Cryptography
CS 555

Topic 24: Finding Prime Numbers, RSA




Recap

e Number Theory Basics
e Abelian Groups
e p(pq) = (p —1)(q — 1) for distinct primes p and g

* ¢(N) = |Z7]
[g¥mod N] = |glxmod ¢NMlmod N]



RSA Key-Generation

KeyGeneration(1")
Step 1: Pick two random n-bit primes p and g

Step 2: Let N=pq, p(N) = (p — D)(q — 1)
Step 3: ...

Question: How do we accomplish step one?



Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at
least 1/3,,.

R Prime(1" ‘o
Gen.erate andomPrime(1") Can we do this in
For i=1 to 3nZ:

i
o & (0,1} polynomial time:
p< 1||p’
if isPrime(p) then

return p
return fail



Bertrand’s Postulate

Iheorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least
/3n-

Assume for now that we can run isPrime(p). What are the
odds that the algorithm fails?

GenerateRandomPrime(1")

For i=1 to 3n?: On each iteration the probability that p is not a prime is
p’ € {0,1) (1-2)
n
p< 1lp’
if isPrime(p) then We fail if we pick a non-prime in all 3n? iterations. The
return p probability is

1 — —

return fail 1
3n




isPrime(p): Miller-Rabin Test
* We can check for primality of p in polynomial time in ||p]].

Theory: Deterministic algorithm to test for primality.
* See breakthrough paper “Primes is in P”

Practice: Miller-Rabin Test (randomized algorithm)
e Guarantee 1: If p is prime then the test outputs YES

e Guarantee 2: If p is not prime then the test outputs NO except with
negligible probability.

https://www.cse.iitk.ac.in/users/manindra/algebra/primality v6.pdf



https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1!
Output: “prime” or “composite”
fori=1to t:
a < {1,..,N-1}
if a1 # mod N then return “composite”
Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a € {1,..,N-1} we have a1 = a®W™) = 1 mod N



The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t Need a bit of extra work to
Output: “prime” or “composite” handle Carmichael
fori=1to t: numbers.

a < {1,.. N-1}
if a1 # 1 mod N then return “composit
Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm
outputs “composite” with probability

1—-271



Back to RSA Key-Generation

KeyGeneration(1")
Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pqg, ¢(N) = (p — 1)(q — 1)
Step 3: Pick e > 1 such that gcd(e, p(N))=1
Step 4: Set d=[e! mod ¢p(N)] (secret key)
Return: N, e, d

e How do we find d?
* Answer: Use extended gcd algorithm to find e*mod ¢ (N).



(Plain) RSA Encryption

e Public Key: PK=(N,e)
e Message m € Z

" Enc, (m) = [m® mod N]

 Remark: Encryption is efficient if we use the power mod algorithm.



(Plain) RSA Decryption

e Public Key: SK=(N,d)
e Ciphertext c € Z

N

Dec,,(c) = [c? mod N]

e Remark 1: Decryption is efficient if we use the power mod algorithm.
* Remark 2: Suppose that m € Z' and let c=Ency(m) = [m® mod N]

[(m®)? mod N] = [m®? mod N]
[ [ed mod ¢p(N)] mod N]

= [m'modN|] =m

Decg(c) =



RSA Decryption

e Public Key: SK=(N,d)
e Ciphertext c € Z

N

Dec,,(c) = [c? mod N]

 Remark 1: Decryption is efficient if we use the power mod algorithm.

* Remark 2: Suppose that m € Z® and let c—EncPK(m) Im€ mod N] then
DecSK(c)

* Remark3:Evenifm €Z — Z and let c—EncPK(m) |m® mod N| then
DecSK(c)
e Use Chinese Remainder Theorem to show th|s



Factoring Assumption

Let GenModulus(1") be a randomized algorithm that outputs
(N=pq,p,q) where p and q are n-bit primes (except with negligible
probability negl(n)).

Experiment FACTOR, ,

1. (N=pq,p,q) € GenModulus(1")

2. Attacker Ais given N as input

3. Attacker Aoutputsp’>1landqg >1
4. Attacker A wins if N=p'q’.




Factoring Assumption

 Necessary for security of RSA.
Experiment FACTOR, , * Not known to be sufficient.
1. (N=pq,p,q) € GenModulus(1")
2. Attacker Ais given N as input
3. Attacker Aoutputsp’>1landqg >1
4. Attacker A wins (FACTOR, , = 1) if and only if N=p’q".

VPPT A Ju (negligible) s.t Pr[FACTOR, , = 1] < u(n)

14



RSA-Assumption

RSA-Experiment: RSA-INV,

1. Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:

3. Attacker Ais given N, e, y and outputs X € Z:
4. Attacker wins (RSA-INV, =1) if x® = y mod N

VPPT A Ju (negligible) s.t Pr[RSA-INV, , = 1] < u(n)



(Plain) RSA Discussion

* We have not introduced security models like CPA-Security or CCA-security
for Public Key Cryptosystems

 However, notice that (Plain) RSA Encryption is stateless and deterministic.
—Plain RSA is not secure against chosen-plaintext attacks

* Plain RSA is also highly vulnerable to chosen-ciphertext attacks
o Attacker intercepts ciphertext c of secret message m
o Attacker generates ciphertext ¢’ for secret message 2m
o Attacker asks for decryption of ¢’ to obtain 2m
e Divide by 2 to recover original message m



(Plain) RSA Discussion

 However, notice that (Plain) RSA Encryption is stateless and
deterministic.

—Plain RSA is not secure against chosen-plaintext attacks

* In a public key setting the attacker does have access to an encryption
oracle

* Encrypted messages with low entropy are vulnerable to a brute-force
attack



(Plain) RSA Discussion

e Plain RSA is also highly vulnerable to chosen-ciphertext attacks
o Attacker intercepts ciphertext ¢ = [m® mod N]
 Attacker asks for decryption of [c2€ mod N| and receives 2m.
e Divide by two to recover message

* As above example shows plain RSA is also highly vulnerable to
ciphertext-tampering attacks

e See homework questions ©



Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slid

es/Lecture24Demo.nb

Note: Online version of mathematica available at
https://sandbox.open.wolframcloud.com (reduced functionality, but
can be used to solve homework bonus problems)

19


https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb
https://sandbox.open.wolframcloud.com/

Next Class

e Read Katz and Lindell 8.3, 11.5.1

e Discrete Log, DDH + Attacks on Plain RSA



	Cryptography�CS 555
	Recap
	RSA Key-Generation
	Bertrand’s Postulate
	Bertrand’s Postulate
	isPrime(p): Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	Back to RSA Key-Generation
	(Plain) RSA Encryption
	(Plain) RSA Decryption
	RSA Decryption
	Factoring Assumption
	Factoring Assumption
	RSA-Assumption
	(Plain) RSA Discussion
	(Plain) RSA Discussion 
	(Plain) RSA Discussion
	Mathematica Demo
	Next Class

