
Cryptography
CS 555

Topic 25: Discrete LOG, DDH + Attacks on Plain RSA
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Recap

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑑𝑑mod N = 𝑚𝑚[𝑒𝑒𝑑𝑑 𝑚𝑚𝑚𝑚𝑑𝑑 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N
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RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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(Plain) RSA Discussion

• We have not introduced security models like CPA-Security or CCA-security 
for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Plain RSA is also highly vulnerable to chosen-ciphertext attacks
• Attacker intercepts ciphertext c of secret message m
• Attacker generates ciphertext c’ for secret message 2m
• Attacker asks for decryption of c’ to obtain 2m
• Divide by 2 to recover original message m
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(Plain) RSA Discussion 

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• In a public key setting the attacker does have access to an encryption 
oracle

• Encrypted messages with low entropy are vulnerable to a brute-force 
attack. 

• If m < B then attacker can recover m after at most B queries to encryption oracle 
(using public key)
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More Weaknesses: Plain RSA with small e

• (Small Messages) If me < N then we can decrypt c = me mod N directly
e.g., m=c(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of 
secret message 𝑚𝑚 = 𝑚𝑚1‖? ? then he can recover m given 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄(𝑝𝑝𝑝𝑝,𝑚𝑚) = 𝑚𝑚𝑒𝑒mod N

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)
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More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)

Example: e = 3, 𝑚𝑚 = 𝑚𝑚1‖𝑚𝑚2 and attacker knows 𝑚𝑚1 2𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and  𝒄𝒄 =
𝑚𝑚1‖𝑚𝑚2

𝑒𝑒mod N, but not 𝑚𝑚2 𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝 𝑥𝑥 = 2𝑘𝑘𝑚𝑚1 + 𝑥𝑥 3 − 𝑐𝑐

Polynomial has a small root mod N at x= 𝑚𝑚2 and coppersmith’s method 
will find it!
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Recovering Encrypted Message faster than 
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑃𝑃 = 2𝛼𝛼𝑛𝑛 with high probability. 

For r=1,…,T 
let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏
𝑻𝑻 (by the xr values)

For s=1,…,T 
if 𝑏𝑏𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then

return 𝑟𝑟𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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Recovering Encrypted Message faster than 
Brute-Force
For r=1,…,T 

let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏

𝑻𝑻 (by the xr values)
For s=1,…,T 

if 𝑏𝑏𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then
return 𝑟𝑟𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Analysis: 𝑟𝑟𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟 𝑥𝑥𝑟𝑟 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
= 𝑟𝑟 𝑐𝑐𝑟𝑟−𝑒𝑒 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟𝑟𝑟−𝑒𝑒𝑑𝑑 𝑐𝑐 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

= 𝑟𝑟𝑟𝑟−1𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = m
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Recovering Encrypted Message faster than 
Brute-Force
For r=1,…,T 

let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏

𝑻𝑻 (by the xr values)
For s=1,…,T 

if 𝑏𝑏𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then
return 𝑟𝑟𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Fact: some constant 𝛼𝛼 = 1
2

+ 𝜀𝜀 setting 𝑃𝑃 = 2𝛼𝛼𝑛𝑛 with high probability 
we will find a pair s and xr with 𝑏𝑏𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟.
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Recovering Encrypted Message faster than 
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑃𝑃 = 2𝛼𝛼𝑛𝑛 with high probability. 

Roughly 𝐵𝐵 steps to find a secret message m < B
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(Recap) Finite Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over 
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have 

g ∘ e = g = e ∘ g
• (Inverses:) For each element  g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.  

We say that h is the inverse of g. 
• (Associativity: ) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if 
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g
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Finite Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑁𝑁 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?
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Cyclic Group

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over G) 
and let g ∈ 𝔾𝔾 be given consider the set

𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, …

Fact: 𝑔𝑔 defines a subgroup of 𝔾𝔾.
• Identity: 𝑔𝑔0

• Closure: 𝑔𝑔𝑏𝑏 ∘ 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖+𝑗𝑗 ∈ 𝑔𝑔
• g is called a “generator” of the subgroup.

Fact: Let r = 𝑔𝑔 then 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑗𝑗 if and only if 𝑏𝑏 = 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. Also m is divisible 
by r. 
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Finite Abelian Groups (Examples)

Fact: Let p be a prime then ℤ𝑝𝑝−1∗ is a cyclic group of order p-1. 
• Note: A generator g of this group must have gcd(g,p-1)=1

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}
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Discrete Log Experiment DLogA,G(n)

1. Run G(1n) to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and 
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if  gx=h.

We say that the discrete log problem is hard relative to generator G if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper 
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that 

A succeeds with probability at most ½ + negl(n).
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Secure key-agreement with DDH

1. Alice publishes 𝑔𝑔𝑥𝑥𝐴𝐴 and Bob publishes 𝑔𝑔𝑥𝑥𝐵𝐵
2. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 but to Eve this key is 

indistinguishable from a random group element (by DDH) 

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob 
cannot validate 𝑔𝑔𝑥𝑥𝐴𝐴.
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Can we find a cyclic group where DDH holds?

• Example 1: ℤ𝑝𝑝∗ where p is a random n-bit prime.
• CDH is believed to be hard
• DDH is *not* hard (Exercise 13.15)

• Theorem: 𝐿𝐿𝐿𝐿𝑏𝑏 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-
bit prime then the set of rth residues modulo p is a cyclic subgroup of 
order q. Then 𝔾𝔾 = [ℎ𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of 
order q.

• Remark 1: DDH is believed to hold for such a group
• Remark 2: It is easy to generate uniform elements
• Remark 3: Any element (besides 1) is a generator of 𝔾𝔾
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Can we find a cyclic group where DDH holds?

• Theorem: 𝐿𝐿𝐿𝐿𝑏𝑏 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-bit 
prime then the set of rth residues modulo p is a cyclic subgroup of order q. 
Then 𝔾𝔾 = [ℎ𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of order q.

• Closure: ℎ𝑟𝑟𝑔𝑔𝑟𝑟 = ℎ𝑔𝑔 𝑟𝑟

• Inverse of ℎ𝑟𝑟 is ℎ−1 𝑟𝑟 ∈ 𝔾𝔾
• Size ℎ𝑟𝑟 𝑥𝑥 = ℎ[𝑟𝑟𝑥𝑥 𝑚𝑚𝑚𝑚𝑑𝑑 𝑟𝑟𝑟𝑟] = ℎ𝑟𝑟 𝑥𝑥 = ℎ𝑟𝑟[𝑥𝑥 𝑚𝑚𝑚𝑚𝑑𝑑 𝑟𝑟] = ℎ𝑟𝑟 [𝑥𝑥 𝑚𝑚𝑚𝑚𝑑𝑑 𝑟𝑟]𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Remark: Two known attacks (Section 9.2). 
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3

20



Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2). 
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3 , where n is bit length of p

Goal: Set 𝜆𝜆 and n to balance attacks 
𝜆𝜆 = 𝑂𝑂 3 𝑛𝑛 log𝑛𝑛 2/3

How to sample p=rq+1? 
• First sample a random 𝜆𝜆-bit prime q and 
• Repeatedly check if rq+1 is prime for a random n- 𝜆𝜆 bit value r
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Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be 
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?
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Elliptic Curve Example

Formally, let 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

be the slope. 
Then the line passing through 
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the 

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

23

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐



Elliptic Curve Example

Formally, let 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Be the slope. Then the line 
passing through 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 
𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1
2

= 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 24

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝑥𝑥3 = [𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]
𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

(x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐



Elliptic Curve Example

25

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝒪𝒪 = 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐



Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. 
Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group 
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations 
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Next Week: Spring Break!

• Next class on Monday, March 20th.

• Read Katz and Lindell 8.4

• DDH Applications
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