
Cryptography
CS 555

Topic 31: RSA Attacks + Fixes
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Recap

• CPA/CCA Security for Public Key Crypto
• Key Encapsulation Mechanism
• El-Gamal
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Recap

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎 = 𝒎𝒎𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵
𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒑𝒑 𝒄𝒄 = 𝒄𝒄𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑑𝑑mod N = 𝑚𝑚[𝑒𝑒𝑑𝑑 𝑚𝑚𝑚𝑚𝑑𝑑 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N

3



Recap RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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(Review) Attacks on Plain RSA

• We have not introduced security models like CPA-Security or CCA-security 
for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Plain RSA is also highly vulnerable to chosen-ciphertext attacks
• Attacker intercepts ciphertext c of secret message m
• Attacker generates ciphertext c’ for secret message 2m
• Attacker asks for decryption of c’ to obtain 2m
• Divide by 2 to recover original message m
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(Plain) RSA Discussion 

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• In a public key setting the attacker does have access to an encryption 
oracle

• Encrypted messages with low entropy are vulnerable to a brute-force 
attack. 

• If m < B then attacker can recover m after at most B queries to encryption oracle 
(using public key)
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Recovering Encrypted Message faster than 
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑃𝑃 = 2𝛼𝛼𝑛𝑛 with high probability. 

For r=1,…,T 
let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏
𝑻𝑻 (by the xr values)

For s=1,…,T 
if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = xr for some r then

return 𝑠𝑠𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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Recovering Encrypted Message faster than 
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑃𝑃 = 2𝛼𝛼𝑛𝑛 with high probability. 

Roughly 𝐵𝐵 steps to find a secret message m < B
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More Weaknesses: Plain RSA with small e

• (Small Messages) If me < N then we can decrypt c = me mod N directly
e.g., m=c(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of 
secret message 𝑚𝑚 = 𝑚𝑚1‖? ? then he can recover m given 

𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚) = 𝑚𝑚𝑒𝑒mod N

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)
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More Attacks: Encrypting Related Messages

• Sender encrypts m and 𝑚𝑚 + 𝛿𝛿, where offset 𝛿𝛿 is known to attacker

• Attacker intercepts 
𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and 
𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 + 𝛿𝛿 = 𝑚𝑚 + 𝛿𝛿 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Attacker defines polynomials 
𝑓𝑓1 𝑥𝑥 = 𝑥𝑥𝑒𝑒 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and 
𝑓𝑓2 𝑥𝑥 = 𝑥𝑥 + 𝛿𝛿 𝑒𝑒 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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More Attacks: Encrypting Related Messages

𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 + 𝛿𝛿 = 𝑚𝑚 + 𝛿𝛿 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Attacker defines polynomials 
𝑓𝑓1 𝑥𝑥 = 𝑥𝑥𝑒𝑒 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and 
𝑓𝑓2 𝑥𝑥 = 𝑥𝑥 + 𝛿𝛿 𝑒𝑒 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Both polynomials have a root at x=m, thus (x-m) is a factor of both 
polynomials

• The GCD operation can be extended to operate over polynomials 
• GCD(𝑓𝑓1 𝑥𝑥 , 𝑓𝑓2 𝑥𝑥 ) reveals the factor (x-m), and hence the message m
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Sending the Same Message to Multiple 
Receivers
• Homework 3 Bonus Question

• c1= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁1]
• c2= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]
• c2= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁3]
• Since gcd(𝑁𝑁1,𝑁𝑁2)= gcd(𝑁𝑁1,𝑁𝑁3)= gcd(𝑁𝑁2,𝑁𝑁3)= 1, we can find a unique 

number x< 𝑁𝑁1𝑁𝑁2𝑁𝑁3 such that 𝑥𝑥 = 𝑚𝑚3𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑁𝑁
• This, number is 𝑥𝑥 = 𝑚𝑚3

• Mathematica Demo
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Sending the Same Message to Multiple 
Receivers
• Homework 3 Bonus Question

• c1= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁1]
• c2= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]
• c2= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁3]
• Since gcd(𝑁𝑁1,𝑁𝑁2)= gcd(𝑁𝑁1,𝑁𝑁3)= gcd(𝑁𝑁2,𝑁𝑁3)= 1, we can find a unique 

number x< 𝑁𝑁1𝑁𝑁2𝑁𝑁3 such that 𝑥𝑥 = 𝑚𝑚3𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑁𝑁
• This, number is 𝑥𝑥 = 𝑚𝑚3

• Question: What if gcd(𝑁𝑁2,𝑁𝑁3)> 1?
• Either 𝑁𝑁2 = 𝑁𝑁3 or gcd(𝑁𝑁2,𝑁𝑁3) reveals a shared factor of 𝑁𝑁2,𝑁𝑁3

13



Apply GCD to Pairs of RSA Moduli?

• Fact: If we pick two random RSA moduli 𝑁𝑁1 and 𝑁𝑁2 then except with 
negligible probability gcd(𝑁𝑁1,𝑁𝑁2)= 1

• In theory the attack shouldn’t work, but…

• In practice, many people generated RSA moduli using weak 
pseudorandom number generators.

• .5% of TLS hosts
• .03% of SSH hosts

• See https://factorable.net
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Dependent Keys Part 1

15

• Suppose an organization generates N=pq and a pair (ei,di) for each 
employee I subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Question: Is this secure?

• Answer: No, given eidi employee i can factor N (and then recover 
everyone else's secret key).

• See Theorem 8.50 in the textbook  



Dependent Keys Part 2
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• Suppose an organization generates N=pq and a pair (ei,di) for each 
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Suppose that each employee is trusted (so it is ok if employee i factors 
N)

• Suppose that a message m is encrypted and sent to employee 1 and 2.
• Attacker intercepts c1= [𝑚𝑚𝑒𝑒1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁] and c2= [𝑚𝑚𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]



Dependent Keys Part 2
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• Suppose an organization generates N=pq and a pair (ei,di) for each 
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Suppose that a message m is encrypted and sent to employee 1 and 2.
• Attacker intercepts c1= [𝑚𝑚𝑒𝑒1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁] and c2= [𝑚𝑚𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]
• If gcd(e1,e2)=1 (which is reasonably likely) then attacker can run 

extended GCD algorithm to find X,Y such that Xe1+Ye2=1.
[c1

𝑋𝑋𝑐𝑐2
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2] = [𝑚𝑚𝑋𝑋𝑒𝑒1𝑚𝑚𝑌𝑌𝑒𝑒2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2] = [𝑚𝑚𝑋𝑋𝑒𝑒1+𝑌𝑌𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2] = 𝑚𝑚



RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑝𝑝1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒑𝒑 𝑐𝑐 =
• �𝑚𝑚 ← [ 𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝑚𝑚 > 𝑛𝑛 return fail
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1( �𝑚𝑚)
• If 𝑧𝑧 ≠ 0𝑝𝑝1 then output fail
• Otherwise output m
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RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
Theorem: If we model G and H as 
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme.

Bonus: One of the fastest in practice! 
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PKCS #1 v2.0

• Implementation of RSA-OAEP

• James Manger found a chosen-ciphertext attack.

• What gives?
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PKCS #1 v2.0 (Bad Implementation)

• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑝𝑝1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒑𝒑 𝑐𝑐 =
• �𝑚𝑚 ← [ 𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝒎𝒎 > 𝒏𝒏 return Error Message 1
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1( �𝑚𝑚)
• If 𝒛𝒛 ≠ 𝟎𝟎𝒑𝒑𝟏𝟏 then output Error Message 2
• Otherwise output 
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PKCS #1 v2.0 (Attack)

• Manger’s CCA-Attack recovers secret key

• Requires 𝑵𝑵 𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑁𝑁𝑞𝑞𝑠𝑠 𝑡𝑡𝑚𝑚 𝑚𝑚𝑞𝑞𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡𝑁𝑁𝑚𝑚𝑛𝑛 𝑚𝑚𝑟𝑟𝑜𝑜𝑐𝑐𝑜𝑜𝑞𝑞.

• Attack also works as a side channel attack
• Even if error messages are the same the time to respond could be different in 

each case.

• Implementations should return same error message and should make 
sure that the time to return each error is the same.

22



Another Side Channel Attack on RSA

• Suppose that decryption is done via Chinese Remainder Theorem for 
speed.

𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒑𝒑 𝒄𝒄 = 𝒄𝒄𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 ↔ 𝒄𝒄𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑, 𝒄𝒄𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒

• Attacker has physical access to smartcard
• Can mess up computation of 𝒄𝒄𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑
• Response is r ↔ 𝒓𝒓, 𝒄𝒄𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• r − m ↔ 𝒓𝒓 −𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑,𝟎𝟎𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• GCD(R-m,N)=q
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Next Class: Digital Signatures Part 1

• Read Katz and Lindell: 12.1-12.3
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