Cryptography CS 555

Topic 26: Discrete LOG Applications

Recap

- Plain RSA + Attacks
- Discrete Log Assumptions
 - CDH: Computational Diffie Hellman
 - DDH: Decisional Diffie Hellman
- Cyclic Groups under which CDH/DDH might hold
- *1.* \mathbb{Z}_p^* where p is a random n-bit prime.
 - CDH is believed to be hard
 - DDH is *not* hard (Exercise 13.15)
- 2. $\mathbb{G} = \{ [hr \mod p] | h \in \mathbb{Z}_p^* \}, \text{ where } p = rq+1 \text{ (q is bit prime; p is n bit prime)} \}$
 - DDH and CDH are believed to be hard
 - Set $\lambda = O(\sqrt[3]{n}(\log n)^{2/3})$ to maximize resistance against known attacks.
- 3. Elliptic Curves
 - DDH is believed to be hard for appropriate choice of curve

Cyclic Group

 Let G be a group with order m = |G| with a binary operation ∘ (over G) and let g ∈ G be given consider the set
 ⟨g⟩ = {g⁰, g¹, g², ...}

Fact: $\langle g \rangle$ defines a subgroup of \mathbb{G} .

- Identity: g^0
- Closure: $g^i \circ g^j = g^{i+j} \in \langle g \rangle$
- g is called a "generator" of the subgroup.

Fact: Let $r = |\langle g \rangle|$ then $g^i = g^j$ if and only if $i = j \mod r$. Also m is divisible by r.

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $h_1 = g^{x_1} \in \mathbb{G}$ and $h_2 = g^{x_2} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_1x_2} = (h_1)^{x_2} = (h_2)^{x_1}$
- **CDH Assumption**: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)

- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given g^{x_1} , g^{x_2} and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{ (x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Note: \mathcal{O} is defined to be an additive identity $(x, y) + \mathcal{O} = (x, y)$

What is $(x_1, y_1) + (x_2, y_2)$?

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{(x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Fact: $E(\mathbb{Z}_p)$ defines an abelian group

- For *appropriate curves* the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations

RSA-Assumption vs Symmetric Key Crypto

- Recall: We can build (essentially) all of symmetric key crypto from one-way functions.
 - CCA-Secure Encryption, MACs, PRGs, PRFs
 - Collision Resistant Hash Functions
- Symmetric Key Crypto \rightarrow OWFs
 - Example: Can build OWFs from eavesdropping secure encryption scheme (weaker than CPA-secure/CCA-secure encryption)
- OWFs are necessary and sufficient for symmetric key crypto
 - Not known to be sufficient for public key crypto
 - Does the RSA-Assumption \rightarrow OWFs?

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INV}_{A,n} = 1] \leq \mu(n)$

- **Answer**: Yes! (and by extension RSA-Assumption is sufficient for any symmetric key cryptosystem).
- In fact the factoring assumption (weaker than RSA) is sufficient for OWFS. Proof:
- Let Gen(1ⁿ; r) output (N,p,q) where N=pq and p and q are random primes (selected with random bits r).
- $f_{Gen}(x) =$
- 1. $(N,p,q) = Gen(1^n; x)$
- 2. Return N

Claim: $f_{Gen}(x)$ is a OWF.

- $f_{Gen}(x) =$
- 1. $(N,p,q) = Gen(1^n; x)$
- 2. Return N
- **Claim**: $f_{Gen}(x)$ is a OWF.

Proof: Given a PPT attacker A that breaks OWF security we can run $A(f_{Gen}(x))$ to obtain x' such that $f_{Gen}(x) = f_{Gen}(x')$ (A succeeds with non-negligible probability). Given x' we can run $Gen(1^n; x')$ to obtain a tuple (N,p',q') such that N=p'q' and p'q' are prime. By uniqueness of prime factorization we have {p',q'} = {p,q}.

- $f_{Gen}(x) =$
- 1. $(N,p,q) = Gen(1^n; x)$
- 2. Return N
- **Claim**: $f_{Gen}(x)$ is a OWF.

Remark 1: Also possible to construct One-Way-Permutation from RSA-Assumption

Remark 2: Possible to construct OWFs from Discrete-Log Assumption

- $f_{Gen}(x) =$
- 1. $(N,p,q) = Gen(1^n; x)$
- 2. Return N
- **Claim**: $f_{Gen}(x)$ is a OWF.

Remark 1: Also possible to construct One-Way-Permutation from RSA-Assumption

Remark 2: Possible to construct OWFs from Discrete-Log Assumption

Discrete Log Experiment DLog_{A,G}(n)

- 1. Run $\mathcal{G}(1^n)$ to obtain a cyclic group \mathbb{G} of order q (with ||q|| = n) and a generator g such that $\langle g \rangle = \mathbb{G}$.
- 2. Select $h \in \mathbb{G}$ uniformly at random.
- 3. Attacker A is given G, q, g, h and outputs integer x.
- 4. Attacker wins $(DLog_{A,G}(n)=1)$ if and only if $g^x=h$.

We say that the discrete log problem is hard relative to generator \mathcal{G} if $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[\mathsf{DLog}_{A,n} = 1] \leq \mu(n)$

Collision Resistant Hash Functions

- Not known how to build CRHFs from OWFs
- Can build collision resistant hash functions from Discrete Logarithm Assumption
- Let $\mathcal{G}(1^n)$ output (G, q, g) where G is a cyclic group of order q and g is a generator of the group.
- Suppose that discrete log problem is hard relative to generator \mathcal{G} . $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[\mathsf{DLog}_{A,n} = 1] \leq \mu(n)$

Collision Resistant Hash Functions

Let G(1ⁿ) output (G, q, g) where G is a cyclic group of order q and g is a generator of the group.

Collision Resistant Hash Function (Gen,H):

- $Gen(1^n)$
 - 1. (G, q, g) $\leftarrow \mathcal{G}(1^n)$
 - 2. Select random $h \leftarrow \mathbb{G}$
 - 3. Output s = (G, q, g, h)
- $H^{s}(x_{1}, x_{2}) = g^{x_{1}}h^{x_{2}}$ (where, $x_{1}, x_{2} \in \mathbb{Z}_{q}$)

Claim: (Gen,H) is collision resistant

Collision Resistant Hash Functions

• $H^s(x_1, x_2) = g^{x_1}h^{x_2}$ (where, $x_1, x_2 \in \mathbb{Z}_q$) Claim: (Gen,H) is collision resistant

Proof: Suppose we find a collision $H^s(x_1, x_2) = H^s(y_1, y_2)$ then we have $g^{x_1}h^{x_2} = g^{y_1}h^{y_2}$ which implies $h^{x_2-y_2} = g^{y_1-x_1}$ Use extended GCD to find $(x_2 - y_2)^{-1} \mod q$ then $h = h^{(x_2-y_2)(x_2-y_2)^{-1} \mod q} = g^{(y_1-x_1)(x_2-y_2)^{-1} \mod q}$ Which means that $(y_1-x_1)(x_2-y_2)^{-1} \mod q$ is the discrete log of h.

- Let N = pq where (p-1) has only "small" prime factors.
- Pollard's p-1 algorithm can factor N.
 - **Remark 1**: This happens with very small probability if p is a random n bit prime.
 - **Remark 2**: One convenient/fast way to generate big primes it to multiply many small primes and add 1.
 - Example: $2 \times 3 \times 5 \times 7 + 1 = 211$ which is prime

Claim: Suppose we are given an integer B such that (p-1) divides B but (q-1) does not divide B then we can factor N.

Claim: Suppose we are given an integer B such that (p-1) divides B but (q-1) does not divide B then we can factor N.

Proof: B=c(p-1) for some integer c and let $y = [x^B - 1 \mod N]$. Applying the Chinese Remainder Theorem we have

$$y \leftrightarrow (x^B - 1 \mod p, x^B - 1 \mod q)$$

= (0, $x^B - 1 \mod q$)

This means that p divides y, but q does not divide y (unless $x^B = 1 \mod q$, which is very unlikely).

Thus, GCD(y,N) = p

- Let N = pq where (p-1) has only "small" prime factors.
- Pollard's p-1 algorithm can factor N.

Claim: Suppose we are given an integer B such that (p-1) divides B but (q-1) does not divide B then we can factor N.

- Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
- **Remark**: This is difficult if (p-1) has a large prime factor.

$$B = \prod_{i=1}^{n} p_i^{[n/\log p_i]}$$

- Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
- **Remark**: This is difficult if (p-1) has a large prime factor.

$$B = \prod_{i=1}^{n} p_i^{[n/\log p_i]}$$

Here $p_1 = 2, p_2 = 3, ...$

Fact: If (q-1) has prime factor larger than p_k then (q-1) does not divide B. Fact: If (p-1) does not have prime factor larger than p_k then (p-1) does divide B. B.

- Option 1: To defeat this attack we can choose strong primes p and q
 A prime p is strong if (p-1) has a large prime factor
- Drawback: It takes more time to generate (provably) strong primes
- **Option 2:** A random prime is strong with high probability
- Current Consensus: Just pick a random prime

Next Class: Factoring Algorithms

- Factoring Algorithms
- Read Katz and Lindell: Chapter 9
- Homework 3 Due