Cryptography CS 555

Topic 29: Formalizing Public Key Cryptography

Recap

- Key Management
- Diffie Hellman Key Exchange
- Password Authenticated Key Exchange (PAKEs)

Public Key Encryption: Basic Terminology

- Plaintext/Plaintext Space
 - A message $m \in \mathcal{M}$
- Ciphertext $c \in C$
- Public/Private Key Pair $(pk, sk) \in \mathcal{K}$

Public Key Encryption Syntax

- Three Algorithms
 - $Gen(1^n, R)$ (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
 - $\operatorname{Enc}_{\operatorname{pk}}(m) \in \mathcal{C}$ (Encryption algorithm)
 - $Dec_{sk}(c)$ (Decryption algorithm)
 - Input: Secret key sk and a ciphertex c
 - Output: a plaintext message $m \in \mathcal{M}$

• Invariant: Dec_{sk}(Enc_{pk}(m))=m

Alice must run key generation algorithm in advance an publishes the public key: pk

Assumption: Adversary only gets to see pk (not sk)

Chosen-Plaintext Attacks

 Model ability of adversary to control or influence what the honest parties encrypt.

- Historical Example: Battle of Midway (WWII).
 - US Navy cryptanalysts were able to break Japanese code by tricking Japanese navy into encrypting a particular message

Private Key Cryptography

Recap CPA-Security (Symmetric Key Crypto)

$$\forall PPT\ A\ \exists\mu\ (\text{negligible})\ \text{s.t}$$

 $\Pr[A\ Guesses\ b'=b] \leq \frac{1}{2} + \mu(n)$

Chosen-Plaintext Attacks

 Model ability of adversary to control or influence what the honest parties encrypt.

- Private Key Crypto
 - Attacker tricks victim into encrypting particular messages
- Public Key Cryptography
 - The attacker already has the public key pk
 - Can encrypt any message s/he wants!
 - CPA Security is critical!

CPA-Security (PubK $_{A,\Pi}^{LR-cpa}(n)$)

Random bit b (pk,sk) = Gen(.)

 $\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$ $\Pr[\text{PubK}_{A,\Pi}^{\text{LR-cpa}}(n) = 1] \leq \frac{1}{2} + \mu(n)$

CPA-Security (Single Message)

Formally, let $\Pi = (Gen, Enc, Dec)$ denote the encryption scheme, call the experiment $PubK_{A,\Pi}^{LR-cpa}(n)$ and define a random variable

PubK
$$_{A,\Pi}^{LR-cpa}(n) = 1$$
 if $b = b'$
PubK $_{A,\Pi}^{LR-cpa}(n) = 0$ otherwise

 Π has indistinguishable encryptions under a chosen plaintext attack if for all PPT adversaries A, there is a negligible function μ such that

$$\Pr[\mathsf{PubK}^{\mathsf{LR-cpa}}_{\mathsf{A},\Pi}(n) = 1] \le \frac{1}{2} + \mu(n)$$

Private Key Crypto

CPA Security was stronger than eavesdropping security

$$\operatorname{Enc}_{\mathsf{K}}(\mathsf{m}) = \mathsf{G}(\mathsf{K}) \oplus m$$

Vs.

$$\operatorname{Enc}_{K}(\mathbf{m}) = \langle r, F_{k}(r) \oplus m \rangle$$

Public Key Crypto

- Fact 1: CPA Security and Eavesdropping Security are Equivalent
 - Key Insight: The attacker has the public key so he doesn't gain anything from being able to query the encryption oracle!
- Fact 2: Any deterministic encryption scheme is not CPA-Secure
 - Historically overlooked in many real world public key crypto systems
- Fact 3: Plain RSA is not CPA-Secure
- Fact 4: No Public Key Cryptosystem can achieve Perfect Secrecy!
 - Exercise 11.1
 - Hint: Unbounded attacker can keep encrypting the message m using the public key to recover all possible encryptions of m.

Claim 11.7: Let $\Pi = (Gen, Enc, Dec)$ denote a CPA-Secure public key encryption scheme and let $\Pi' = (Gen, Enc', Dec')$ be defined such that

 $\operatorname{Enc}'_{\operatorname{pk}}(m_1\parallel m_2\parallel\cdots\parallel m_\ell)=\operatorname{Enc}_{\operatorname{pk}}(m_1)\parallel\cdots\parallel\operatorname{Enc}_{\operatorname{pk}}(m_\ell)$ Then Π' is also CPA-Secure.

Chosen Ciphertext Attacks

 Models ability of attacker to obtain (partial) decryption of selected ciphertexts

- Attacker might intercept ciphertext c (sent from S to R) and send c' instead.
 - After that attacker can observe receiver's behavior (abort, reply etc...)
- Attacker might send a modified ciphertext c' to receiver R in his own name.
 - E-mail response: Receiver might decrypt c' to obtain m' and include m' in the response to the attacker

Recap CCA-Security (Symmetric

We could set $m_0 = m_{-1}$ or $m_1 = m_{-2}$

Random bit b K = Gen(.)

Recap CCA-Security $\left(PrivK_{A,\Pi}^{cca}(n)\right)$

- 1. Challenger generates a secret key k and a bit b
- 2. Adversary (A) is given oracle access to Enc_k and Dec_k
- Adversary outputs m₀,m₁
- 4. Challenger sends the adversary $c=Enc_k(m_b)$.
- 5. Adversary maintains oracle access to Enc_k and Dec_k , however the adversary is not allowed to query $Dec_k(c)$.
- 6. Eventually, Adversary outputs b'.

$$PrivK_{A,\Pi}^{cca}(n) = 1$$
 if $b = b'$; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

$$\Pr[PrivK_{A,\Pi}^{cca}(n) = 1] \le \frac{1}{2} + negl(n)$$

CCA-Security (PubK $_{A,\Pi}^{cca}(n)$)

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$$

$$\Pr[\text{PubK}^{\text{cca}}_{A,\Pi}(n) = 1] \leq \frac{1}{2} + \mu(n)$$

Claim 11.7: Let $\Pi = (Gen, Enc, Dec)$ denote a CPA-Secure public key encryption scheme and let $\Pi' = (Gen, Enc', Dec')$ be defined such that

$$\operatorname{Enc}_{\operatorname{pk}}'(m_1 \parallel m_2 \parallel \cdots \parallel m_\ell) = \operatorname{Enc}_{\operatorname{pk}}(m_1) \parallel \cdots \parallel \operatorname{Enc}_{\operatorname{pk}}(m_\ell)$$

Then Π' is also CPA-Secure.

Claim? Let $\Pi = (Gen, Enc, Dec)$ denote a CCA-Secure public key encryption scheme and let $\Pi' = (Gen, Enc', Dec')$ be defined such that

$$\operatorname{Enc}_{\operatorname{pk}}'(m_1 \parallel m_2 \parallel \cdots \parallel m_\ell) = \operatorname{Enc}_{\operatorname{pk}}(m_1) \parallel \cdots \parallel \operatorname{Enc}_{\operatorname{pk}}(m_\ell)$$

Then Π' is also CCA-Secure.

Is this second claim true?

Claim? Let $\Pi = (Gen, Enc, Dec)$ denote a CCA-Secure public key encryption scheme and let $\Pi' = (Gen, Enc', Dec')$ be defined such that

 $\operatorname{Enc}'_{\operatorname{pk}}(m_1\parallel m_2\parallel\cdots\parallel m_\ell)=\operatorname{Enc}_{\operatorname{pk}}(m_1)\parallel\cdots\parallel\operatorname{Enc}_{\operatorname{pk}}(m_\ell)$ Then Π' is also CCA-Secure.

Is this second claim true?

Answer: No!

Fact: Let $\Pi = (Gen, Enc, Dec)$ denote a CCA-Secure public key encryption scheme and let $\Pi' = (Gen, Enc', Dec')$ be defined such that

$$\operatorname{Enc}_{\operatorname{pk}}'(m_1 \parallel m_2 \parallel \cdots \parallel m_\ell) = \operatorname{Enc}_{\operatorname{pk}}(m_1) \parallel \cdots \parallel \operatorname{Enc}_{\operatorname{pk}}(m_\ell)$$

Then Π' is **Provably Not CCA**-Secure.

- 1. Attacker sets $m_0=0^n\parallel 1^n\parallel 1^n$ and $m_1=0^n\parallel 0^n\parallel 1^n$ and gets $c_b=\operatorname{Enc}_{\mathrm{pk}}'(m_b)=c_{b,1}\parallel c_{b,2}\parallel c_{b,3}$
- 2. Attacker sets $c' = c_{b,2} \parallel c_{b,3} \parallel c_{b,1}$, queries the decryption oracle and gets

$$Dec'_{sk}(c') = \begin{cases} 1^n & || 1^n & || 0^n & \text{if b=0} \\ 0^n & || 1^n & || 0^n & \text{otherwise} \end{cases}$$

Achieving CPA and CCA-Security

Plain RSA is not CPA Secure (therefore, not CCA-Secure)

- El-Gamal (next class) is CPA-Secure, but not CCA-Secure
 - Homework 4

- Tools to build CCA-Secure Encryption
 - Key Encapsulation Mechanism

Key Encapsulation Mechanism (KEM)

- Three Algorithms
 - $Gen(1^n, R)$ (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
 - Encaps_{pk} $(1^n, R)$
 - Input: security parameter, random bits R
 - Output: Symmetric key $k \in \{0,1\}^{\ell(n)}$ and a ciphertext c
 - Decaps_{sk}(c) (Deterministic algorithm)
 - Input: Secret key $sk \in \mathcal{K}$ and a ciphertex c
 - Output: a symmetric key $\{0,1\}^{\ell(n)}$ or \bot (fail)
- Invariant: Decaps_{sk}(c)=k whenever (c,k) = Encaps_{pk}(1^n , R)

KEM CCA-Security ($KEM_{A,\Pi}^{cca}(n)$)

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$$

$$\Pr[\text{KEM}_{A,\Pi}^{\text{cca}} = 1] \leq \frac{1}{2} + \mu(n)$$

Random bit b (pk,sk) = Gen(.)

$$(c, k_0) = \operatorname{Encaps}_{pk}(.)$$

 $k_1 \leftarrow \{0, 1\}^n_{22}$

CCA-Secure Encryption from CCA-Secure KEM

$$\operatorname{Enc}_{\operatorname{pk}}(m;R) = \langle c, \operatorname{Enc}_{\operatorname{k}}^*(m) \rangle$$

Where

- $(c, k) \leftarrow \operatorname{Encaps}_{\operatorname{pk}}(1^n; R),$
- ullet Enc $_{f k}^*$ is a CCA-Secure symmetric key encryption algorithm, and
- Encaps_{pk} is a CCA-Secure KEM.

Theorem 11.14: $\mathbf{Enc_{pk}}$ is CCA-Secure public key encryption scheme.

CCA-Secure KEM in the Random Oracle Model

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

$$\operatorname{Encaps}_{\operatorname{pk}}(1^n, R) = \left(r^e \bmod N, k = H(r)\right)$$

- Remark 1: k is completely random string unless the adversary can query random oracle H on input r.
- Remark 2: If Plain-RSA is hard to invert for a random input then PPT attacker finds r with negligible probability.

Next Class: El-Gamal

• Read Katz and Lindell: 11.4