+68)°—c,mod N

e Both polynomials have a root at x=m, thus (x-m) is a factor of both
polynomials

* The GCD operation can be extended to operate over polynomials ©
* GCD(f,(x), f,(x)) reveals the factor (x-m), and hence the message m



Sending the Same Message to Multiple
Recelvers

e Homework 3 Bonus Question
e ¢,=[m>? mod N ]
e ¢,= [m> mod N,]
e ¢,= [m> mod N,]
e Since gcd(N, N,)=gcd(N,, N;)= gcd(N,, N;)= 1, we can find a unique
number x< N,;N,N; such that x = m> mod Ni
e This, numberis x = m?>

e Mathematica Demo



Sending the Same Message to Multiple
Recelvers

e Homework 3 Bonus Question
e ¢,=[m>? mod N ]
e ¢,= [m> mod N,]
e ¢,= [m> mod N,]
e Since gcd(N, N,)=gcd(N,, N;)= gcd(N,, N;)= 1, we can find a unique
number x< N,;N,N; such that x = m> mod Ni
e This, numberis x = m?>

e Question: What if gcd(N,, N;)> 17
e Either N, = N5 or gcd(N,, N;) reveals a shared factor of N, N,



Apply GCD to Pairs of RSA Moduli?

* Fact: If we pick two random RSA moduli N, and N, then except with
negligible probability gcd(N,, N,)=1

* In theory the attack shouldn’t work, but...

* In practice, many people generated RSA moduli using weak
pseudorandom number generators.

* 5% of TLS hosts
* .03% of SSH hosts

e See https://factorable.net



https://factorable.net/

Dependent Keys Part 1

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee | subject to the constraints e,d.=1 mod ¢(N).

e Question: Is this secure?

* Answer: No, given e;d,employee i can factor N (and then recover
everyone else's secret key).

e See Theorem 8.50 in the textbook



Dependent Keys Part 2

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Suppose that each employee is trusted (so it is ok if employee i factors
N)

e Suppose that a message m is encrypted and sent to employee 1 and 2.
* Attacker intercepts ¢c,= [m® mod N] and c,= [m®2 mod N,]



Dependent Keys Part 2

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Suppose that a message m is encrypted and sent to employee 1 and 2.
* Attacker intercepts ¢,= [m® mod N] and c,= [m®2 mod N,]

e [f gcd(e,,e,)=1 (which is reasonably likely) then attacker can run
extended GCD algorithm to find X,Y such that Xe,+Ye,=1.
[c,¥c,"mod N,] = [m*®1mY¢2mod N,] = [m%©1*Y¢2 mod N,] = m



RSA-OAEP
(Optimal Asymmetric Encryption Padding)

L n-kO-k1 Kkt . kO

. Encpk (m;r) = [(X | )’)e mod N| = 0 r
e Wherex || y « OAEP(m || 0%« || 1) W4

* Decy, (c) = é}@,_ Y

e M < [(c)* mod N]J

o If ||M]| > n return fail X

em |l z || v « OAEP~1() - 'E]_b ’@
b
kO

=il

Y
X

e If z = 0% then output fail
* Otherwise output m

n-KO

f— | e



RSA-OAEP

(Optimal Asymmetric Encryption Padding)

Theorem: If we model G and H as
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme.

Bonus: One of the fastest in practice!
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PKCS #1 v2.0

* Implementation of RSA-OAEP

e James Manger found a chosen-ciphertext attack.

* What gives?



PKCS #1 v2.0 (Bad Implementation)

L n-kO-k1 Kkt . kO

. Encpk (m;r) = [(X | )’)e mod N| = 0 r
e Wherex || y « OAEP(m || 0%« || 1) W4

Y
* Decg, (c) = N .
e M «— [(c)dmod N] <>@
o If ||| > n return Error Message 1 X
em |l z || v « OAEP~1() - @ ’@
b
kO

=il

Y
X

e If z # 0%1 then output Error Message 2

n-KO

e Otherwise output



PKCS #1 v2.0 (Attack)

 Manger’s CCA-Attack recovers secret key
* Requires ||N|| queries to decryption oracle.

e Attack also works as a side channel attack
e Even if error messages are the same the time to respond could be different in
each case.

* Implementations should return same error message and should make
sure that the time to return each error is the same.



Another Side Channel Attack on RSA

e Suppose that decryption is done via Chinese Remainder Theorem for
speed.

Decg,(c) = c?mod N < (¢® mod p,c? mod q)

e Attacker has physical access to smartcard
e Can mess up computation of ¢4 mod p
e Responseisr < (r, c? mod q)
er—m e (r—mmod p,0 mod q)
e GCD(R-m,N)=q

23



Next Class: Digital Signatures Part 1

e Read Katz and Lindell: 12.1-12.3
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