Cryptography CS 555

Topic 30: El-Gamal Encryption

Recap

- CPA/CCA Security for Public Key Crypto
- Key Encapsulation Mechanism

A Quick Remark about Groups

• Let $\mathbb G$ be a group with order $m=|\mathbb G|$ with a binary operation \circ (over $\mathbb G$) and let $\mathbb G$, $h\in \mathbb G$ be given and consider sampling $k\in \mathbb G$ uniformly at random then we have

$$\Pr_{\mathbf{k} \leftarrow \mathbb{G}}[k = g] = \frac{1}{m}$$

Question: What is $\Pr_{\mathbf{k} \leftarrow \mathbb{G}}[k \circ h = g] = \frac{1}{m}$?

Answer:

$$\Pr_{\mathbf{k} \leftarrow \mathbb{G}}[k \circ h = g] = \Pr_{\mathbf{k} \leftarrow \mathbb{G}}[k = g \circ h^{-1}] = \frac{1}{m}$$

A Quick Remark about Groups

Lemma 11.15: Let \mathbb{G} be a group with order $m = |\mathbb{G}|$ with a binary operation \circ (over \mathbb{G}) then for any pair \mathbb{g} , $\mathbb{h} \in \mathbb{G}$ we have

$$\Pr_{\mathbf{k} \leftarrow \mathbb{G}}[k \circ h = g] = \frac{1}{m}$$

Remark: This lemma gives us a way to construct perfectly secret private-key crypto scheme. How?

- Key Generation ($Gen(1^n)$):
 - 1. Run $G(1^n)$ to obtain a cyclic group \mathbb{G} of order \mathbb{Q} (with $\|q\| = n$) and a generator \mathbb{Q} such that $\mathbb{Q} = \mathbb{G}$.
 - 2. Choose a random $x \in \mathbb{Z}_q$ and set $h = g^x$
 - 3. Public Key: $pk = \langle \mathbb{G}, q, g, h \rangle$
 - 4. Private Key: $sk = \langle \mathbb{G}, q, g, x \rangle$
- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^y, m \cdot h^y \rangle$ for a random $y \in \mathbb{Z}_q$
- $\operatorname{Dec}_{\operatorname{sk}}(c = (c_1, c_2)) = c_2 c_1^{-x}$

- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{\mathcal{Y}}, m \cdot h^{\mathcal{Y}} \rangle$ for a random $y \in \mathbb{Z}_q$
- $\operatorname{Dec}_{\operatorname{sk}}(c = (c_1, c_2)) = c_2 c_1^{-x}$

$$Dec_{sk}(g^{y}, m \cdot h^{y}) = m \cdot h^{y}(g^{y})^{-x}$$

$$= m \cdot h^{y}(g^{y})^{-x}$$

$$= m \cdot (g^{x})^{y}(g^{y})^{-x}$$

$$= m \cdot g^{xy}g^{-xy}$$

$$= m$$

CPA-Security (PubK $_{A,\Pi}^{LR-cpa}(n)$)

Random bit b (pk,sk) = Gen(.)

$$\forall PPT\ A\ \exists\mu\ (\text{negligible})\ \text{s.t}$$

$$\Pr\left[\text{PubK}_{A,\Pi}^{\text{LR-cpa}}(n)=1\right] \leq \frac{1}{2} + \mu(n)$$

- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{\mathcal{Y}}, m \cdot h^{\mathcal{Y}} \rangle$ for a random $y \in \mathbb{Z}_q$
- $\operatorname{Dec}_{\operatorname{sk}}(c = (c_1, c_2)) = c_2 c_1^{-x}$

Theorem 11.18: Let $\Pi = (Gen, Enc, Dec)$ be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure.

Proof: Recall that CPA-security and eavesdropping security are equivalent for public key crypto. It suffices to show that for all PPT A there is a negligible function **negl** such that

$$\Pr[\text{PubK}_{A,\Pi}^{\text{eav}}(\mathbf{n}) = 1] \le \frac{1}{2} + \text{negl(n)}$$

Eavesdropping Security (Pub $K_{A,\Pi}^{eav}(n)$)

Public Key: pk

Random bit b (pk,sk) = Gen(.)

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$$

$$\Pr[\text{PubK}_{A,\Pi}^{\text{eav}}(n) = 1] \leq \frac{1}{2} + \mu(n)$$

Theorem 11.18: Let $\Pi = (Gen, Enc, Dec)$ be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then Π is CPA-Secure.

Proof: First introduce an `encryption scheme' $\widetilde{\Pi}$ in which $\widetilde{\operatorname{Enc}_{\operatorname{pk}}}(m) = \langle g^y, m \cdot g^z \rangle$ for random $y, z \in \mathbb{Z}_q$ (there is actually no way to do decryption, but the experiment $\operatorname{PubK}_{A,\widetilde{\Pi}}^{\operatorname{eav}}(n)$ is still well defined). In fact, (using Lemma 11.15)

$$\begin{aligned} &\Pr \big[\text{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(\mathbf{n}) = 1 \big] \\ &= \frac{1}{2} \Pr \big[\text{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(\mathbf{n}) = 1 | b = 1 \big] + \frac{1}{2} \big(1 - \Pr \big[\text{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(\mathbf{n}) = 1 | b = 0 \big] \big) \\ &= \frac{1}{2} + \frac{1}{2} \Pr_{\mathbf{y}, \mathbf{z} \leftarrow \mathbb{Z}_q} \big[A(\langle g^{\mathbf{y}}, m \cdot g^{\mathbf{z}} \rangle) = 1 \big] - \frac{1}{2} \Pr_{\mathbf{y}, \mathbf{z} \leftarrow \mathbb{Z}_q} \big[A(\langle g^{\mathbf{y}}, g^{\mathbf{z}} \rangle) = 1 \big] \\ &= \frac{1}{2} \end{aligned}$$

Theorem 11.18: Let $\Pi = (Gen, Enc, Dec)$ be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then Π is CPA-Secure.

Proof: We just showed that

$$Pr[PubK_{A,\widetilde{\Pi}}^{eav}(n) = 1] = \frac{1}{2}$$

Therefore, it suffices to show that

$$\left| \Pr \left[\operatorname{PubK}_{A,\Pi}^{\text{eav}}(\mathbf{n}) = 1 \right] - \Pr \left[\operatorname{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(\mathbf{n}) = 1 \right] \right| \le \mathbf{negl}(n)$$

This, will follow from DDH assumption.

Theorem 11.18: Let $\Pi = (Gen, Enc, Dec)$ be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then Π is CPA-Secure.

Proof: We can build $B(g^x, g^y, Z)$ to break DDH assumption if Π is not CPA-Secure. Simulate eavesdropping attacker A

- 1. Send attacker public key $pk = \langle \mathbb{G}, q, g, h = g^x \rangle$
- 2. Receive m_0 , m_1 from A.
- 3. Send A the ciphertext $\langle g^y, m_b \cdot Z \rangle$.
- 4. Output 1 if and only if attacker outputs b'=b.

$$|\Pr[B(g^{x}, g^{y}, Z) = 1 | Z = g^{xy}] - \Pr[B(g^{x}, g^{y}, Z) = 1 | Z = g^{z}]|$$

$$= |\Pr[\Pr[PubK_{A,\Pi}^{eav}(n) = 1] - \Pr[\Pr[PubK_{A,\Pi}^{eav}(n) = 1]]|$$

$$= |\Pr[\Pr[PubK_{A,\Pi}^{eav}(n) = 1] - \frac{1}{2}|$$

- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{\mathcal{Y}}, m \cdot h^{\mathcal{Y}} \rangle$ for a random $y \in \mathbb{Z}_q$ and $h = g^{\mathcal{X}}$,
- $\operatorname{Dec}_{sk}(c = (c_1, c_2)) = c_2 c_1^{-x}$

Fact: El-Gamal Encryption is malleable.

$$c = \text{Enc}_{pk}(m) = \langle g^y, m \cdot h^y \rangle$$

$$c' = \text{Encpk}(m) = \langle g^y, 2 \cdot m \cdot h^y \rangle$$

$$\text{Dec}_{sk}(c') = 2 \cdot m \cdot h^y \cdot g^{-xy} = 2m$$

Key Encapsulation Mechanism (KEM)

- Three Algorithms
 - $Gen(1^n, R)$ (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
 - Encaps_{pk} $(1^n, R)$
 - Input: security parameter, random bits R
 - Output: Symmetric key $k \in \{0,1\}^{\ell(n)}$ and a ciphertext c
 - Decaps_{sk}(c) (Deterministic algorithm)
 - Input: Secret key $sk \in \mathcal{K}$ and a ciphertex c
 - Output: a symmetric key $\{0,1\}^{\ell(n)}$ or \bot (fail)
- Invariant: Decaps_{sk}(c)=k whenever (c,k) = Encaps_{pk}(1^n , R)

KEM CCA-Security ($KEM_{A,\Pi}^{cca}(n)$)

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$$

$$\Pr[\text{KEM}_{A,\Pi}^{\text{cca}} = 1] \leq \frac{1}{2} + \mu(n)$$

Random bit b (pk,sk) = Gen(.)

$$(c, k_0) = \operatorname{Encaps}_{pk}(.)$$

 $k_1 \leftarrow \{0, 1\}_{15}^n$

Recall: Last Lecture

CCA-Secure KEM from RSA in Random Oracle Model

What if we want security proof in the standard model?

Answer: DDH yields a CPA-Secure KEM in standard model

KEM CPA-Security ($KEM_{A,\Pi}^{cpa}(n)$)

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$$

$$\Pr[\text{KEM}_{A,\Pi}^{\text{cpa}} = 1] \leq \frac{1}{2} + \mu(n)$$

Random bit b (pk,sk) = Gen(.)

$$(c, k_0) = \operatorname{Encaps}_{pk}(.)$$

 $k_1 \leftarrow \{0, 1\}_{17}^n$

CCA-Secure Encryption from CPA-Secure KEM

$$\operatorname{Enc}_{\operatorname{pk}}(m;R) = \langle c, \operatorname{Enc}_{\operatorname{k}}^*(m) \rangle$$

Where

- $(c, k) \leftarrow \operatorname{Encaps}_{\operatorname{pk}}(1^n; R),$
- \bullet **Enc** $_{\mathbf{k}}^{*}$ is a eavesdropping-secure symmetric key encryption algorithm
- **Encaps**_{pk} is a CPA-Secure KEM.

Theorem 11.12: $\mathbf{Enc_{pk}}$ is CCA-Secure public key encryption scheme.

- $Gen(1^n, R)$ (Key-generation algorithm)
 - 1. Run $\mathcal{G}(1^n)$ to obtain a cyclic group \mathbb{G} of order q (with ||q|| = 2n) and a generator g such that $\langle g \rangle = \mathbb{G}$.
 - 2. Choose a random $x \in \mathbb{Z}_q$ and set $h = g^x$
 - 3. Public Key: $pk = \langle \mathbb{G}, q, g, h \rangle$
 - 4. Private Key: $sk = \langle \mathbb{G}, q, g, x \rangle$
- Encaps_{pk} $(1^n, R)$
 - Pick random $y \in \mathbb{Z}_q$
 - Output: $\langle g^{y}, k = \text{LeastSigNBits}(h^{y}) \rangle$
- Decaps_{sk}(c) (Deterministic algorithm)
 - Output: $k = \text{LeastSigNBits}(c^x)$

- $Gen(1^n, R)$ (Key-generation algorithm)
 - 1. Run $\mathcal{G}(1^n)$ to obtain a cyclic group \mathbb{G} of order q (with ||q||=2n) and a generator g such that < g >= \mathbb{G} .
 - 2. Choose a random $x \in \mathbb{Z}_q$ and set $h = g^x$
 - 3. Public Key: $pk = \langle \mathbb{G}, q, g, h \rangle$
 - 4. Private Key: $sk = \langle \mathbb{G}, q, g, x \rangle$
- Encaps_{pk} $(1^n, R)$
 - Pick random $y \in \mathbb{Z}_q$
 - Output: $\langle g^{y}, k = \text{LeastSigNBits}(h^{y}) \rangle$
- Decaps_{sk}(c) (Deterministic algorithm)
 - Output: $k = \text{LeastSigNBits}(c^x)$

$$Decaps_{sk}(g^y) = LeastSigNBits(g^{xy}) = LeastSigNBits(h^y) = k$$

- $Gen(1^n, R)$ (Key-generation algorithm)
 - 1. Run $\mathcal{G}(1^n)$ to obtain a cyclic group \mathbb{G} of order q (with $\|q\|=2n$) and a generator g such that $<\mathbf{g}>=\mathbb{G}$.
 - 2. Choose a random $x \in \mathbb{Z}_q$ and set $h = g^x$
 - 3. Public Key: $pk = \langle \mathbb{G}, q, g, h \rangle$
 - 4. Private Key: $sk = \langle \mathbb{G}, q, g, x \rangle$
- Encaps_{pk} $(1^n, R)$
 - Pick random $y \in \mathbb{Z}_q$
 - Output: $\langle g^y, k = \text{LeastSigNBits}(h^y) \rangle$
- $Decaps_{sk}(c)$ (Deterministic algorithm)
 - Output: $k = \text{LeastSigNBits}(c^x)$

Theorem 11.20: If DDH is hard relative to $\mathcal G$ then (Gen,Encaps,Decaps) is a CPA-Secure KEM

- $Gen(1^n, R)$ (Key-generation algorithm)
 - 1. Run $\mathcal{G}(1^n)$ to obtain a cyclic group \mathbb{G} of order q (with $\|q\|=2n$) and a generator g such that $\langle g \rangle = \mathbb{G}$.
 - 2. Choose a random $x \in \mathbb{Z}_q$ and set $h = g^x$
 - 3. Public Key: $pk = \langle \mathbb{G}, q, g, h \rangle$
 - 4. Private Key: $sk = \langle \mathbb{G}, q, g, x \rangle$
- Encaps_{pk} $(1^n, R)$
 - Pick random $y \in \mathbb{Z}_q$
 - Output: $\langle g^y, k = \text{LeastSigNBits}(h^y) \rangle$
- Decaps_{sk}(c) (Deterministic algorithm)
 - Output: $k = \text{LeastSigNBits}(c^x)$

Remark: If CDH is hard relative to $\mathcal G$ then (Gen, Encaps, Decaps) and we replace LeastSigNBits with a random oracle H then this is a CPA-Secure KEM

(...also CCA-secure under a slightly stronger assumption called gap-CDH)

CCA-Secure Variant in Random Oracle Model

- Key Generation ($Gen(1^n)$):
 - 1. Run $G(1^n)$ to obtain a cyclic group \mathbb{G} of order \mathbb{Q} (with $\|q\| = n$) and a generator \mathbb{Q} such that $\mathbb{Q} = \mathbb{G}$.
 - 2. Choose a random $x \in \mathbb{Z}_q$ and set $h = g^x$
 - 3. Public Key: $pk = \langle \mathbb{G}, q, g, h \rangle$
 - 4. Private Key: $sk = \langle \mathbb{G}, q, q, x \rangle$
- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^y, c', Mac_{K_M}(c') \rangle$ for a random $y \in \mathbb{Z}_q$ and $K_E \| K_M = H(h^y)$ and $c' = \operatorname{Enc}'_{K_E}(m)$
- $\operatorname{Dec}_{\operatorname{sk}}(\langle c, c', t \rangle)$
- 1. $K_E || K_M = H(c^x)$
- 2. If $\operatorname{Vrfy}_{K_M}(c',t) \neq 1$ or $c \notin \mathbb{G}$ output \perp ; otherwise output $\operatorname{Dec}'_{K_E}(c',t)$

CCA-Secure Variant in Random Oracle Model

Theorem: If Enc'_{K_E} is CPA-secure, Mac_{K_M} is a strong MAC and a problem called gap-CDH is hard then this a CCA-secure public key encryption scheme in the random oracle model.

- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{y}, c', \operatorname{Mac}_{K_{\mathbf{M}}}(c') \rangle$ for a random $y \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M} = H(h^{y})$ and $c' = \operatorname{Enc}'_{K_{\mathbf{E}}}(m)$
- $\operatorname{Dec}_{\mathbf{sk}}(\langle c, c', t \rangle)$
- 1. $K_E || K_M = H(c^x)$
- 2. If $Vrfy_{K_M}(c',t) \neq 1$ or $c \notin \mathbb{G}$ output \perp ; otherwise output $Dec'_{K_E}(c',t)$

CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2 standard for public-key encryption.

- Diffie-Hellman Integrated Encryption Scheme (DHIES)
- Elliptic Curve Integrated Encryption Scheme (ECIES)
- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^y, c', \operatorname{Mac}_{K_{\operatorname{M}}}(c') \rangle$ for a random $y \in \mathbb{Z}_q$ and $K_E \| K_M = H(h^y)$ and $c' = \operatorname{Enc}'_{K_E}(m)$
- $\operatorname{Dec}_{\operatorname{sk}}(\langle c, c', t \rangle)$
- 1. $K_E || K_M = H(c^x)$
- 2. If $\operatorname{Vrfy}_{K_{\mathbf{M}}}(c',t) \neq 1$ or $c \notin \mathbb{G}$ output \perp ; otherwise output $\operatorname{Dec}_{K_{\mathbf{E}}}'(c',t)$

Next Class: RSA Attacks + Fixes

• Read Katz and Lindell: 11.5