
Cryptography
CS 555

Topic 24: Finding Prime Numbers, RSA
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Recap

• Number Theory Basics
• Abelian Groups
• 𝜙𝜙 𝑝𝑝𝑝𝑝 = 𝑝𝑝 − 1 𝑝𝑝 − 1 for  distinct primes p and q
• 𝜙𝜙 𝑁𝑁 = ℤ

N
∗

𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N
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RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑝𝑝 − 1)
Step 3: …

Question: How do we accomplish step one?
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Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at 
least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail
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Can we do this in 
polynomial time?



Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least 
⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail
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Assume for now that we can run isPrime(p). What are the 
odds that the algorithm fails?

On each iteration the probability that p is not a prime is  
1 − 1

3𝑛𝑛

We fail if we pick a non-prime in all 3n2 iterations. The 
probability is  

1 −
1
3𝑛𝑛

3𝑛𝑛2

= 1 −
1
3𝑛𝑛

3𝑛𝑛
𝑛𝑛

≤ 𝑒𝑒−𝑛𝑛



isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in 𝑝𝑝 .

Theory: Deterministic algorithm to test for primality. 
• See breakthrough paper “Primes is in P”

Practice: Miller-Rabin Test (randomized algorithm)
• Guarantee 1: If p is prime then the test outputs YES
• Guarantee 2: If p is not prime then the test outputs NO except with 

negligible probability. 

6https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf


The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ mod N then return “composite”

Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a ∈ {1,…,N−1} we have 𝑎𝑎𝑁𝑁−1 = 𝑎𝑎𝜙𝜙 𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm 
outputs “composite” with probability

1 − 2−𝑡𝑡
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Need a bit of extra work to 
handle Carmichael 

numbers.



Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑝𝑝 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁 )=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁 ]      (secret key)
Return: N, e, d

• How do we find d? 
• Answer: Use extended gcd algorithm to find e-1mod 𝜙𝜙 𝑁𝑁 .
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(Plain) RSA Encryption

• Public Key: PK=(N,e)
• Message m ∈ ℤ

N EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

• Remark: Encryption is efficient if we use the power mod algorithm.

10



(Plain) RSA Decryption

• Public Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑚𝑚 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

DecSK(c) = 𝑚𝑚𝑒𝑒 𝑚𝑚 mod N = 𝑚𝑚𝑒𝑒𝑚𝑚 mod N
= 𝑚𝑚[𝑒𝑒𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ] mod N

= 𝑚𝑚1 mod N = 𝑚𝑚
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RSA Decryption

• Public Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑚𝑚 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Remark 3: Even if m ∈ ℤ
N
− ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Use Chinese Remainder Theorem to show this
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Factoring Assumption

Let GenModulus(1n) be a randomized algorithm that outputs 
(N=pq,p,q) where p and q are n-bit primes (except with negligible 
probability negl(n)).

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n) 
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins if N=p’q’.
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Factoring Assumption

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n) 
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins (FACTORA,n = 1) if and only if N=p’q’.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr FACTORA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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• Necessary for security of RSA. 
• Not known to be sufficient.



RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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(Plain) RSA Discussion

• We have not introduced security models like CPA-Security or CCA-security 
for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Plain RSA is also highly vulnerable to chosen-ciphertext attacks
• Attacker intercepts ciphertext c of secret message m
• Attacker generates ciphertext c’ for secret message 2m
• Attacker asks for decryption of c’ to obtain 2m
• Divide by 2 to recover original message m
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(Plain) RSA Discussion 

• However, notice that (Plain) RSA Encryption is stateless and 
deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• In a public key setting the attacker does have access to an encryption 
oracle

• Encrypted messages with low entropy are vulnerable to a brute-force 
attack 
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(Plain) RSA Discussion

• Plain RSA is also highly vulnerable to chosen-ciphertext attacks
• Attacker intercepts ciphertext 𝑐𝑐 = 𝑚𝑚𝑒𝑒 mod N
• Attacker asks for decryption of 𝑐𝑐2𝑒𝑒 mod N and receives 2m.
• Divide by two to recover message

• As above example shows plain RSA is also highly vulnerable to 
ciphertext-tampering attacks

• See homework questions 
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Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slid
es/Lecture24Demo.nb

Note: Online version of mathematica available at 
https://sandbox.open.wolframcloud.com (reduced functionality, but 
can be used to solve homework bonus problems)
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Next Class

• Read Katz and Lindell 8.3, 11.5.1

• Discrete Log, DDH + Attacks on Plain RSA
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