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Topic 26: Discrete LOG Applications
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Recap

• Plain RSA + Attacks
• Discrete Log Assumptions

• CDH: Computational Diffie Hellman 
• DDH: Decisional Diffie Hellman

• Cyclic Groups under which CDH/DDH might hold
1. ℤ𝑝𝑝∗ where p is a random n-bit prime.

• CDH is believed to be hard
• DDH is *not* hard (Exercise 13.15)

2. 𝔾𝔾 = [ℎ𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ , where p=rq+1  (q is bit prime; p is n bit prime)
• DDH and CDH are believed to be hard
• Set 𝜆𝜆 = 𝑂𝑂 3 𝑛𝑛 log𝑛𝑛 2/3 to maximize resistance against known attacks. 

3. Elliptic Curves
• DDH is believed to be hard for appropriate choice of curve
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Cyclic Group

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over G) 
and let g ∈ 𝔾𝔾 be given consider the set

𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, …

Fact: 𝑔𝑔 defines a subgroup of 𝔾𝔾.
• Identity: 𝑔𝑔0

• Closure: 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖+𝑗𝑗 ∈ 𝑔𝑔
• g is called a “generator” of the subgroup.

Fact: Let r = 𝑔𝑔 then 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑗𝑗 if and only if 𝑖𝑖 = 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. Also m is divisible 
by r. 
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Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper 
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that 

A succeeds with probability at most ½ + negl(n).
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Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be 
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?
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Elliptic Curve Example

Formally, let 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

be the slope. 
Then the line passing through 
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the 

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃
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𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐
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2

= 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 7

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏
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𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]
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Elliptic Curve Example
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Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. 
Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group 
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations 
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RSA-Assumption vs Symmetric Key Crypto

• Recall: We can build (essentially) all of symmetric key crypto from 
one-way functions.

• CCA-Secure Encryption, MACs, PRGs, PRFs
• Collision Resistant Hash Functions

• Symmetric Key Crypto  OWFs
• Example: Can build OWFs from eavesdropping secure encryption scheme 

(weaker than CPA-secure/CCA-secure encryption)

• OWFs are necessary and sufficient for symmetric key crypto
• Not known to be sufficient for public key crypto
• Does the RSA-Assumption  OWFs?
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RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Does the RSA-Assumption  OWFs?

• Answer: Yes! (and by extension RSA-Assumption is sufficient for any 
symmetric key cryptosystem). 

• In fact the factoring assumption (weaker than RSA) is sufficient for OWFS.
Proof:
• Let Gen 1𝑛𝑛; 𝑟𝑟 output (N,p,q) where N=pq and  p and q are random primes 

(selected with random bits r).
• 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 =
1. (N,p,q) = Gen 1𝑛𝑛; 𝑥𝑥
2. Return N
Claim: 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 is a OWF.

12



Does the RSA-Assumption  OWFs?

• 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 =
1. (N,p,q) = Gen 1𝑛𝑛; 𝑥𝑥
2. Return N
Claim: 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 is a OWF.
Proof: Given a PPT attacker A that breaks OWF security we can run 
𝐴𝐴 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 to obtain x’ such that  𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 = 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥′ (A succeeds with 
non-negligible probability). Given x’ we can run Gen 1𝑛𝑛; 𝑥𝑥′ to obtain a 
tuple (N,p’,q’) such that N=p’q’ and p’q’ are prime. By uniqueness of 
prime factorization we have {p’,q’} = {p,q}.
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Does the RSA-Assumption  OWFs?

• 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 =
1. (N,p,q) = Gen 1𝑛𝑛; 𝑥𝑥
2. Return N
Claim: 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 is a OWF.

Remark 1: Also possible to construct One-Way-Permutation from RSA-
Assumption
Remark 2: Possible to construct OWFs from Discrete-Log Assumption
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• 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 =
1. (N,p,q) = Gen 1𝑛𝑛; 𝑥𝑥
2. Return N
Claim: 𝑓𝑓𝐺𝐺𝑒𝑒𝑛𝑛 𝑥𝑥 is a OWF.

Remark 1: Also possible to construct One-Way-Permutation from RSA-
Assumption
Remark 2: Possible to construct OWFs from Discrete-Log Assumption

15



Discrete Log Experiment DLogA,G(n)

1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and 
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if  gx=h.

We say that the discrete log problem is hard relative to generator 𝒢𝒢 if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Collision Resistant Hash Functions

• Not known how to build CRHFs from OWFs
• Can build collision resistant hash functions from Discrete Logarithm 

Assumption
• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑔𝑔 where 𝔾𝔾 is a cyclic group of order 𝑞𝑞 and g 

is a generator of the group. 
• Suppose that discrete log problem is hard relative to generator 𝒢𝒢.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Collision Resistant Hash Functions

• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑔𝑔 where 𝔾𝔾 is a cyclic group of order 𝑞𝑞 and g 
is a generator of the group. 

Collision Resistant Hash Function (Gen,H):
• 𝐺𝐺𝐺𝐺𝑛𝑛 1𝑛𝑛

1. 𝔾𝔾, 𝑞𝑞,𝑔𝑔 ← 𝒢𝒢 1𝑛𝑛
2. Select random h ← 𝔾𝔾
3. Output s = 𝔾𝔾,𝑞𝑞,𝑔𝑔,ℎ

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞 )
Claim: (Gen,H) is collision resistant
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Collision Resistant Hash Functions

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞 )
Claim: (Gen,H) is collision resistant

Proof: Suppose we find a collision 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝐻𝐻𝑠𝑠 𝑦𝑦1,𝑦𝑦2 then we 
have 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 = 𝑔𝑔𝑦𝑦1ℎ𝑦𝑦2 which implies

ℎ𝑥𝑥2−𝑦𝑦2 = 𝑔𝑔𝑦𝑦1−𝑥𝑥1
Use extended GCD to find 𝑥𝑥2 − 𝑦𝑦2 −1 mod q then

ℎ = ℎ 𝑥𝑥2−𝑦𝑦2 𝑥𝑥2−𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 = 𝑔𝑔 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2−𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Which means that 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2 − 𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 is the discrete log of h.
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Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where (p-1) has only “small” prime factors. 
• Pollard’s p-1 algorithm can factor N.

• Remark 1: This happens with very small probability if p is a random n bit 
prime.

• Remark 2: One convenient/fast way to generate big primes it to multiply 
many small primes and add 1.

• Example: 2 × 3 × 5 × 7 + 1 = 211 which is prime

Claim: Suppose we are given an integer B such that (p-1) divides B but 
(q-1) does not divide B then we can factor N. 
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Pollard’s p-1 Algorithm (Factoring)

Claim: Suppose we are given an integer B such that (p-1) divides B but 
(q-1) does not divide B then we can factor N. 
Proof:   B=c(p-1) for some integer c and let 𝑦𝑦 = 𝑥𝑥𝐵𝐵 − 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 . 
Applying the Chinese Remainder Theorem we have 

𝑦𝑦 ↔ 𝑥𝑥𝐵𝐵 − 1 mod p, 𝑥𝑥𝐵𝐵 − 1 mod q
= 0, 𝑥𝑥𝐵𝐵 − 1 mod q

This means that p divides y, but q does not divide y (unless 𝑥𝑥𝐵𝐵 =
1 mod q, which is very unlikely).

Thus, GCD(y,N) = p
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Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where (p-1) has only “small” prime factors. 
• Pollard’s p-1 algorithm can factor N.
Claim: Suppose we are given an integer B such that (p-1) divides B but 
(q-1) does not divide B then we can factor N. 

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖
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Pollard’s p-1 Algorithm (Factoring)

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖

Here p1=2,p2=3,…

Fact: If (q-1) has prime factor larger than pk then (q-1) does not divide B.
Fact: If (p-1) does not have prime factor larger than pk then (p-1) does divide 
B.
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Pollard’s p-1 Algorithm (Factoring)

• Option 1: To defeat this attack we can choose strong primes p and q
• A prime p is strong if (p-1) has a large prime factor

• Drawback: It takes more time to generate (provably) strong primes

• Option 2: A random prime is strong with high probability

• Current Consensus: Just pick a random prime
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Next Class: Factoring Algorithms

• Factoring Algorithms
• Read Katz and Lindell: Chapter 9
• Homework 3 Due
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