Cryptography
CS 555

Topic 26: Discrete LOG Applications




Recap

e Plain RSA + Attacks

* Discrete Log Assumptions

e CDH: Computational Diffie Hellman
e DDH: Decisional Diffie Hellman

e Cyclic Groups under which CDH/DDH might hold

1. Z, where pis a random n-bit prime.

e CDH is believed to be hard
e DDH is *not* hard (Exercise 13.15)

2 G= {[hr mod p]|h € Z;‘,}, where p=rg+1 (qis bit prime; p is n bit prime)
e DDH and CDH are believed to be hard
e Setl = 0(3{/5(105; n)2/3) to maximize resistance against known attacks.

3. Elliptic Curves
e DDH is believed to be hard for appropriate choice of curve



Cyclic Group

* Let G be a group with order m = |G| with a binary operation o (over G)
and let g € @ be given consider the set

(9) =19% g% 9% ...}

Fact: (g) defines a subgroup of G.

* |dentity: g*

e Closure: gio g/ = g'*/ € {g)

e gis called a “generator” of the subgroup.

Eact: Letr = |{g)| then g' = g/ ifand onlyif i = j mod r. Also m is divisible
yr.



Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
e Attacker is givenh, = g*1 € Gand h, = g*2 € G.
e Attackers goal is to find g***2= (h,)*2 = (h,)**

 CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)

e Letz, = g*1*2 and letz, = g", where x,,x, and r are random
e Attacker is given g*t, g*2 and z, (for a random bit b)

e Attackers goal is to guess b

 DDH Assumption: For all PPT A there is a negligible function negl such that
A succeeds with probability at most 2 + neg n%.



Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be
constants. Consider the equation
y>=x3+Ax + Bmodp

And let
E(Zp) ={(x,y) € Z%‘yz = x3+ Ax + Bmod p } U {0}

Note: O is defined to be an additive identity (x,y) + 0 = (x,y)

What is (x,,y,) + (x5, y,)?



Elliptic Curve Example

(x Formally, let
26 V1= Y2
m = mod p]
X1~ X3
be the slope.

Then the line passing through
(x4, ¥1) and (x,,y,) has the
equation

(X3,-y3)=(x1, ¥1) + (X3, ¥,) | Yy = m(x — Xl) + yl mod P



Elliptic Curve Example

(X3,¥3)

Formally, let
V1 — Yy ]
m = mod p

Be the slope. Then the line
passing through (x,, y,) and
(x5, ¥,) has the equation
(X3¥3)=(Xy, ¥1) + (2, ¥2) y =m(x —x,) +y, modP

X3 = [m? — x; — x,mod p]

y3 = [m(x; — x1) + ¥y, mod p] (m(x = x,) + y,)*

=x3+Ax+Bmodp -



Elliptic Curve Example

(x1,y1)!

L0 = (x,y1) + (x5, 5,)



Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants.
Consider the equation
y>=x3+Ax + Bmodp

And let
E(Zp) = {(x,y) € Zzz,‘yz = x3+Ax+Bm0dp}U {0}

Fact: E(Zp ) defines an abelian group

e For appropriate curves the DDH assumption is believed to hold

* |f you make up your own curve there is a good chance it is broken...
e NIST has a list of recommendations



RSA-Assumption vs Symmetric Key Crypto

e Recall: We can build (essentially) all of symmetric key crypto from
one-way functions.
 CCA-Secure Encryption, MACs, PRGs, PRFs
- ollicion Res ek Eunct

e Symmetric Key Crypto - OWFs
e Example: Can build OWFs from eavesdropping secure encryption scheme
(weaker than CPA-secure/CCA-secure encryption)
* OWFs are necessary and sufficient for symmetric key crypto

* Not known to be sufficient for public key crypto
e Does the RSA-Assumption = OWFs?



RSA-Assumption

RSA-Experiment: RSA-INV,

1. Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:

3. Attacker Ais given N, e, y and outputs X € Z:
4. Attacker wins (RSA-INV, =1) if x® = y mod N

VPPT A Ju (negligible) s.t Pr[RSA-INV, , = 1] < u(n)



Does the RSA-Assumption = OWFs?

e Answer: Yes! (and by extension RSA-Assumption is sufficient for any
symmetric key cryptosystem).

* |n fact the factoring assumption (weaker than RSA) is sufficient for OWFS.
Proof:

e Let Gen(1"; r) output (N,p,q) where N=pg and p and g are random primes
(selected with random bits r).

° fGen(x) =
1. (N,p,q) = Gen(1";x)
2. Return N

Claim: fgon(x) is a OWF.



Does the RSA-Assumption = OWFs?

* fGen(x) =
1. (N,p,q) = Gen(1"; x)
2. Return N

Claim: f;.,,(x) is a OWF.

Proof: Given a PPT attacker A that breaks OWF security we can run
A(fgen(x)) to obtain x’ such that fgen (%) = fgen(x") (A succeeds with
non-negligible probability). Given x” we can run Gen(1™; x") to obtain a
tuple (N,p’,q’) such that N=p’q’ and p’q’ are prime. By uniqueness of
prime factorization we have {p’,q’} = {p,q}.



Does the RSA-Assumption = OWFs?

* fGen(x) =
1. (N,p,q) = Gen(1"; x)
2. Return N

Claim: f;.,,(x) is a OWF.

Remark 1: Also possible to construct One-Way-Permutation from RSA-
Assumption

Remark 2: Possible to construct OWFs from Discrete-Log Assumption



Does the RSA-Assumption = OWFs?

* fGen(x) =
1. (N,p,q) = Gen(1"; x)
2. Return N

Claim: f;.,,(x) is a OWF.

Remark 1: Also possible to construct One-Way-Permutation from RSA-
Assumption

Remark 2: Possible to construct OWFs from Discrete-Log Assumption



Discrete Log Experiment DLog, 5(n)

1. Run G(1™) to obtain a cyclic group G of order q (with ||g|| = n) and
a generator g such that < g >= G.

2. Select h € G uniformly at random.
3. Attacker Ais given @, g, g, h and outputs integer x.
4. Attacker wins (DLog, (n)=1) if and only if g*=h.

We say that the discrete log problem is hard relative to generator § if
VPPT A Ju (negligible) s.t Pr[Dlog,, = 1] < u(n)



Collision Resistant Hash Functions

* Not known how to build CRHFs from OWFs

e Can build collision resistant hash functions from Discrete Logarithm
Assumption

e Let G(1™) output (G, g, g) where G is a cyclic group of order g and g
is a generator of the group.

e Suppose that discrete log problem is hard relative to generator (.
VPPT A Ju (negligible) s.t Pr[DlLog,, = 1] < u(n)



Collision Resistant Hash Functions

e Let G(1™) output (G, q, g) where G is a cyclic group of order g and g
is a generator of the group.

Collision Resistant Hash Function (Gen,H):
e Gen(1M)

1 (G,q,9) «<g(1")
2. Selectrandomh « G
3. Outputs =(G,q,g,h)

 H%(x{,x5) = g*th*2 (where, xq,x, € Z )

Claim: (Gen,H) is collision resistant



Collision Resistant Hash Functions

* H%(xq,x,) = g*th*2 (where, xq,x, € Z )

Claim: (Gen,H) is collision resistant

Proof: Suppose we find a collision H*(x{,x,) = H°(y4, y,) then we
have g*1h*2 = gY1hY2 which implies
h*2=Y2 = gyl—xl

Use extended GCD to find (x, — y,)~! mod q then
h = h(xz—YZ)(xz—YZ)_l mod q — g(Y1—x1)(x2—YZ)_1 mod q

Which means that (y;_x;)(x, — y,)~! mod q is the discrete log of h.



Pollard’s p-1 Algorithm (Factoring)

I”

e Let N = pg where (p-1) has only “small” prime factors.

* Pollard’s p-1 algorithm can factor N.

 Remark 1: This happens with very small probability if p is a random n bit
prime.

 Remark 2: One convenient/fast way to generate big primes it to multiply
many small primes and add 1.
e Example: 2 X3 X 5X 74+ 1 =211 whichis prime

Claim: Suppose we are given an integer B such that (p-1) divides B but
(g-1) does not divide B then we can factor N.



Pollard’s p-1 Algorithm (Factoring)

Claim: Suppose we are given an integer B such that (p-1) divides B but
(g-1) does not divide B then we can factor N.

Proof: B=c(p-1) for some integer cand lety = [x® — 1 mod N].
Applying the Chinese Remainder Theorem we have

y & (x® — 1 mod p,x® — 1 mod q)
= (0,x% — 1 mod q)

This means that p divides y, but g does not divide y (unless x? =
1 mod g, which is very unlikely).

Thus, GCD(y,N) =p



Pollard’s p-1 Algorithm (Factoring)

e Let N = pg where (p-1) has only “small” prime factors.
e Pollard’s p-1 algorithm can factor N.

Claim: Suppose we are given an integer B such that (p-1) divides B but
(g-1) does not divide B then we can factor N.

e Goal: Find B such that (p-1) divides B but (g-1) does not divide B.
 Remark: This is difficult if (p-1)lt1as a large prime factor.

B =] [pl/1oe
=1



Pollard’s p-1 Algorithm (Factoring)

e Goal: Find B such that (p-1) divides B but (g-1) does not divide B.
 Remark: This is difficult if (p-1) has a large prime factor.

k
1=1

Here p,=2,p,=3,...

Fact: If (g-1) has prime factor larger than p, then (g-1) does not divide B.

Fact: If (p-1) does not have prime factor larger than p, then (p-1) does divide
B.



Pollard’s p-1 Algorithm (Factoring)

e Option 1: To defeat this attack we can choose strong primes p and g
e A prime pis strong if (p-1) has a large prime factor

* Drawback: It takes more time to generate (provably) strong primes
e Option 2: A random prime is strong with high probability

e Current Consensus: Just pick a random prime



Next Class: Factoring Algorithms

e Factoring Algorithms
 Read Katz and Lindell: Chapter 9
e Homework 3 Due



	Cryptography�CS 555
	Recap
	Cyclic Group
	Diffie-Hellman Problems
	Can we find a cyclic group where DDH holds?
	Elliptic Curve Example
	Elliptic Curve Example
	Elliptic Curve Example
	Can we find a cyclic group where DDH holds?
	RSA-Assumption vs Symmetric Key Crypto
	RSA-Assumption
	Does the RSA-Assumption  OWFs?
	Does the RSA-Assumption  OWFs?
	Does the RSA-Assumption  OWFs?
	Does the RSA-Assumption  OWFs?
	Discrete Log Experiment DLogA,G(n)
	Collision Resistant Hash Functions
	Collision Resistant Hash Functions
	Collision Resistant Hash Functions
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Next Class: Factoring Algorithms

