Homework 3 and 4

- Homework 3 is due now
- Homework 4 has been posted

Cryptography CS 555

Topic 28: Key-Management, Diffie-Hellman Key Exchange

Recap

- Factoring Algorithms
- Discrete Log Attacks
- NIST Security Recommendations

Key-Exchange Problem

• Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate one
 - Obi-Wan and Yoda share an asymmetric key with Anakin
 - Suppose that they fully trust Anakin

Key-Distribution Center (with Symmetric Key-Crypto)

Enc(K_{obiwan},"I would like to talk to Yoda")

Ok, here is a fresh key that no sith lord has seen

K_{obiwan}: Shared key between **Obiwan and** Anakin

 $c_1 = Enc(K_{obiwan}, ts, K_{new}),$ c₂=Enc(K_{voda}, ts, "Obiwan/Yoda", K_{new})

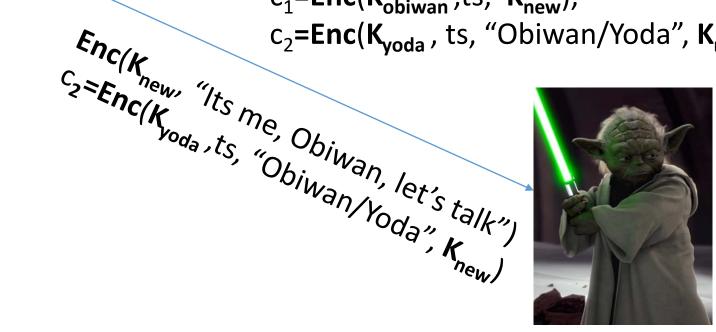
K_{yoda}: Shared key between yoda and Anakin

Key-Distribution Center (with Symmetric Key-Crypto)

Enc(K_{obiwan},"I would like to talk to Yoda")

Ok, here is a fresh key that no sith lord has seen

c₁=**Enc**(**K**_{obiwan},ts, **K**_{new}), c₂=Enc(K_{voda}, ts, "Obiwan/Yoda", K_{new})



Key-Distribution Center (with Symmetric Key-Crypto)

- Vulnerability: If Key-Distribution Center is compromised then all security guarantees are broken.
 - KDC is a valuable target for attackers
 - Possibility of insider attacks (e.g., employees)

• **Denial of Service (DOS) Attack**: If KDC is down then secure communication is temporarily impossible.

Key-Distribution Center (with Symmetric Key-Crypto)

- Benefit: Authenticated Encryption provides authentication as well
 - Yoda can be sure he is talking to Obiwan (assuming he trusts the KDC)
- Kerberos uses similar protocol
 - Yoda's key and Obiwan's key are typically derived from a password that they known.
 - Vulnerability: An eavesdropping attacker can mount a brute-force attack on the (low-entropy) passwords to recover K_{yoda} and K_{obiwan}.
- Recommendation: Always use Public Key Initialization with Kerberos

Key-Explosion Problem

- To avoid use a trusted KDC we could have every pair of users exchange private keys
- How many private keys per person?
 - Answer: n-1
 - Need to meet up with n-1 different users in person!
- Key Explosion Problem
 - n can get very big if you are Google or Amazon!

Diffie-Hellman Key Exchange

- 1. Alice picks x_A and sends g^{x_A} to Bob
- 2. Bob picks x_B and sends g^{x_B} to Alice
- 3. Alice and Bob can both compute $K_{A,B} = g^{x_B x_A}$

Key-Exchange Experiment $KE_{A,\Pi}^{eav}(n)$:

- Two parties run Π to exchange secret messages (with security parameter 1ⁿ).
- Let **trans** be a transcript which contains all messages sent and let k be the secret key output by each party.
- Let b be a random bit and let k_b = k if b=0; otherwise k_b is sampled uniformly at random.
- Attacker A is given **trans** and **k**_b (passive attacker).
- Attacker outputs b' ($KE_{A,\Pi}^{eav}(n)=1$ if and only if b=b')

Security of Π against an eavesdropping attacker: For all PPT A there is a negligible function **negl** such that

$$\Pr[KE_{A,\Pi}^{eav}(n)] = \frac{1}{2} + \mathbf{negl}(n).$$

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group generator G then the Diffie-Hellman key-exchange protocol Π is secure in the presence of an eavesdropper (*).

(*) Assuming keys are chosen uniformly at random from the cyclic group \mathbb{G}

Protocol Π

- 1. Alice picks x_A and sends g^{x_A} to Bob
- 2. Bob picks x_B and sends g^{x_B} to Alice
- 3. Alice and Bob can both compute $K_{A,B} = g^{x_B x_A}$

Diffie-Hellman Assumptions

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $h_1 = g^{x_1} \in \mathbb{G}$ and $h_2 = g^{x_2} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_1x_2} = (h_1)^{x_2} = (h_2)^{x_1}$
- **CDH Assumption**: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)

- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given g^{x_1} , g^{x_2} and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most $\frac{1}{2}$ + negl(n).

Diffie-Hellman Key Exchange

- 1. Alice picks x_A and sends g^{x_A} to Bob
- 2. Bob picks x_B and sends g^{x_B} to Alice
- 3. Alice and Bob can both compute $K_{A,B} = g^{\chi_B \chi_A}$

Intuition: Decisional Diffie-Hellman assumption implies that a passive attacker who observes g^{χ_A} and g^{χ_B} still cannot distinguish between $K_{A,B} = g^{\chi_B \chi_A}$ and a random group element.

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group generator G then the Diffie-Hellman key-exchange protocol Π is secure in the presence of an eavesdropper (*).

Proof:

$$\Pr[KE_{A,\Pi}^{eav}(n) = 1] \\ = \frac{1}{2}\Pr[KE_{A,\Pi}^{eav}(n) = 1|b = 1] + \frac{1}{2}\Pr[KE_{A,\Pi}^{eav}(n) = 1|b = 0] \\ = \frac{1}{2}\Pr[A(\mathbb{G}, g, q, g^{x}, g^{y}, g^{xy}) = 1] + \frac{1}{2}\Pr[A(\mathbb{G}, g, q, g^{x}, g^{y}, g^{z}) = 1] \\ = \frac{1}{2} + \frac{1}{2}(\Pr[A(\mathbb{G}, g, q, g^{x}, g^{y}, g^{xy}) = 1] - \Pr[A(\mathbb{G}, g, q, g^{x}, g^{y}, g^{z}) = 1]). \\ \leq \frac{1}{2} + \frac{1}{2}\operatorname{negl}(n) \text{ (by DDH)} \end{aligned}$$

(*) Assuming keys are chosen uniformly at random from the cyclic group \mathbb{G}

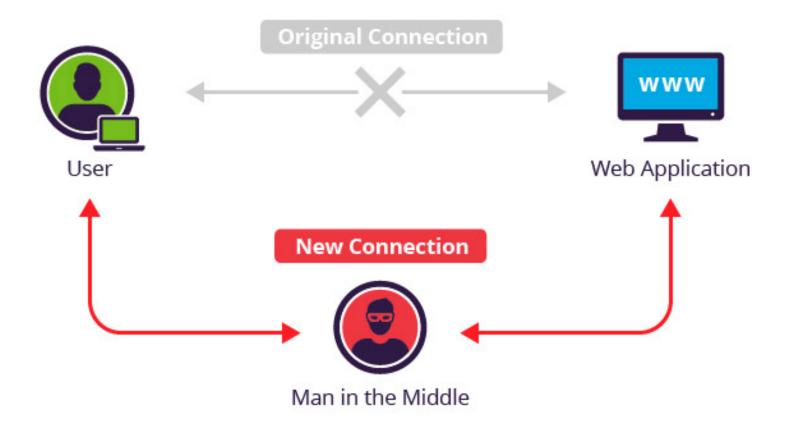
Diffie-Hellman Key Exchange

- 1. Alice picks x_A and sends g^{x_A} to Bob
- 2. Bob picks x_B and sends g^{x_B} to Alice
- 3. Alice and Bob can both compute $K_{A,B} = g^{x_B x_A}$

Intuition: Decisional Diffie-Hellman assumption implies that a passive attacker who observes g^{χ_A} and g^{χ_B} still cannot distinguish between $K_{A,B} = g^{\chi_B \chi_A}$ and a random group element.

Remark: The protocol is vulnerable against active attackers who can tamper with messages.

Man in the Middle Attack (MITM)



Man in the Middle Attack (MITM)

- 1. Alice picks x_A and sends g^{x_A} to Bob
 - Eve intercepts g^{x_A} , picks x_E and sends g^{x_E} to Bob instead
- 2. Bob picks x_B and sends g^{x_B} to Alice
 - 1. Eve intercepts g^{χ_B} , picks $\chi_{E'}$ and sends $g^{\chi_{E'}}$ to Alice instead
- 3. Eve computes $g^{x_{E'}x_A}$ and $g^{x_{E}x_B}$
 - 1. Alice computes secret key $g^{\chi_{E'}\chi_A}$ (shared with Eve not Bob)
 - 2. Bob computes $g^{\chi_E \chi_B}$ (shared with Eve not Alice)
- 4. Eve forwards messages between Alice and Bob (tampering with the messages if desired)
- 5. Neither Alice nor Bob can detect the attack

Password Authenticated Key-Exchange

- Suppose Alice and Bob share a low-entropy password pwd and wish to communicate securely
 - (without using any trusted party)
 - Assuming an active attacker may try to mount a man-in-the-middle attack
- Can they do it?

Tempting Approach:

- Alice and Bob both compute K= KDF(pwd)=Hⁿ(pwd) and communicate with using an authenticated encryption scheme.
- **Midterm Exam:** Secure in random oracle model if attacker cannot query random oracle too many time.

Password Authenticated Key-Exchange

Tempting Approach:

- Alice and Bob both compute K= KDF(pwd)=Hⁿ(pwd) and communicate with using an authenticated encryption scheme.
- **Midterm Exam:** Secure in random oracle model if attacker cannot query random oracle too many time.
- Problems:
 - In practice the attacker can (and will) query the random oracle many times.
 - In practice people tend to pick very weak passwords
 - Brute-force attack: Attacker enumerates over a dictionary of passwords and attempts to decrypt messages with K_{pwd'}=KDF(pwd') (only succeeds if K_{pwd'}=K).
 - An offline attack (brute-force) will almost always succeed

Password Authenticated Key-Exchange (PAKE)

Better Approach (PAKE):

- 1. Alice and Bob both compute $W = g^{pwd}$
- 2. Alice picks x_A and sends "Alice", $X = g^{x_A}$ to Bob
- 3. Bob picks x_{β} computes r = H(1, Alice, Bob, X) and $Y = (X \times (W)^r)^{x_{\beta}}$ and sends Alice the following message: "Bob," Y
- 4. Alice computes $K = Y^Z = g^{x_B}$ where $z = 1/((pwd \times r) + x_A) \mod p$. Alice sends the message $V_A = H(2,Alice,Bob,X,Y,K)$ to Bob.
- 5. Bob verifies that $V_A == H(2,Alice,Bob,X,Y,K)$ where $K = g^{\chi_B}$. Bob generates $V_B = H(3,Alice,Bob,X,Y,K)$ and sends V_B to Alice.
- 6. Alice verifies that $V_B == H(3, Alice, Bob, X, Y, Y^Z)$ where $z = 1/((pwd \times r) + x_A)$.
- 7. If Alice and Bob don't terminate the session key is H(4,Alice,Bob,X,Y, K)

Security:

- No offline attack (brute-force) is possible. Attacker get's one password guess per instantiation of the protocol.
- If attacker is incorrect and he tampers with messages then he will cause the Alice & Bob to quit.
- If Alice and Bob accept the secret key K and the attacker did not know/guess the password then K is "just as good" as a truly random secret key.

Key-Explosion Problem

- So far neither Diffie-Hellman Key Exchange nor PAKEs completely solved the problem
- PAKEs require a shared password
 - (n-1) shared passwords?
- Diffie-Hellman Key Exchange is vulnerable to man-in-the-middle
- Can use KDC to store database of public-keys (e.g., g^{χ_A}) for each party.
 - Breached KDC doesn't reveal secret keys

Public Key Revolution

- Digital Signatures can help
 - Private-Key Analogue: MAC
 - Private Key required to produce signature for a message m
 - Anyone with Public Key can verify the message
- An authority could sign the message "Alice's public key is g^{χ_A} "
- Anyone could use the authority's public key to validate Alice's public key
- The authority does not actually need to store g^{χ_A} .
- In fact, if Alice has signature then she can use this to prove her identity to Bob (and Bob doesn't need to interact the authority)

Next Class: Formalizing Public Key Encryption

- Formalizing Public Key Encryption
- Read Katz and Lindell: 11.1-11.2