
Cryptography
CS 555

Topic 23: More Number Theory
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Recap

• Polynomial time algorithms (in bit lengths 𝒂𝒂 , 𝒃𝒃 and 𝐍𝐍 ) to do 
important stuff

• GCD(a,b)
• Find inverse a-1 of a such that 1=[aa-1 mod N]   (if it exists)
• PowerMod: [ab mod N]
• Draw uniform sample from ℤ

𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1
• Randomized PPT algorithm
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More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have 

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1
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More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a 

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 0: Let p be a prime so that ℤ
p
∗ = 1, … , 𝑝𝑝 − 1

𝝓𝝓 𝒑𝒑 = 𝑝𝑝 1 −
1
𝑝𝑝

= 𝑝𝑝 − 1
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 1: N = 9 = 32     (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3
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More Useful Facts

Example 1: N = 9 = 32     (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3

Double Check: ℤ
9
∗ = 1,2,4,5,7,8
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8
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More Useful Facts

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8

Double Check: ℤ
15
∗ = 1,2,4,7,8,11,13,14

I count 8 elements in ℤ
15
∗
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a 

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1
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More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many elements 

are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Double Counting? N=pq is in both lists. Any other duplicates?
• No! cq = dp q divides d (since, gcd(p,q)=1) and consequently d ≥ 𝑞𝑞

• Hence, dp ≥ 𝑝𝑝𝑝𝑝 = 𝑁𝑁
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More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many 

elements are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Answer: p+q-1 elements are not in ℤ

N
∗

𝝓𝝓 𝑵𝑵 = 𝑵𝑵− 𝒑𝒑 + 𝒒𝒒 − 𝟏𝟏
= 𝐩𝐩𝐩𝐩 − 𝐩𝐩 − 𝐪𝐪 + 𝟏𝟏 = (𝐩𝐩 − 𝟏𝟏)(𝐪𝐪 − 𝟏𝟏)
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Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over 
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have 

g ∘ e = g = e ∘ g
• (Inverses:) For each element  g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.  

We say that h is the inverse of g. 
• (Associativity: ) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if 
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g
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Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?
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Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a, since [ax mod N] = [1-bN mod N] = 1
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Groups

Lemma 8.13: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) and let 
a, b, c ∈ 𝔾𝔾. If a ∘ c = b ∘ c then a = b.

Proof Sketch: Apply the unique inverse to 𝑐𝑐−1 both sides.
a ∘ c = b ∘ c  a ∘ c ∘ 𝑐𝑐−1= b ∘ c ∘ 𝑐𝑐−1

 a ∘ c ∘ 𝑐𝑐−1 = b ∘ c ∘ 𝑐𝑐−1

 a ∘ 𝑒𝑒 = b ∘ 𝑒𝑒
 a = b

(Remark: it is not to difficult to show that a group has a unique identity and 
that inverses are unique).
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Group Exponentiation

Definition: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) 
let m be a positive integer and let g ∈ 𝔾𝔾 be a group element 
then we define

𝑔𝑔𝑚𝑚 = g ∘ ⋯ ∘ g

Theorem: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let g ∈
𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

17
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Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let 
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim 
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Why? If 𝑔𝑔 ∘ 𝑔𝑔𝑖𝑖 = 𝑔𝑔 ∘ 𝑔𝑔𝑗𝑗 then 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖 (by Lemma 8.13)
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Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let 
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim 
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Because 𝔾𝔾 is abelian we can re-arrange terms
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 𝑔𝑔𝑚𝑚

By Lemma 8.13 we have 1 = 𝑔𝑔𝑚𝑚.                                       QED
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Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let 
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

Corollary 8.15: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 > 1
and let g ∈ 𝔾𝔾 be a group element then for any integer x we 
have 𝑔𝑔𝑥𝑥 = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚]. 
Proof: 𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑞𝑞𝑞𝑞+[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚] = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚], where q is unique 
integer such that x=qm+ [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚]
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Group Exponentiation

Special Case: ℤ
𝑁𝑁

∗ is a group of size 𝝓𝝓 𝑵𝑵 so we have now 
proved

Corollary 8.22: For any 𝑔𝑔 ∈ ℤ
N

∗ and integer x we have 

𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N
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Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥
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Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [1153 mod 15]
f(11)=([-1 mod 3],[1 mod 5])
f(1153) =([(-1)53 mod 3],[153 mod 5])= (-1,1)

𝑓𝑓−1(-1,1)=11

Thus, 11=[1153 mod 15]
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Next Class

• Read Katz and Lindell 8.2

• Primes, Factoring and RSA
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