Homework 3

* As announced: not due today ©

* Due Friday at the beginning of class.



Cryptography
CS 555
Topic 27: Factoring Algorithm, Discrete Log Attacks + NIST
Recommendations for Concrete Security Parameters




Recap

e OWFs + CRHFs from Discrete Log + Factoring
 Pollards (p-1) algorithm

e (works when N=pg and (p-1) has only “small” prime factors)



Pollard’s Rho Algorithm

e General Purpose Factoring Algorithm
e Doesn’t assume (p-1) has no large prime factor
e Goal: factor N=pq (product of two n-bit primes)

e Running time: O(W polylog(N))
e Naive Algorithm takes time O(W polylog(N)) to factor

e Core idea: find distinct x,x’ € Zy such that x = x'mod p
e Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)



Pollard’s Rho Algorithm

e General Purpose Factoring Algorithm
e Doesn’t assume (p-1) has no large prime factor

e Running time: O(W polylog(N))

* Core idea: find distinct x,x’ € Zj such that x = x'mod p
e Implies that x-x" is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

e Question: If we pick k = O(\/ﬁ random x4, ..., x(®) € Z* then what is
the probability that we can find distinct i and j such that



Pollard’s Rho Algorithm

e Question: If we pick k = O(\/ﬁ) random x, ... x(F) ¢ Z; th_en what
is the probability that we can find distinct i and j such that x(W) =
xmod p?

e Answer: > 1/,

* Proof (sketch): Use the Chinese Remainder Theorem + Birthday
Bound

x(® = (x(i) mod p, x® mod q)

Note: We will also have x® # xU) mod g (whp)



Pollard’s Rho Algorithm

e Question: If we pick k = O(\/ﬁ) random x4, ..., x(®) g Z; th_en what
is the probability that we can find distinct i and j such that x(W) =
xmod p?

e Answer: > 1/,

e Challenge: We do not know p or g so we cannot sort the x(V’s using
the Chinese Remainder Theorem Representation

xW = (x(i) mod p, xY mod q)

How can we identify the pair i and j such that x®¥ = xU)mod p?



Pollard’s Rho Algorithm

. Pollalr<d’s Rho Algorithm is similar the low-space version of the birthday
attac

Input: N (product of two n bit primes)
x(O) — Z;;, X =x = x(o)

Fori=1 to 2™/2 Remark 1: F should have the property that

if x=x" mod p then F(x) = F(x’) mod p.

x <« F(x)

x' « F(F(x)) Remark 2: F(x) = [x? + 1 mod N] will
p = GCD(x-x’,N) work since

if 1<p <Nreturnp F(x) = [x* + 1mod N]

o (x2 + 1 mod p,x* + 1 mod q)
o (F([x mod p] ) mod p, F(|]x mod q] )mod q)



Pollard’s Rho Algorithm

. Pollalr<d’s Rho Algorithm is similar the low-space version of the birthday
attac

Input: N (product of two n bit primes)

x©@ 75, x =x" = x© Claim: Let x(*D) = F(x() and suppose that for
For i=1 to 2™/2 some distinct i,j < 22 we have x(¥ = xU) mod p
x « F(x) but x( %= xU)_ Then the algorithm will find p.

x' « F(F(x)) N
p = GCD(x-x’,N)

if 1<p<Nreturnp

x®) mod p

Cycle length: i-j


Presenter
Presentation Notes
Proof: First part of claim states that there is a cycle. If there is such a cycle we will detect it


Pollard’s Rho Algorithm (Summary)

e General Purpose Factoring Algorithm
e Doesn’t assume (p-1) has no large prime factor

* Running time: O(W polylog(N))

e (still exponential in number of bits ~2™/4)

* Required Space: O(log(N))

e Succeeds with constant probability



Quadratic Sieve Algorithm

» Runs in subexponential time 20(V10g N loglog N) — »0(Jnlogn)

e Still not polynomial time but 2V™ 198" grows much slower than 2/,

* Core Idea: Find X,y € Zy such that
x? =y*modN

and
x # rymodN



Quadratic Sieve Algorithm

 Core ldea: Find X,y € Zy such that

x? =y modN (1)
and

x#tymodN (2)
Claim: gcd(x-y,N)€ {p, q}
> N=pq divides x* — y% = (x — y)(x + y). (by (1)).
2 —y)(x +y) # 0(by(2)).
—>N does not divide (x — y) (by (2)).
—>N does not divide (x + y). (by (2)).
> p is a factor of exactly one of the terms (x — y) and (x + y).
- (q is a factor of the other term)



Quadratic Sieve Algorithm

e Core ldea: Find X,y € Zy such that

x? =vy?modN
and

X # tymod N
» Key Question: How to find such an X,y € Zy?
e Step 1:
J=0;

Forx =vVN + 1,vVN +2,...,VN +1i,..
q < l(\/ﬁ+ i)2 mod Nl = [2iVN + i2mod N]

Check if q is B-smooth (all prime factors of q are in {p,,...,p,} where p, < B).
If g is B smooth then factor g, increment j and define

k
ej,i
=1



Quadratic Sieve Algorithm

e Core ldea: Find X,y € Zy such that
x? =y?modN

and
x # tymod N

» Key Question: How to find such an X,y € Zy?
e Step 2: Once we have £ > k equations ofléche form

ej,l-
gGgeqg=1\|p,",
i=1

We can use linear algebra to find S such that for each i < k we have

z ej; = 0 mod 2.

jES



Quadratic Sieve Algorithm

 Key Question: How to find x,y € Zy such that x* = y? mod N and x # +y mod N?
e Step 2: Once we have ¥ > k equations of the form

*q—ﬂp

We can use linear algebra to find a subset S Such that for each i < k we have

z ej; = 0 mod 2.

jES

Thus, ,
k4

qu HpZ]ESe]l _ 1_[ pizzjesej,i _ )2

JES =1



Quadratic Sieve Algorithm

e Key Question: How to find X,y € Z} such that x* = y% mod N and
X +# Ty mod N?

Thus,
" 2

- » Ly
. e-i —_— . e-’i
[ la=] [= =] [27=7") =0
=1

jeS i=1
But we also have

nqj = 1_[(96]-2) = (l_[ xj)z = x?mod N

jES jES j€ES



Quadratic Sieve Algorithm (Summary)

* Appropriate parameter tuning yields sub-exponential time algorithm

20(ylog N loglog N) — 20(,/nlogn)

e Still not polynomial time but 2V™ 198" grows much slower than 2/4.




Discrete Log Attacks

Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
e Preference for prime order subgroups in cryptography

Baby-step/Giant-Step Algorithm
* Solve discrete logarithm in time 0(\/6 polylog(q))

Pollard’s Rho Algorithm

e Solve discrete logarithm in time O(ﬁ polylog(q))
e Bonus: Constant memory!

Index Calculus Algorithm
e Similar to quadratic sieve

e Runs in sub-exponential time 20(y/log g loglogq)
* Specific to the group Z,, (e.g., attack doesn’t work elliptic-curves)




Discrete Log Attacks

e Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
e Preference for prime order subgroups in cryptography

* Let G = (g) and h = g* € G be given. For simplicity assume that r is prime and r < p.

* Observe that (g”) generates a subgroup of size p and that h" € (g").
 Solve discrete log problem in subgroup (g”) with input h".
e Find z such that h? = g2,

* Observe that (g?) generates a subgroup of size p and that h? € (gP).
* Solve discrete log problem in subgroup (g?) with input hP.
e Find y such that h¥? = gi»,

* Chinese Remainder Theorem h = g* where x & (|z mod p], [y mod r])



Baby-step/Giant-Step Algorithm

 Input: G = (g) of order q, generatorgand h = g* € G
e Sett = |/q]

Fori=0to E‘

gi < g*
Sort the pairs (i,g;) by their second component
Fori=Otot
h < hg' h; = hg' = g

if h; = gk € {9y, ..., g} then

— Jkt—i
return [kt-i mod q] - h = g



Discrete Log Attacks

e Baby-step/Giant-Step Algorithm
e Solve discrete logarithm in time 0(\/5 polylog(q))
e Requires memory 0(\/5 polylog(q))

e Pollard’s Rho Algorithm

* Solve discrete logarithm in time 0(\/5 polylog(q))
e Bonus: Constant memory!

e Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

Hg p(x1,%3) = g*1h*2

Hg;h(yl’ yZ) — Hg,h(x]_, xz) — hY27*2 = gxl_yl
- h = g(xl_Y1)(3’2_x2)_1

(*) A few small technical details to address



Remark: We used discrete-log problem to

D | SC rete Log Atta C kS construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

* Baby-step/Giant-Step Algorithm on discrete log.

 Solve discrete logarithm in time 0(\/5 polylog(q))

e Requires memory O(ﬁ polylog(q)) —> Generic attack on collision resistant hash
e Pollard’s Rho Algorithm functions (e.g., low space birthday attack)

« Solve discrete logarithm in time 0(\/(7 o yields generic attack on discrete log.

e Bonus: Constant memory!

» Key Idea: Low-Space Birthday Attack (*)
Hy p(x1,x2) = g**h*?

Hg,h<)’1»)’2) = Hg,h(xpxz)
- h)’z—xz = gxl_yl
—> h = g(xl—Y1)(yZ—xz)_1

(*) A few small technical details to address

22



Discrete Log Attacks

e Index Calculus Algorithm
e Similar to quadratic sieve

* Runs in sub-exponential time 20(y/log qloglogq)
* Specific to the group Z, (e.g., attack doesn’t work elliptic-curves)

* As before let {p,,...,p,} be set of prime numbers < B.
* Step 1.A: Find £ > k distinct values x4, ..., x4 such that g; = [g"/ mod p] is

B-smooth for each j. That is iy
ei’-
gj = Hpi g
i=1



Discrete Log Attacks

* As before let {p,,...,p,} be set of prime numbers < B.

* Step 1.A: Find £ > k distinct values x, ..., x; such that g; = |g”7 mod p]is
B-smooth for each j. That is )
ei,-
gj = l_lpi 7
i=1

e Step 1.B: Use linear algegra to solve the equations
Xj = 2( log, pi) X e;; mod (p —1).
i=1

(Note: the log,p;’s are the unknowns)



Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
e Step 1 (precomputation): Obtain y,,...,y, such that p,

e Step 2: Given discrete log challenge h=g* mod p.
 Find y such that [g”h mod p] is B- smooth

|g¥h mod p] le
H(g)ﬁ)el — ng eiyi

= g”i mod p.



Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
* Step 1 (precomputation): Obtain y,,...,y, such that p. = g”i mod p.

e Step 2: Given discrete log challenge h=g* mod p.
* Find z such that [g?h mod p] is B-smooth

[gZh mOd p] — gzl eiYi RN h — gzl eiyi—Zz

* Remark: Precomputation costs can be amortized over many discrete
log instances

* In practice, the same group G = (g) and generator g are used repeatedly.

Reference: https://www.weakdh.org/



https://www.weakdh.org/

NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 28°

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1: NIST Recommended Key Sizes

27



NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of Z, size q

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 q=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes

28



| 2011 through | 2014 2031 and
Security Strength 2013 . Beyond
Applying Deprecated Disallowed
50 Processing Legacy use
112 ﬁppl:,.ru.ig Acceptable Acceptable Disallowed
Processing Legacy use
128 Acceptable Acceptable Acceptable
192 Applying/Processing | Acceptable Acceptable Acceptable
256 Acceptable Acceptable Acceptable

MIST s security strength guidelines, from Specialist Publication 3P 800-57
Kecommendation for Key Manogement — Fart 1: General (Rewvision 3]




Next Class: Key Management

 Key Management
* Read Katz and Lindell: Chapter 10
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