Cryptography CS 555

Topic 23: More Number Theory

Recap

- Polynomial time algorithms (in bit lengths $\|a\|$, $\|b\|$ and $\|N\|$) to do important stuff
 - GCD(a,b)
 - Find inverse **a**⁻¹ of **a** such that 1=[**aa**⁻¹ mod **N**] (if it exists)
 - PowerMod: [a^b mod N]
 - Draw uniform sample from $\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$
 - Randomized PPT algorithm

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \bmod N\right] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \phi(8) = 4$$
 $\left[3^4 \mod 8\right] = \left[9 \times 9 \mod 8\right] = 1$ $\left[5^4 \mod 8\right] = \left[25 \times 25 \mod 8\right] = 1$ $\left[7^4 \mod 8\right] = \left[49 \times 49 \mod 8\right] = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \mod N\right] = 1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Example 0: Let p be a prime so that $\mathbb{Z}^* = \{1, ..., p-1\}$ $\phi(p) = p\left(1 - \frac{1}{p}\right) = p-1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 1: N = 9 = 3² (m=1, e₁=2)
$$\phi(9) = \prod_{i=1}^{n} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Example 1: N = 9 = 3² (m=1, e₁=2)

$$\phi(9) = \prod_{i=1}^{1} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Double Check:
$$\mathbb{Z}_{9}^{*} = \{1,2,4,5,7,8\}$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, $e_1 = e_2 = 1$)
$$\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, $e_1 = e_2 = 1$)
$$\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Double Check:
$$\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$$

I count 8 elements in \mathbb{Z}_{15}^*

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Special Case: N = pq (p and q are distinct primes) $\phi(N) = (p-1)(q-1)$

```
Special Case: N = pq (p and q are distinct primes) \phi(N) = (p-1)(q-1)
```

Proof Sketch: If $x \in \mathbb{Z}_{N}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- Double Counting? N=pq is in both lists. Any other duplicates?
- No! cq = dp \rightarrow q divides d (since, gcd(p,q)=1) and consequently d $\geq q$
 - Hence, $dp \ge pq = N$

Special Case: N = pq (p and q are distinct primes)
$$\phi(N) = (p-1)(q-1)$$

Proof Sketch: If $x \in \mathbb{Z}$ is not divisible by p or q then $x \in \mathbb{Z}_{\mathbb{N}}^*$. How many elements are not in $\mathbb{Z}_{\mathbb{N}}^*$?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- Answer: p+q-1 elements are not in \mathbb{Z}^* $\phi(N) = N - (p^N + q - 1)$ = pq - p - q + 1 = (p - 1)(q - 1)

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over \mathbb{G}) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have $g \circ e = g = e \circ g$
- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is abelian if

• (Commutativity:) For all $g, h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$
- Observe that: $x^{-1} = a$, since [ax mod N] = [1-bN mod N] = 1

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) and let $a,b,c\in\mathbb{G}$. If $a\circ c=b\circ c$ then a=b.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$a \circ c = b \circ c \rightarrow (a \circ c) \circ c^{-1} = (b \circ c) \circ c^{-1}$$

 $\rightarrow a \circ (c \circ c^{-1}) = b \circ (c \circ c^{-1})$
 $\rightarrow a \circ (e) = b \circ (e)$
 $\rightarrow a = b$

(**Remark**: it is not to difficult to show that a group has a *unique* identity and that inverses are *unique*).

Definition: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) let m be a positive integer and let $g \in \mathbb{G}$ be a group element then we define

$$g^m = g \circ \cdots \circ g$$

m times

Theorem: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G} = \{g_1, \dots, g_m\}$ then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$

Why? If $(g \circ g_i) = (g \circ g_j)$ then $g_j = g_i$ (by Lemma 8.13)

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let
$$\mathbb{G} = \{g_1, \dots, g_m\}$$
 then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$

Because G is abelian we can re-arrange terms

$$g_1 \circ \cdots \circ g_m = (g_1 \circ \cdots \circ g_m)(g^m)$$

By Lemma 8.13 we have $1 = g^m$.

QED

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Corollary 8.15: Let \mathbb{G} be finite group with size $m = |\mathbb{G}| > 1$ and let $g \in \mathbb{G}$ be a group element then for any integer x we have $g^x = g^{[x \bmod m]}$.

Proof: $g^x = g^{qm+[x \bmod m]} = g^{[x \bmod m]}$, where q is unique integer such that x=qm+ $[x \bmod m]$

Special Case: \mathbb{Z}_{N}^{*} is a group of size $\phi(N)$ so we have now proved

Corollary 8.22: For any $g \in \mathbb{Z}_{\mathbb{N}}^*$ and integer x we have

$$[g^{x} \bmod N] = [g^{[x \bmod \phi(N)]} \bmod N]$$

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows

$$f(x) = ([x \bmod p], [x \bmod q])$$

then

- f is a bijective mapping (invertible)
- f and its inverse f^{-1} : $\mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_N$ can be computed efficiently
- $\bullet f(x+y) = f(x) + f(y)$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [11⁵³ mod 15]

 $f(11)=([-1 \mod 3],[1 \mod 5])$

 $f(11^{53}) = ([(-1)^{53} \mod 3], [1^{53} \mod 5]) = (-1,1)$

$$f^{-1}(-1,1)=11$$

Thus, $11=[11^{53} \mod 15]$

Next Class

• Read Katz and Lindell 8.2

Primes, Factoring and RSA