Cryptography CS 555

Topic 3: Perfect Secrecy

Recap

- Caesar Cipher, Shift Cipher, Substitution Cipher, Vigenere Cipher
- All historical ciphers have fallen

Perfect Secrecy Intuition

 Regardless of information an attacker *already* has, a ciphertext should leak no *additional information* about the underlying plaintext.

- We will formalize this intuition
 - And show how to achieve it

Private Key Encryption Syntax

- Message Space: ${\mathcal M}$
- Key Space: ${\mathcal K}$
- Three Algorithms
 - Gen(R) (Key-generation algorithm)
 - Input: Random Bits R
 - Output: Secret key $k \in \mathcal{K}$
 - Enc_k(*m*) (Encryption algorithm)
 - Input: Secret key $k \in \mathcal{K}$ and message $m \in \mathcal{M}$
 - Output: ciphertext *c*
 - $Dec_k(c)$ (Decryption algorithm)
 - Input: Secret key $k \in \mathcal{K}$ and a ciphertex c
 - Output: a plaintext message $m \in \mathcal{M}$
- Invariant: Dec_k(Enc_k(m))=m

Typically picks $k \in \mathcal{K}$ uniformly at random

Trusted Parties (e.g., Alice and Bob) must run Gen in advance to obtain secret k.

Assumption: Adversary does not get to see output of Gen

An Example

 Enemy knows that Caesar likes to fight in the rain and it is raining today

$$Pr[m = wait] = 0.3$$

 $Pr[m = attack] = 0.7$

 Suppose that Caesar sends c=Enc_K(m) to generals and that the attacker calculates

$$Pr[m = wait | c=EncK(m)] = 0.2$$

 $Pr[m = attack | c=EncK(m)] = 0.8$

• Did the attacker learn anything useful?

Perfect Secrecy

Definition 1: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for *every* probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$ and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$: $\Pr[M = m|C = c] = \Pr[M = m].$

Definition 2: For every
$$m, m' \in \mathcal{M}$$
 and $c \in \mathcal{C}$
 $Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c].$

(where the probabilities are taken over the randomness of Gen and Enc)

Lemma 2.4: The above definitions are equivalent.

Another Equivalent Definition (Game)

Ę

Random bit b K = Gen(.) c = Enc_K(m_b)

Another Equivalent Definition (Game)

Random bit b K = Gen(.) c = Enc_K(m_b)

Suppose we have m,m',c' s.t. $Pr[Enc_{\kappa}(m)=c'] > Pr[Enc_{\kappa}(m')=c']$ then the adversary can win the game w.p > $\frac{1}{2}$. How?

What else do we need to establish to prove that the definitions are equivalent?

One Time Pad [Vernam 1917]

 $\operatorname{Enc}_{K}(m) = K \oplus m$ $\operatorname{Dec}_{K}(c) = K \oplus c$

Example = 1011⊕0011 = ???

Theorem: The one-time pad encryption scheme is perfectly secret

The following calculation holds for any c, m $Pr[Enc_{\kappa}(m)=c] = Pr[K \oplus m = c] = Pr[K=c \oplus m] = \frac{1}{|\mathcal{K}|}.$ Thus, for any m, m', c we have $Pr[Enc_{\kappa}(m)=c]=\frac{1}{|\mathcal{K}|} = Pr[Enc_{\kappa}(m')=c].$

One Time Pad [Vernam 1917]

$\operatorname{Enc}_{K}(m) = K \oplus m$ $\operatorname{Dec}_{K}(c) = K \oplus c$

Example = 1011⊕0011 = ???

One Time Pad

Perfect Secrecy Limitations

Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption scheme then

 $|\mathcal{K}| \ge |\mathcal{M}|$

One Time Pad Limitations

- The key is as long as the message
 - How to exchange long messages?
 - Need to exchange/secure lots of one-time pads!
- OTPs can only be used once
 - As the name suggests
- VENONA project (US + UK)
 - Decrypt ciphertexts sent by Soviet Union which were mistakenly encrypted with portions of the same one-time pad over several decades

 $c \oplus c' = (m \oplus k) \oplus (m' \oplus k) = m \oplus m'$

VENONA project

HERBERT ROMERSTEIN AND ERIC BREINDEL

Shannon's Theorem

Theorem: Let (Gen,Enc,Dec) be an encryption scheme with $|\mathcal{H}| = |\mathcal{M}| = |\mathcal{C}|$. Then the scheme is perfectly secret if and only if:

- 1. Every key $k \in \mathcal{K}$ is chosen with (equal) probability $\frac{1}{|\mathcal{K}|}$ by the algorithm Gen, and
- 2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$ there exists a unique key $k \in \mathcal{K}$ such that $Enc_k(m)=c$.

An Important Remark on Randomness

- In our analysis we have made (and will continue to make) a key assumption:
- We have access to true "randomness"

to generate the one time pad K

- Independent Random Bits
 - Unbiased Coin flips
 - Radioactive decay?

In Practice

- Hard to flip thousands/millions of coins
- Mouse-movements/keys
 - Uniform bits?
 - Independent bits?
- Use Randomness Extractors
 - As long as input has high entropy, we can extract (almost) uniform/independent bits
 - Hot research topic in theory

In Practice

- Hard to flip thousands/millions of coins
- Mouse-movements/keys
- Customized Randomness Chip?

Caveat: Don't do this!

Rand() in C stdlib.h is no good for cryptographic applications

Source of many real world flaws

Coming Up...

- MLK Day (No Class)
- Before Next Class (Wednesday)
 - Read: Katz and Lindell 3.1-3.2