Cryptography CS 555

Topic 24: Finding Prime Numbers, RSA

Recap

- Number Theory Basics
- Abelian Groups
- $\phi(pq) = (p-1)(q-1)$ for distinct primes p and q

•
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$

$$[g^{x} \mod N] = [g^{[x \mod \phi(N)]} \mod N]$$

RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$ Step 3: ...

Question: How do we accomplish step one?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $1/_{3n}$.

GenerateRandomPrime(1ⁿ) For i=1 to $3n^2$: $p' \in \{0,1\}^{n-1}$ $p \in 1 || p'$ if isPrime(p) then return p return fail

Can we do this in polynomial time?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $\frac{1}{3n}$.

GenerateRandomPrime(1ⁿ)

For i=1 to $3n^2$: $p' \leftarrow \{0,1\}^{n-1}$ $p \leftarrow 1 || p'$ if isPrime(p) then return p return fail Assume for now that we can run isPrime(p). What are the odds that the algorithm fails?

On each iteration the probability that p is not a prime is $\left(1-\frac{1}{3n}\right)$

We fail if we pick a non-prime in all 3n² iterations. The probability is

$$\left(1-\frac{1}{3n}\right)^{3n^2} = \left(\left(1-\frac{1}{3n}\right)^{3n}\right)^n \le e^{-n}$$

isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in ||p||.

Theory: Deterministic algorithm to test for primality.

• See breakthrough paper "Primes is in P"

Practice: Miller-Rabin Test (randomized algorithm)

- Guarantee 1: If p is prime then the test outputs YES
- Guarantee 2: If p is not prime then the test outputs NO except with negligible probability.

The "Almost" Miller-Rabin Test

```
Input: Integer N and parameter 1<sup>t</sup>

Output: "prime" or "composite"

for i=1 to t:

a \leftarrow \{1,...,N-1\}

if a^{N-1} \neq \text{mod N} then return "composite"

Return "prime"
```

Claim: If N is prime then algorithm always outputs "prime" **Proof:** For any $a \in \{1, ..., N-1\}$ we have $a^{N-1} = a^{\phi(N)} = 1 \mod N$

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^t
Output: "prime" or "composite"
for i=1 to t:

a \leftarrow {1,...,N-1} if $a^{N-1} \neq$ 1 mod N then return "composite **Return** "prime"

Need a bit of extra work to handle Carmichael numbers.

Fact: If N is composite and not a Carmichael number then the algorithm outputs "composite" with probability $1 - 2^{-t}$

Back to RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$ Step 3: Pick e > 1 such that gcd(e, $\phi(N)$)=1 Step 4: Set d=[e⁻¹ mod $\phi(N)$] (secret key) **Return:** N, e, d

- How do we find d?
- Answer: Use extended gcd algorithm to find e^{-1} mod $\phi(N)$.

(Plain) RSA Encryption

- Public Key: PK=(N,e)
- Message $m \in \mathbb{Z}_{N}$ Enc. (1)

$\mathbf{Enc}_{\mathbf{PK}}(\mathbf{m}) = \ [m^e \bmod \mathbf{N}]$

• **Remark:** Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

- Public Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{_{N}}$

 $\mathbf{Dec}_{\mathbf{SK}}(\mathbf{c}) = [c^d \mod \mathbf{N}]$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- **Remark 2:** Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$

$$\begin{aligned} \mathsf{Dec}_{\mathsf{SK}}(\mathsf{c}) &= \left[(m^e)^d \mod \mathsf{N} \right] &= \left[m^{ed} \mod \mathsf{N} \right] \\ &= \left[m^{\left[ed \ mod \ \phi(\mathsf{N}) \right]} \mod \mathsf{N} \right] \\ &= \left[m^1 \mod \mathsf{N} \right] = m \end{aligned}$$

RSA Decryption

- Public Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{_{N}}$

$$Dec_{s\kappa}(c) = [c^d \mod N]$$

- **Remark 1:** Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}^*$ and let $c=Enc_{PK}(m) = [m^e \mod N]$ then $D_{SK}^{N}(c) = m$
- Remark 3: Even if $m \in \mathbb{Z}_{N} \mathbb{Z}^{*}_{N}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$ then $Dec_{SK}(c) = m$
 - Use Chinese Remainder Theorem to show this

Factoring Assumption

Let **GenModulus**(1ⁿ) be a randomized algorithm that outputs (N=pq,p,q) where p and q are n-bit primes (except with negligible probability **negl**(n)).

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins if N=p'q'.

Factoring Assumption

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins (FACTOR_{A,n} = 1) if and only if N=p'q'.

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[FACTOR_{A,n} = 1] \leq \mu(n)$

Necessary for security of RSA.Not known to be sufficient.

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INV}_{A,n} = 1] \leq \mu(n)$

(Plain) RSA Discussion

- We have not introduced security models like CPA-Security or CCA-security for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic.
 →Plain RSA is not secure against chosen-plaintext attacks
- Plain RSA is also highly vulnerable to chosen-ciphertext attacks
 - Attacker intercepts ciphertext c of secret message m
 - Attacker generates ciphertext c' for secret message 2m
 - Attacker asks for decryption of c' to obtain 2m
 - Divide by 2 to recover original message m

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- In a public key setting the attacker does have access to an encryption oracle
- Encrypted messages with low entropy are vulnerable to a brute-force attack

(Plain) RSA Discussion

- Plain RSA is also highly vulnerable to chosen-ciphertext attacks
 - Attacker intercepts ciphertext $c = [m^e \mod N]$
 - Attacker asks for decryption of $[c2^e \mod N]$ and receives 2m.
 - Divide by two to recover message
- As above example shows plain RSA is also highly vulnerable to ciphertext-tampering attacks
 - See homework questions 🙂

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Spring17/slid es/Lecture24Demo.nb

Note: Online version of mathematica available at https://sandbox.open.wolframcloud.com (reduced functionality, but can be used to solve homework bonus problems)

Next Class

- Read Katz and Lindell 8.3, 11.5.1
- Discrete Log, DDH + Attacks on Plain RSA