Cryptography CS 555

Topic 25: Discrete LOG, DDH + Attacks on Plain RSA

Recap

- Plain RSA
- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = m^e mod N
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{[ed \mod \phi(N)]} \mod N] = [m \mod N]$

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

(Plain) RSA Discussion

- We have not introduced security models like CPA-Security or CCA-security for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic.
 →Plain RSA is not secure against chosen-plaintext attacks
- Plain RSA is also highly vulnerable to chosen-ciphertext attacks
 - Attacker intercepts ciphertext c of secret message m
 - Attacker generates ciphertext c' for secret message 2m
 - Attacker asks for decryption of c' to obtain 2m
 - Divide by 2 to recover original message m

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- In a public key setting the attacker does have access to an encryption oracle
- Encrypted messages with low entropy are vulnerable to a brute-force attack.
 - If m < B then attacker can recover m after at most B queries to encryption oracle (using public key)

More Weaknesses: Plain RSA with small e

- (Small Messages) If m^e < N then we can decrypt c = m^e mod N directly e.g., m=c^(1/e)
- (Partially Known Messages) If an attacker knows first 1-(1/e) bits of secret message m = m₁||?? then he can recover m given
 Encrypt(pk, m) = m^e mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), e) we can find all m such that $p(m) = 0 \mod N$ and $|m| < N^{(1/e)}$

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), e) we can find all m such that $p(m) = 0 \mod N$ and $|m| < N^{(1/e)}$

Example: e = 3, $m = m_1 || m_2$ and attacker knows $m_1(2k \text{ bits})$ and $c = (m_1 || m_2)^e \mod N$, but not $m_2(k \text{ bits})$ $p(x) = (2^k m_1 + x)^3 - c$

Polynomial has a small root mod N at x= m_2 and coppersmith's method will find it!

Claim: Let $m < 2^n$ be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

For r=1,...,T
let
$$x_r = [cr^{-e}mod N]$$
, where $r^{-e} = (r^{-1})^e mod N$
Sort $\mathbf{L} = \{(r, xr)\}_{r=1}^T$ (by the x_r values)
For s=1,...,T
if $[s^e mod N] = xr$ for some r then
return $[rs mod N]$

For r=1,...,T let $x_r = [cr^{-e}mod N]$, where $r^{-e} = (r^{-1})^e mod N$ Sort $\mathbf{L} = \{(r, xr)\}_{r=1}^T$ (by the x_r values) For s=1,...,T if $[s^e mod N] = xr$ for some r then return [rs mod N]

Analysis:
$$[rs \mod N] = [r(x_r)^d \mod N]$$

= $[r(cr^{-e})^d \mod N] = [rr^{-ed}(c)^d \mod N]$
= $[rr^{-1}m \mod N] = m$

For r=1,...,T let $x_r = [cr^{-e}mod N]$, where $r^{-e} = (r^{-1})^e mod N$ Sort $\mathbf{L} = \{(r, xr)\}_{r=1}^T$ (by the x_r values) For s=1,...,T if $[s^e mod N] = xr$ for some r then return [rs mod N]

Fact: some constant $\alpha = \frac{1}{2} + \varepsilon$ setting $T = 2^{\alpha n}$ with high probability we will find a pair **s** and **x**_r with $[s^e \mod N] = xr$.

Claim: Let $m < 2^n$ be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

Roughly \sqrt{B} steps to find a secret message m < B

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$g \circ e = g = e \circ g$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is **abelian** if

• (Commutativity:) For all g, $h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Finite Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N] = [N-x+x \mod N] = 0$.
- Example 2: \mathbb{Z}_{M}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Cyclic Group

• Let \mathbb{G} be a group with order $m = |\mathbb{G}|$ with a binary operation \circ (over G) and let $g \in \mathbb{G}$ be given consider the set $\langle g \rangle = \{g^0, g^1, g^2, \dots\}$

Fact: $\langle g \rangle$ defines a subgroup of \mathbb{G} .

- Identity: g^0
- Closure: $g^i \circ g^j = g^{i+j} \in \langle g \rangle$
- g is called a "generator" of the subgroup.

Fact: Let $r = |\langle g \rangle|$ then $g^i = g^j$ if and only if $i = j \mod r$. Also m is divisible by r.

Finite Abelian Groups (Examples)

Fact: Let p be a prime then \mathbb{Z}_{p-1}^* is a cyclic group of order p-1.

• Note: A generator g of this group must have gcd(g,p-1)=1

Example (non-generator): p=7, g=2 <2>={1,2,4}

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}

Discrete Log Experiment DLog_{A,G}(n)

- 1. Run G(1n) to obtain a cyclic group \mathbb{G} of order q (with ||q|| = n) and a generator g such that $\langle g \rangle = \mathbb{G}$.
- 2. Select $h \in \mathbb{G}$ uniformly at random.
- 3. Attacker A is given G, q, g, h and outputs integer x.
- 4. Attacker wins $(DLog_{A,G}(n)=1)$ if and only if $g^x=h$.

We say that the discrete log problem is hard relative to generator G if $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[DLog_{A,n} = 1] \leq \mu(n)$

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $h_1 = g^{x_1} \in \mathbb{G}$ and $h_2 = g^{x_2} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_1x_2} = (h_1)^{x_2} = (h_2)^{x_1}$
- **CDH Assumption**: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)

- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given g^{x_1} , g^{x_2} and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Secure key-agreement with DDH

- 1. Alice publishes g^{x_A} and Bob publishes g^{x_B}
- 2. Alice and Bob can both compute $K_{A,B} = g^{x_B x_A}$ but to Eve this key is indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob cannot validate g^{x_A} .

- **Example 1:** \mathbb{Z}_p^* where p is a random n-bit prime.
 - CDH is believed to be hard
 - DDH is *not* hard (Exercise 13.15)
- Theorem: Let p=rq+1 be a random n-bit prime where q is a large λ bit prime then the set of r^{th} residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G} = \{ [hr \mod p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Remark 1: DDH is believed to hold for such a group
 - **Remark 2:** It is easy to generate uniform elements
 - Remark 3: Any element (besides 1) is a generator of \mathbb{G}

- Theorem: Let p=rq+1 be a random n-bit prime where q is a large λ -bit prime then the set of rth residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G} = \{ [hr \mod p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Closure: $h^r g^r = (hg)^r$
 - Inverse of h^r is $(h^{-1})^r \in \mathbb{G}$
 - Size $(h^r)^x = h^{[rx \mod rq]} = (h^r)^x = h^{r[x \mod q]} = (h^r)^{[x \mod q]} \mod p$

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$
- Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$ Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$, where n is bit length of p

Goal: Set λ and n to balance attacks $\lambda = O\left(\sqrt[3]{n}(\log n)^{2/3}\right)$

How to sample p=rq+1?

- First sample a random λ -bit prime q and
- Repeatedly check if rq+1 is prime for a random n- λ bit value r

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{ (x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Note: \mathcal{O} is defined to be an additive identity $(x, y) + \mathcal{O} = (x, y)$

What is $(x_1, y_1) + (x_2, y_2)$?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{(x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Fact: $E(\mathbb{Z}_p)$ defines an abelian group

- For *appropriate curves* the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations

Next Week: Spring Break!

- Next class on Monday, March 20th.
- Read Katz and Lindell 8.4
- DDH Applications