
Homework 3

• As announced: not due today 

• Due Friday at the beginning of class.

1

Cryptography
CS 555

Topic 27: Factoring Algorithm, Discrete Log Attacks + NIST
Recommendations for Concrete Security Parameters

2

Recap

• OWFs + CRHFs from Discrete Log + Factoring
• Pollards (p-1) algorithm

• (works when N=pq and (p-1) has only “small” prime factors)

3

Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor
• Goal: factor N=pq (product of two n-bit primes)

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁) to factor

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

4

Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑝𝑝∗ then what is
the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?

5

Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑝𝑝∗ then what
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2

• Proof (sketch): Use the Chinese Remainder Theorem + Birthday
Bound

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Note: We will also have 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥 𝑗𝑗 mod q (whp)

6

Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑝𝑝∗ then what
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2

• Challenge: We do not know p or q so we cannot sort the 𝑥𝑥(𝑖𝑖)’s using
the Chinese Remainder Theorem Representation

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
How can we identify the pair 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?

7

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑝𝑝∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p

8

Remark 1: F should have the property that
if x=x’ mod p then F(x) = F(x’) mod p.

Remark 2: 𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 will
work since

𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
↔ 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

↔ 𝐹𝐹 𝑥𝑥 mod 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 mod 𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑝𝑝∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p

9

Claim: Let 𝑥𝑥(𝑖𝑖+1) = 𝐹𝐹 𝑥𝑥(𝑖𝑖) and suppose that for
some distinct i, j < 2𝑛𝑛/2 we have 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗) mod p
but 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥(𝑗𝑗). Then the algorithm will find p.

Cycle length: i-j

𝑥𝑥(3) mod p

Presenter
Presentation Notes
Proof: First part of claim states that there is a cycle. If there is such a cycle we will detect it

Pollard’s Rho Algorithm (Summary)

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• (still exponential in number of bits ~2𝑛𝑛/4)

• Required Space: 𝑂𝑂 log(𝑁𝑁)

• Succeeds with constant probability

10

Quadratic Sieve Algorithm

• Runs in subexponential time 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

11

Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 (1)

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁 2

Claim: gcd(x-y,N)∈ 𝑝𝑝, 𝑞𝑞
N=pq divides 𝑥𝑥2 − 𝑦𝑦2 = 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 . (by (1)).
 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 ≠ 0 (by (2)).
N does not divide 𝑥𝑥 − 𝑦𝑦 (by (2)).
N does not divide 𝑥𝑥 + 𝑦𝑦 . (by (2)).
p is a factor of exactly one of the terms 𝑥𝑥 − 𝑦𝑦 and 𝑥𝑥 + 𝑦𝑦 .
(q is a factor of the other term)

12

Quadratic Sieve Algorithm
• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that

𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁
and

𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 1:
j=0;
For x = 𝑁𝑁 + 1, 𝑁𝑁 + 2, … , 𝑁𝑁 + 𝑖𝑖,…

q ← 𝑁𝑁 + 𝑖𝑖
2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 2𝑖𝑖 𝑁𝑁 + 𝑖𝑖2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Check if q is B-smooth (all prime factors of q are in {p1,…,pk} where pk < B).
If q is B smooth then factor q, increment j and define

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

13

Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find S such that for each 𝑖𝑖 ≤ 𝑘𝑘 we have

�
𝑗𝑗∈𝑆𝑆

𝑒𝑒𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

14

Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find a subset S such that for each i ≤ k we have

�
𝑗𝑗∈𝑆𝑆

𝑒𝑒𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2

15

Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2

But we also have

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗2 = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗
2

= 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

16

Quadratic Sieve Algorithm (Summary)

• Appropriate parameter tuning yields sub-exponential time algorithm
2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.

17

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

18

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑔𝑔 and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p.
• Observe that 𝑔𝑔𝑟𝑟 generates a subgroup of size p and that hr ∈ 𝑔𝑔𝑟𝑟 .

• Solve discrete log problem in subgroup 𝑔𝑔𝑟𝑟 with input hr.
• Find z such that hrz = 𝑔𝑔𝑟𝑟𝑧𝑧.

• Observe that 𝑔𝑔𝑝𝑝 generates a subgroup of size p and that hp ∈ 𝑔𝑔𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑔𝑔𝑝𝑝 with input hp.
• Find y such that hyp = 𝑔𝑔𝑦𝑦𝑦𝑦.

• Chinese Remainder Theorem h = 𝑔𝑔𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑟𝑟]

19

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
For i =0 to 𝑞𝑞

𝑡𝑡
𝑔𝑔𝑖𝑖 ← 𝑔𝑔𝑖𝑖𝑖𝑖

Sort the pairs (i,gi) by their second component
For i =0 to 𝑡𝑡

ℎ𝑖𝑖 ← ℎ𝑔𝑔𝑖𝑖

if ℎ𝑖𝑖 = 𝑔𝑔𝑔𝑔 ∈ 𝑔𝑔0, … ,𝑔𝑔𝑡𝑡 then
return [kt-i mod q]

20

ℎ𝑖𝑖 = ℎ𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑘𝑘

→ ℎ = 𝑔𝑔𝑘𝑘𝑘𝑘−𝑖𝑖

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

21

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

22

Remark: We used discrete-log problem to
construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

on discrete log.

Generic attack on collision resistant hash
functions (e.g., low space birthday attack)

yields generic attack on discrete log.

Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

23

Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠 𝐩𝐩𝐢𝐢 × 𝑒𝑒𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠𝐩𝐩𝐢𝐢’s are the unknowns)

24

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find y such that 𝑔𝑔𝑦𝑦h mod p is B-smooth

𝑔𝑔𝑦𝑦h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑔𝑔𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖

25

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth
𝑔𝑔𝑧𝑧h mod p = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete
log instances

• In practice, the same group 𝔾𝔾 = 𝑔𝑔 and generator g are used repeatedly.

26Reference: https://www.weakdh.org/

https://www.weakdh.org/

NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280

27

NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q

28

q=224 bits

q=256 bits

q=384 bits

q=512 bits

29

Next Class: Key Management

• Key Management
• Read Katz and Lindell: Chapter 10

30

	Homework 3
	Cryptography�CS 555
	Recap
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm (Summary)
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Baby-step/Giant-Step Algorithm
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 29
	Next Class: Key Management

