Homework 3

* As announced: not due today ©

* Due Friday at the beginning of class.



Cryptography
CS 555
Topic 27: Factoring Algorithm, Discrete Log Attacks + NIST
Recommendations for Concrete Security Parameters




Recap

e OWFs + CRHFs from Discrete Log + Factoring
 Pollards (p-1) algorithm

e (works when N=pg and (p-1) has only “small” prime factors)



Pollard’s Rho Algorithm

e General Purpose Factoring Algorithm
e Doesn’t assume (p-1) has no large prime factor
e Goal: factor N=pq (product of two n-bit primes)

e Running time: O(W polylog(N))
e Naive Algorithm takes time O(W polylog(N)) to factor

e Core idea: find distinct x,x’ € Zy such that x = x'mod p
e Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)



Pollard’s Rho Algorithm

e General Purpose Factoring Algorithm
e Doesn’t assume (p-1) has no large prime factor

e Running time: O(W polylog(N))

* Core idea: find distinct x,x’ € Zj such that x = x'mod p
e Implies that x-x" is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

e Question: If we pick k = O(\/ﬁ random x4, ..., x(®) € Z* then what is
the probability that we can find distinct i and j such that



Pollard’s Rho Algorithm

e Question: If we pick k = O(\/ﬁ) random x, ... x(F) ¢ Z; th_en what
is the probability that we can find distinct i and j such that x(W) =
xmod p?

e Answer: > 1/,

* Proof (sketch): Use the Chinese Remainder Theorem + Birthday
Bound

x(® = (x(i) mod p, x® mod q)

Note: We will also have x® # xU) mod g (whp)



Pollard’s Rho Algorithm

e Question: If we pick k = O(\/ﬁ) random x4, ..., x(®) g Z; th_en what
is the probability that we can find distinct i and j such that x(W) =
xmod p?

e Answer: > 1/,

e Challenge: We do not know p or g so we cannot sort the x(V’s using
the Chinese Remainder Theorem Representation

xW = (x(i) mod p, xY mod q)

How can we identify the pair i and j such that x®¥ = xU)mod p?



Pollard’s Rho Algorithm

. Pollalr<d’s Rho Algorithm is similar the low-space version of the birthday
attac

Input: N (product of two n bit primes)
x(O) — Z;;, X =x = x(o)

Fori=1 to 2™/2 Remark 1: F should have the property that

if x=x" mod p then F(x) = F(x’) mod p.

x <« F(x)

x' « F(F(x)) Remark 2: F(x) = [x? + 1 mod N] will
p = GCD(x-x’,N) work since

if 1<p <Nreturnp F(x) = [x* + 1mod N]

o (x2 + 1 mod p,x* + 1 mod q)
o (F([x mod p] ) mod p, F(|]x mod q] )mod q)



Pollard’s Rho Algorithm

. Pollalr<d’s Rho Algorithm is similar the low-space version of the birthday
attac

Input: N (product of two n bit primes)

x©@ 75, x =x" = x© Claim: Let x(*D) = F(x() and suppose that for
For i=1 to 2™/2 some distinct i,j < 22 we have x(¥ = xU) mod p
x « F(x) but x( %= xU)_ Then the algorithm will find p.

x' « F(F(x)) N
p = GCD(x-x’,N)

if 1<p<Nreturnp

x®) mod p

Cycle length: i-j


Presenter
Presentation Notes
Proof: First part of claim states that there is a cycle. If there is such a cycle we will detect it


Pollard’s Rho Algorithm (Summary)

e General Purpose Factoring Algorithm
e Doesn’t assume (p-1) has no large prime factor

* Running time: O(W polylog(N))

e (still exponential in number of bits ~2™/4)

* Required Space: O(log(N))

e Succeeds with constant probability



Quadratic Sieve Algorithm

» Runs in subexponential time 20(V10g N loglog N) — »0(Jnlogn)

e Still not polynomial time but 2V™ 198" grows much slower than 2/,

* Core Idea: Find X,y € Zy such that
x? =y*modN

and
x # rymodN



Quadratic Sieve Algorithm

 Core ldea: Find X,y € Zy such that

x? =y modN (1)
and

x#tymodN (2)
Claim: gcd(x-y,N)€ {p, q}
> N=pq divides x* — y% = (x — y)(x + y). (by (1)).
2 —y)(x +y) # 0(by(2)).
—>N does not divide (x — y) (by (2)).
—>N does not divide (x + y). (by (2)).
> p is a factor of exactly one of the terms (x — y) and (x + y).
- (q is a factor of the other term)



Quadratic Sieve Algorithm

e Core ldea: Find X,y € Zy such that

x? =vy?modN
and

X # tymod N
» Key Question: How to find such an X,y € Zy?
e Step 1:
J=0;

Forx =vVN + 1,vVN +2,...,VN +1i,..
q < l(\/ﬁ+ i)2 mod Nl = [2iVN + i2mod N]

Check if q is B-smooth (all prime factors of q are in {p,,...,p,} where p, < B).
If g is B smooth then factor g, increment j and define

k
ej,i
=1



Quadratic Sieve Algorithm

e Core ldea: Find X,y € Zy such that
x? =y?modN

and
x # tymod N

» Key Question: How to find such an X,y € Zy?
e Step 2: Once we have £ > k equations ofléche form

ej,l-
gGgeqg=1\|p,",
i=1

We can use linear algebra to find S such that for each i < k we have

z ej; = 0 mod 2.

jES



Quadratic Sieve Algorithm

 Key Question: How to find x,y € Zy such that x* = y? mod N and x # +y mod N?
e Step 2: Once we have ¥ > k equations of the form

*q—ﬂp

We can use linear algebra to find a subset S Such that for each i < k we have

z ej; = 0 mod 2.

jES

Thus, ,
k4

qu HpZ]ESe]l _ 1_[ pizzjesej,i _ )2

JES =1



Quadratic Sieve Algorithm

e Key Question: How to find X,y € Z} such that x* = y% mod N and
X +# Ty mod N?

Thus,
" 2

- » Ly
. e-i —_— . e-’i
[ la=] [= =] [27=7") =0
=1

jeS i=1
But we also have

nqj = 1_[(96]-2) = (l_[ xj)z = x?mod N

jES jES j€ES



Quadratic Sieve Algorithm (Summary)

* Appropriate parameter tuning yields sub-exponential time algorithm

20(ylog N loglog N) — 20(,/nlogn)

e Still not polynomial time but 2V™ 198" grows much slower than 2/4.




Discrete Log Attacks

Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
e Preference for prime order subgroups in cryptography

Baby-step/Giant-Step Algorithm
* Solve discrete logarithm in time 0(\/6 polylog(q))

Pollard’s Rho Algorithm

e Solve discrete logarithm in time O(ﬁ polylog(q))
e Bonus: Constant memory!

Index Calculus Algorithm
e Similar to quadratic sieve

e Runs in sub-exponential time 20(y/log g loglogq)
* Specific to the group Z,, (e.g., attack doesn’t work elliptic-curves)




Discrete Log Attacks

e Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
e Preference for prime order subgroups in cryptography

* Let G = (g) and h = g* € G be given. For simplicity assume that r is prime and r < p.

* Observe that (g”) generates a subgroup of size p and that h" € (g").
 Solve discrete log problem in subgroup (g”) with input h".
e Find z such that h? = g2,

* Observe that (g?) generates a subgroup of size p and that h? € (gP).
* Solve discrete log problem in subgroup (g?) with input hP.
e Find y such that h¥? = gi»,

* Chinese Remainder Theorem h = g* where x & (|z mod p], [y mod r])



Baby-step/Giant-Step Algorithm

 Input: G = (g) of order q, generatorgand h = g* € G
e Sett = |/q]

Fori=0to E‘

gi < g*
Sort the pairs (i,g;) by their second component
Fori=Otot
h < hg' h; = hg' = g

if h; = gk € {9y, ..., g} then

— Jkt—i
return [kt-i mod q] - h = g



Discrete Log Attacks

e Baby-step/Giant-Step Algorithm
e Solve discrete logarithm in time 0(\/5 polylog(q))
e Requires memory 0(\/5 polylog(q))

e Pollard’s Rho Algorithm

* Solve discrete logarithm in time 0(\/5 polylog(q))
e Bonus: Constant memory!

e Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

Hg p(x1,%3) = g*1h*2

Hg;h(yl’ yZ) — Hg,h(x]_, xz) — hY27*2 = gxl_yl
- h = g(xl_Y1)(3’2_x2)_1

(*) A few small technical details to address



Remark: We used discrete-log problem to

D | SC rete Log Atta C kS construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

* Baby-step/Giant-Step Algorithm on discrete log.

 Solve discrete logarithm in time 0(\/5 polylog(q))

e Requires memory O(ﬁ polylog(q)) —> Generic attack on collision resistant hash
e Pollard’s Rho Algorithm functions (e.g., low space birthday attack)

« Solve discrete logarithm in time 0(\/(7 o yields generic attack on discrete log.

e Bonus: Constant memory!

» Key Idea: Low-Space Birthday Attack (*)
Hy p(x1,x2) = g**h*?

Hg,h<)’1»)’2) = Hg,h(xpxz)
- h)’z—xz = gxl_yl
—> h = g(xl—Y1)(yZ—xz)_1

(*) A few small technical details to address

22



Discrete Log Attacks

e Index Calculus Algorithm
e Similar to quadratic sieve

* Runs in sub-exponential time 20(y/log qloglogq)
* Specific to the group Z, (e.g., attack doesn’t work elliptic-curves)

* As before let {p,,...,p,} be set of prime numbers < B.
* Step 1.A: Find £ > k distinct values x4, ..., x4 such that g; = [g"/ mod p] is

B-smooth for each j. That is iy
ei’-
gj = Hpi g
i=1



Discrete Log Attacks

* As before let {p,,...,p,} be set of prime numbers < B.

* Step 1.A: Find £ > k distinct values x, ..., x; such that g; = |g”7 mod p]is
B-smooth for each j. That is )
ei,-
gj = l_lpi 7
i=1

e Step 1.B: Use linear algegra to solve the equations
Xj = 2( log, pi) X e;; mod (p —1).
i=1

(Note: the log,p;’s are the unknowns)



Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
e Step 1 (precomputation): Obtain y,,...,y, such that p,

e Step 2: Given discrete log challenge h=g* mod p.
 Find y such that [g”h mod p] is B- smooth

|g¥h mod p] le
H(g)ﬁ)el — ng eiyi

= g”i mod p.



Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
* Step 1 (precomputation): Obtain y,,...,y, such that p. = g”i mod p.

e Step 2: Given discrete log challenge h=g* mod p.
* Find z such that [g?h mod p] is B-smooth

[gZh mOd p] — gzl eiYi RN h — gzl eiyi—Zz

* Remark: Precomputation costs can be amortized over many discrete
log instances

* In practice, the same group G = (g) and generator g are used repeatedly.

Reference: https://www.weakdh.org/



https://www.weakdh.org/

NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 28°

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1: NIST Recommended Key Sizes

27



NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of Z, size q

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 q=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes

28



| 2011 through | 2014 2031 and
Security Strength 2013 . Beyond
Applying Deprecated Disallowed
50 Processing Legacy use
112 ﬁppl:,.ru.ig Acceptable Acceptable Disallowed
Processing Legacy use
128 Acceptable Acceptable Acceptable
192 Applying/Processing | Acceptable Acceptable Acceptable
256 Acceptable Acceptable Acceptable

MIST s security strength guidelines, from Specialist Publication 3P 800-57
Kecommendation for Key Manogement — Fart 1: General (Rewvision 3]




Next Class: Key Management

 Key Management
* Read Katz and Lindell: Chapter 10



	Homework 3
	Cryptography�CS 555
	Recap
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm (Summary)
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Baby-step/Giant-Step Algorithm
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 29
	Next Class: Key Management

