
Homework 3

• As announced: not due today 

• Due Friday at the beginning of class.

1



Cryptography
CS 555

Topic 27: Factoring Algorithm, Discrete Log Attacks + NIST 
Recommendations for Concrete Security Parameters
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Recap

• OWFs + CRHFs from Discrete Log + Factoring
• Pollards (p-1) algorithm 

• (works when N=pq and (p-1) has only “small” prime factors)
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Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor
• Goal: factor N=pq (product of two n-bit primes)  

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁) to factor

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)
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Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑝𝑝∗ then what is 
the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?
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Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑝𝑝∗ then what 
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2

• Proof (sketch): Use the Chinese Remainder Theorem + Birthday 
Bound

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Note: We will also have 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥 𝑗𝑗 mod q (whp)
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Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑝𝑝∗ then what 
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2

• Challenge: We do not know p or q so we cannot sort the 𝑥𝑥(𝑖𝑖)’s using 
the Chinese Remainder Theorem Representation

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
How can we identify the pair 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?
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Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday 
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑝𝑝∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p 
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Remark 1: F should have the property that 
if x=x’ mod p then F(x) = F(x’) mod p.

Remark 2: 𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 will 
work since 

𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
↔ 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

↔ 𝐹𝐹 𝑥𝑥 mod 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 mod 𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞



Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday 
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑝𝑝∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p 

9

Claim: Let 𝑥𝑥(𝑖𝑖+1) = 𝐹𝐹 𝑥𝑥(𝑖𝑖) and suppose that for 
some distinct i, j < 2𝑛𝑛/2 we have 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗) mod p
but 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥(𝑗𝑗). Then the algorithm will find p.    

Cycle length: i-j

𝑥𝑥(3) mod p

Presenter
Presentation Notes
Proof: First part of claim states that there is a cycle. If there is such a cycle we will detect it



Pollard’s Rho Algorithm (Summary)

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• (still exponential in number of bits ~2𝑛𝑛/4)

• Required Space: 𝑂𝑂 log(𝑁𝑁)

• Succeeds with constant probability
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Quadratic Sieve Algorithm

• Runs in subexponential time 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
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Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 (1)

and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁 2

Claim: gcd(x-y,N)∈ 𝑝𝑝, 𝑞𝑞
N=pq divides 𝑥𝑥2 − 𝑦𝑦2 = 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 . (by (1)).
 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 ≠ 0 (by (2)).
N does not divide 𝑥𝑥 − 𝑦𝑦 (by (2)).
N does not divide 𝑥𝑥 + 𝑦𝑦 . (by (2)).
p is a factor of  exactly one of the terms 𝑥𝑥 − 𝑦𝑦 and 𝑥𝑥 + 𝑦𝑦 .
(q is a factor of the other term)
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Quadratic Sieve Algorithm
• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 

𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁
and 

𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 1:
j=0;
For x = 𝑁𝑁 + 1, 𝑁𝑁 + 2, … , 𝑁𝑁 + 𝑖𝑖,…

q ← 𝑁𝑁 + 𝑖𝑖
2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 2𝑖𝑖 𝑁𝑁 + 𝑖𝑖2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Check if q is B-smooth (all prime factors of q are in {p1,…,pk} where pk < B). 
If q is B smooth then factor q, increment j and define 

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,
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Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find S such that for each 𝑖𝑖 ≤ 𝑘𝑘 we have

�
𝑗𝑗∈𝑆𝑆

𝑒𝑒𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.
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Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find a subset S such that for each i ≤ k we have

�
𝑗𝑗∈𝑆𝑆

𝑒𝑒𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2
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Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2

But we also have 

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗2 = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗
2

= 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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Quadratic Sieve Algorithm (Summary)

• Appropriate parameter tuning yields sub-exponential time algorithm 
2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.
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Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)
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Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑔𝑔 and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p. 
• Observe that 𝑔𝑔𝑟𝑟 generates a subgroup of size p and that hr ∈ 𝑔𝑔𝑟𝑟 .

• Solve discrete log problem in subgroup 𝑔𝑔𝑟𝑟 with input hr. 
• Find z such that hrz = 𝑔𝑔𝑟𝑟𝑧𝑧.

• Observe that 𝑔𝑔𝑝𝑝 generates a subgroup of size p and that hp ∈ 𝑔𝑔𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑔𝑔𝑝𝑝 with input hp. 
• Find y such that hyp = 𝑔𝑔𝑦𝑦𝑦𝑦.

• Chinese Remainder Theorem h = 𝑔𝑔𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑟𝑟]
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Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
For i =0 to 𝑞𝑞

𝑡𝑡
𝑔𝑔𝑖𝑖 ← 𝑔𝑔𝑖𝑖𝑖𝑖

Sort the pairs (i,gi) by their second component
For i =0 to 𝑡𝑡

ℎ𝑖𝑖 ← ℎ𝑔𝑔𝑖𝑖

if ℎ𝑖𝑖 = 𝑔𝑔𝑔𝑔 ∈ 𝑔𝑔0, … ,𝑔𝑔𝑡𝑡 then 
return [kt-i mod q]

20

ℎ𝑖𝑖 = ℎ𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑘𝑘

→ ℎ = 𝑔𝑔𝑘𝑘𝑘𝑘−𝑖𝑖



Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash 
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address
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Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address
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Remark: We used discrete-log problem to 
construct collision resistant hash functions.

Security Reduction showed that attack on 
collision resistant hash function yields attack 

on discrete log.

Generic attack on collision resistant hash 
functions (e.g., low space birthday attack) 

yields generic attack on discrete log.



Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is 

B-smooth for each j. That is 

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .
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Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is 

B-smooth for each j. That is 

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations 

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠 𝐩𝐩𝐢𝐢 × 𝑒𝑒𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠𝐩𝐩𝐢𝐢’s are the unknowns)
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Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find y such that 𝑔𝑔𝑦𝑦h mod p is B-smooth

𝑔𝑔𝑦𝑦h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑔𝑔𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖
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Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that  pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth
𝑔𝑔𝑧𝑧h mod p = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete 
log instances 

• In practice, the same group 𝔾𝔾 = 𝑔𝑔 and generator g are used repeatedly.

26Reference: https://www.weakdh.org/

https://www.weakdh.org/


NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280
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NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q 

28

q=224 bits

q=256 bits

q=384 bits

q=512 bits
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Next Class: Key Management

• Key Management
• Read Katz and Lindell: Chapter 10

30
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