Homework 3

- As announced: not due today 🙂
- Due <u>Friday</u> at the beginning of class.

Cryptography CS 555

Topic 27: Factoring Algorithm, Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters

Recap

- OWFs + CRHFs from Discrete Log + Factoring
- Pollards (p-1) algorithm
 - (works when N=pq and (p-1) has only "small" prime factors)

- General Purpose Factoring Algorithm
 - Doesn't assume (p-1) has no large prime factor
 - Goal: factor N=pq (product of two n-bit primes)
- Running time: $O(\sqrt[4]{N} \operatorname{polylog}(N))$
 - Naïve Algorithm takes time $O(\sqrt{N} \operatorname{poly} log(N))$ to factor
- Core idea: find distinct $x, x' \in \mathbb{Z}_N^*$ such that $x = x' \mod p$
 - Implies that x-x' is a multiple of p and, thus, GCD(x-x',N)=p (whp)

- General Purpose Factoring Algorithm
 - Doesn't assume (p-1) has no large prime factor
- Running time: $O(\sqrt[4]{N} \operatorname{pol} ylog(N))$
- Core idea: find distinct $x, x' \in \mathbb{Z}_N^*$ such that $x = x' \mod p$
 - Implies that x-x' is a multiple of p and, thus, GCD(x-x',N)=p (whp)
- Question: If we pick $k = O(\sqrt{p})$ random $x^{(1)}, \dots, x^{(k)} \in \mathbb{Z}_p^*$ then what is the probability that we can find distinct i and j such that $x^{(i)} = x^{(j)} \mod p$?

- Question: If we pick $k = O(\sqrt{p})$ random $x^{(1)}, ..., x^{(k)} \in \mathbb{Z}_p^*$ then what is the probability that we can find distinct i and j such that $x^{(i)} = x^{(j)} \mod p$?
- Answer: $\geq 1/_2$
- **Proof (sketch):** Use the Chinese Remainder Theorem + Birthday Bound

$$x^{(i)} = (x^{(i)} \mod p, x^{(i)} \mod q)$$

Note: We will also have $x^{(i)} \neq x^{(j)} \mod q$ (whp)

- Question: If we pick $k = O(\sqrt{p})$ random $x^{(1)}, ..., x^{(k)} \in \mathbb{Z}_p^*$ then what is the probability that we can find distinct i and j such that $x^{(i)} = x^{(j)} \mod p$?
- Answer: $\geq 1/_2$
- Challenge: We do not know p or q so we cannot sort the $x^{(i)}$'s using the Chinese Remainder Theorem Representation

$$x^{(i)} = \left(x^{(i)} \bmod p, x^{(i)} \bmod q\right)$$

How can we identify the pair *i* and *j* such that $x^{(i)} = x^{(j)} \mod p$?

 Pollard's Rho Algorithm is similar the low-space version of the birthday attack

Input: N (product of two n bit primes)

 $x^{(0)} \leftarrow \mathbb{Z}_p^*, x = x' = x^{(0)}$ For i=1 to $2^{n/2}$ $x \leftarrow F(x)$ $x' \leftarrow F(F(x))$ p = GCD(x-x',N)if 1< p < N return p

Remark 1: F should have the property that if $x=x' \mod p$ then $F(x) = F(x') \mod p$.

Remark 2: $F(x) = [x^2 + 1 \mod N]$ will work since

$$F(x) = [x^{2} + 1 \mod N]$$

$$\leftrightarrow (x^{2} + 1 \mod p, x^{2} + 1 \mod q)$$

$$\leftrightarrow (F([x \mod p]) \mod p, F([x \mod q]) \mod q)$$

 Pollard's Rho Algorithm is similar the low-space version of the birthday attack

Input: N (product of two n bit primes)

 $x^{(0)} \leftarrow \mathbb{Z}_p^*, x = x' = x^{(0)}$ For i=1 to $2^{n/2}$ $x \leftarrow F(x)$ $x' \leftarrow F(F(x))$ p = GCD(x-x',N)if 1< p < N return p **Claim**: Let $x^{(i+1)} = F(x^{(i)})$ and suppose that for some distinct i, j < $2^{n/2}$ we have $x^{(i)} = x^{(j)} \mod p$ but $x^{(i)} \neq x^{(j)}$. Then the algorithm will find p.

Pollard's Rho Algorithm (Summary)

- General Purpose Factoring Algorithm
 - Doesn't assume (p-1) has no large prime factor
- Running time: $O(\sqrt[4]{N} \operatorname{polylog}(N))$
 - (still exponential in number of bits $\sim 2^{n/4}$)
- Required Space: $O(\log(N))$
- Succeeds with constant probability

- Runs in subexponential time $2^{O(\sqrt{\log N \log \log N})} = 2^{O(\sqrt{n \log n})}$
 - Still not polynomial time but $2^{\sqrt{n \log n}}$ grows much slower than $2^{n/4}$.

• Core Idea: Find x,
$$y \in \mathbb{Z}_N^*$$
 such that $x^2 = y^2 \mod N$

and

 $x \neq \pm y \mod N$

• Core Idea: Find x, $y \in \mathbb{Z}_N^*$ such that $x^2 = y^2 \mod N$ (1)

and

$$x \neq \pm y \mod N \quad (2)$$

Claim: $gcd(x-y,N) \in \{p,q\}$ $\Rightarrow N=pq \text{ divides } x^2 - y^2 = (x - y)(x + y). (by (1)).$ $\Rightarrow (x - y)(x + y) \neq 0 (by (2)).$ $\Rightarrow N \text{ does not divide } (x - y) (by (2)).$ $\Rightarrow N \text{ does not divide } (x + y). (by (2)).$ $\Rightarrow p \text{ is a factor of exactly one of the terms } (x - y) \text{ and } (x + y).$ $\Rightarrow (q \text{ is a factor of the other term})$

• **Core Idea**: Find x,
$$y \in \mathbb{Z}_N^*$$
 such that

$$x^2 = y^2 \bmod N$$

and

 $x \neq \pm y \mod N$

• **Key Question**: How to find such an $x, y \in \mathbb{Z}_N^*$?

• Step 1:

j=0;

For
$$x = \sqrt{N} + 1$$
, $\sqrt{N} + 2$, ..., $\sqrt{N} + i$,...
 $q \leftarrow \left[\left(\sqrt{N} + i \right)^2 \mod N \right] = \left[2i\sqrt{N} + i^2 \mod N \right]$

Check if q is B-smooth (all prime factors of q are in $\{p_1,...,p_k\}$ where $p_k < B$). If q is B smooth then factor q, increment j and define

$$q_j \leftarrow q = \prod_{i=1}^n p_i^{e_{j,i}},$$

• Core Idea: Find x,
$$y \in \mathbb{Z}_N^*$$
 such that $x^2 = y^2 \mod N$

and

 $x \neq \pm y \mod N$

- **Key Question**: How to find such an $x, y \in \mathbb{Z}_N^*$?
- Step 2: Once we have $\ell > k$ equations of the form

$$\mathbf{q}_{\mathbf{j}} \leftarrow q = \prod_{i=1}^{\kappa} p_i^{e_{j,i}}$$
 ,

We can use linear algebra to find S such that for each $i \leq k$ we have

$$\sum_{j\in S} e_{j,i} = 0 \bmod 2.$$

- **Key Question**: How to find $x, y \in \mathbb{Z}_N^*$ such that $x^2 = y^2 \mod N$ and $x \neq \pm y \mod N$?
- **Step 2:** Once we have $\ell > k$ equations of the form

$$\mathbf{q}_{\mathbf{j}} \leftarrow q = \prod_{i=1}^{\kappa} p_i^{e_{j,i}}$$
 ,

We can use linear algebra to find a subset S such that for each $i \le k$ we have

$$\sum_{j\in S} e_{j,i} = 0 \bmod 2.$$

Thus,

$$\prod_{j \in S} q_j = \prod_{i=1}^k p_i^{\sum_{j \in S} e_{j,i}} = \left(\prod_{i=1}^k p_i^{\frac{1}{2}\sum_{j \in S} e_{j,i}}\right)^2 = y^2$$

• **Key Question**: How to find $x, y \in \mathbb{Z}_N^*$ such that $x^2 = y^2 \mod N$ and $x \neq \pm y \mod N$?

Thus,

$$\prod_{j \in S} \mathbf{q}_j = \prod_{i=1}^k p_i^{\sum_{j \in S} e_{j,i}} = \left(\prod_{i=1}^k p_i^{\frac{1}{2}\sum_{j \in S} e_{j,i}}\right)^2 = y^2$$

But we also have

$$\prod_{j \in S} q_j = \prod_{j \in S} (x_j^2) = \left(\prod_{j \in S} x_j\right)^2 = x^2 \mod N$$

Quadratic Sieve Algorithm (Summary)

- Appropriate parameter tuning yields sub-exponential time algorithm $2^{O(\sqrt{\log N \log \log N})} = 2^{O(\sqrt{n \log n})}$
 - Still not polynomial time but $2^{\sqrt{n \log n}}$ grows much slower than $2^{n/4}$.

- Pohlig-Hellman Algorithm
 - Given a cyclic group G of non-prime order q=| G |=rp
 - Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
 - Preference for prime order subgroups in cryptography
- Baby-step/Giant-Step Algorithm
 - Solve discrete logarithm in time $O(\sqrt{q} polylog(q))$
- Pollard's Rho Algorithm
 - Solve discrete logarithm in time $O(\sqrt{q} \ polylog(q))$
 - Bonus: Constant memory!
- Index Calculus Algorithm
 - Similar to quadratic sieve
 - Runs in sub-exponential time $2^{O(\sqrt{\log q \log \log q})}$
 - Specific to the group \mathbb{Z}_p^* (e.g., attack doesn't work elliptic-curves)

• Pohlig-Hellman Algorithm

- Given a cyclic group $\mathbb G$ of non-prime order q=| $\mathbb G$ |=rp
- Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
- Preference for prime order subgroups in cryptography
- Let $\mathbb{G} = \langle g \rangle$ and $h = g^x \in \mathbb{G}$ be given. For simplicity assume that r is prime and r < p.
- Observe that $\langle g^r \rangle$ generates a subgroup of size p and that $h^r \in \langle g^r \rangle$.
 - Solve discrete log problem in subgroup $\langle g^r \rangle$ with input h^r.
 - Find z such that $h^{rz} = g^{rz}$.
- Observe that $\langle g^p \rangle$ generates a subgroup of size p and that $h^p \in \langle g^p \rangle$.
 - Solve discrete log problem in subgroup $\langle g^p \rangle$ with input h^p.
 - Find y such that $h^{yp} = g^{yp}$.
- Chinese Remainder Theorem $h = g^x$ where $x \leftrightarrow ([z \mod p], [y \mod r])$

Baby-step/Giant-Step Algorithm

- Input: $\mathbb{G} = \langle g \rangle$ of order q, generator g and $h = g^x \in \mathbb{G}$
- Set $t = \lfloor \sqrt{q} \rfloor$ For i =0 to $\lfloor \frac{q}{t} \rfloor$

$$g_i \leftarrow g^{it}$$

Sort the pairs (i,g_i) by their second component **For** i =0 to t

$$\begin{array}{l} h_i \leftarrow hg^i \\ \text{if } h_i = gk \in \{g_0, \dots, g_t\} \text{ then} \\ \text{ return [kt-i mod q]} \end{array}$$

$$h_i = hg^i = g^{kt}$$
$$\rightarrow h = g^{kt-i}$$

- Baby-step/Giant-Step Algorithm
 - Solve discrete logarithm in time $O(\sqrt{q} polylog(q))$
 - Requires memory $O(\sqrt{q} \ polylog(q))$
- Pollard's Rho Algorithm
 - Solve discrete logarithm in time $O(\sqrt{q} polylog(q))$
 - Bonus: Constant memory!
- Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash function

$$H_{g,h}(x_1, x_2) = g^{x_1} h^{x_2}$$

$$H_{g,h}(y_1, y_2) = H_{g,h}(x_1, x_2) \rightarrow h^{y_2 - x_2} = g^{x_1 - y_1}$$

$$\rightarrow h = g^{(x_1 - y_1)(y_2 - x_2)^{-1}}$$

(*) A few small technical details to address

- Baby-step/Giant-Step Algorithm
 - Solve discrete logarithm in time $O(\sqrt{q} polylog(q))$
 - Requires memory $O(\sqrt{q} \ polylog(q))$
- Pollard's Rho Algorithm
 - Solve discrete logarithm in time $O(\sqrt{q} p o^{k})$
 - Bonus: Constant memory!
- Key Idea: Low-Space Birthday Attack (*)

 $H_{g,h}(x_1, x_2) = g^{x_1} h^{x_2}$ $H_{g,h}(y_1, y_2) = H_{g,h}(x_1, x_2)$

$$\rightarrow h^{y_2 - x_2} = g^{x_1 - y_1} \rightarrow h = g^{(x_1 - y_1)(y_2 - x_2)^{-1}}$$

(*) A few small technical details to address

Remark: We used discrete-log problem to construct collision resistant hash functions.

Security Reduction showed that attack on collision resistant hash function yields attack on discrete log.

→Generic attack on collision resistant hash functions (e.g., low space birthday attack) yields generic attack on discrete log.

- Index Calculus Algorithm
 - Similar to quadratic sieve
 - Runs in sub-exponential time $2^{O(\sqrt{\log q \log \log q})}$
 - Specific to the group \mathbb{Z}_p^* (e.g., attack doesn't work elliptic-curves)
- As before let {p₁,...,p_k} be set of prime numbers < B.
- Step 1.A: Find $\ell > k$ distinct values x_1, \dots, x_k such that $g_j = [g^{x_j} \mod p]$ is B-smooth for each j. That is

$$g_j = \prod_{i=1}^{\kappa} p_i^{e_{i,j}}.$$

- As before let {p₁,...,p_k} be set of prime numbers < B.
- Step 1.A: Find $\ell > k$ distinct values x_1, \dots, x_k such that $g_j = [g^{x_j} \mod p]$ is B-smooth for each j. That is

$$g_j = \prod_{i=1}^k p_i^{e_{i,j}}.$$

• Step 1.B: Use linear algebra to solve the equations $x_j = \sum_{i=1}^k (\log_g \mathbf{p}_i) \times e_{i,j} \mod (p-1).$

(Note: the $log_g p_i$'s are the unknowns)

Discrete Log

- As before let {p₁,...,p_k} be set of prime numbers < B.
- Step 1 (precomputation): Obtain $y_1, ..., y_k$ such that $p_i = g^{y_i} \mod p$.
- Step 2: Given discrete log challenge h=g^x mod p.
 - Find y such that $[g^{y}h \mod p]$ is B-smooth

$$[g^{y} h \mod p] = \prod_{i=1}^{k} p_{i}^{e_{i}}$$
$$= \prod_{i=1}^{k} (g^{y_{i}})^{e_{i}} = g^{\sum_{i} e_{i}y_{i}}$$

Discrete Log

- As before let {p₁,...,p_k} be set of prime numbers < B.
- Step 1 (precomputation): Obtain $y_1, ..., y_k$ such that $p_i = g^{y_i} \mod p$.
- Step 2: Given discrete log challenge h=g^x mod p.
 - Find z such that $[g^z h \mod p]$ is B-smooth $[g^z h \mod p] = g^{\sum_i e_i y_i} \to h = g^{\sum_i e_i y_i - z}$
- **Remark:** Precomputation costs can be amortized over many discrete log instances
 - In practice, the same group $\mathbb{G} = \langle g \rangle$ and generator g are used repeatedly.

NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 2⁸⁰

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521
	Table 1: NIST Recommended Key Sizes	

NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of \mathbb{Z}_p^* size q

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)		Elliptic Curve Key Size (bits)	
80	1024		160	
112	2048	q=224 bits	224	
128	3072	q=256 bits	256	
192	7680	q=384 bits	384	
256	15360	q=512 bits	521	
	Table 1: NIST Recommer	nded Key Sizes		

Security Strength		2011 through 2013	2014 through 2030	2031 and Beyond	
80	Applying	Deprecated	Disallowed		
Processing		Legacy use			
112	Applying	Acceptable	Acceptable	Disallowed	
	Processing	Ассертание		Legacy use	
128		Acceptable	Acceptable	Acceptable	
192	Applying/Processing	Acceptable	Acceptable	Acceptable	
256	1	Acceptable	Acceptable	Acceptable	

NIST's security strength guidelines, from Specialist Publication SP 800-57 Recommendation for Key Management – Part 1: General (Revision 3)

Next Class: Key Management

- Key Management
- Read Katz and Lindell: Chapter 10