
Cryptography
CS 555

Topic 22: Number Theory/Public Key-Cryptography
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Exam Recap
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Exam Recap

• Highest Average Score on Question
• Question 4: (Feistel Network with round function f(x) = 0n)

• Tougher Questions
• Question 9: Let K=Gen(11000) be a key for an authenticated encryption scheme…
• Correct Answer: M (More information needed) in both cases
• CCA-Security statement is an asymptotic statement 

• For all PPT A there exists a negligible function negl(n). 
• We could have negl(n) = 2100000000-n , which would imply that A can win if n < 10000000
• It could also be the case that for all A running in time 21000000 the attacker succeeds with 

probability 2-100000000-n

• Partial Credit for False answers
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Exam Recap

• Tougher Questions
• Question 10.c-e: Is it a One-Way-Function?

• Correct Answers: More information needed in each case. 
• Grading: Generous partial/full credit for “mostly correct” answers

• Question 10.c: f(x, k) = EncK x ‖𝑥𝑥 with |x| > |k|
• f(x, k) = EncK x ‖𝑥𝑥 is example one-way function from slides + textbook*
• * proof uses 2|k|<|x| not |k|<|x| 
• Correct Answer is M, but full credit for answer T

• Question 10.d: f(x, k) = EncK x
• Counter example uses canonical eavesdropping secure encryption scheme 

EncK x = G(K) ⊕𝑥𝑥
• Can fully control output off(x, k) by changing x
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Exam Recap

• Tougher Questions
• Question 10.c-e: Is it a One-Way-Function?

• Correct Answers: More information needed in each case. 
• Grading: Generous partial/full credit for “mostly correct” answers

• Question 10.e: f(x, k) = EncK x ‖𝑥𝑥 with |x| ≤|k|
• Counter Example (One-Time-Pad)

EncK x = K ⊕𝑥𝑥
• Can fully control output of  f(x, k) by altering x (as before)
• Correct Answer is M, but full credit for answer F
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Exam Recap

• Tougher Questions
• Question 11: (AKA the most popular choice for bonus question)

• Part A. Is this CPA-secure in the random oracle model?
EncK m = 𝐹𝐹𝐾𝐾 𝑚𝑚 ,𝐻𝐻 𝐾𝐾⊕ 𝐹𝐹𝐾𝐾 𝑚𝑚 ⊕𝑚𝑚

• Looks fancy, but on closer examination EncK m is stateless/deterministic…
• Correct Answer: False

• Part B. MacK m = 𝐻𝐻 𝑚𝑚
• The secret key K is not involved at all!
• Trivial to forge messages

6



Exam Recap

• Tougher Questions
• Question 11: (AKA the most popular choice for bonus question)

• Part C. Attacker has 𝑛𝑛 queries to H(.) and we use K = H(i*) (for a uniformly random 𝑖𝑖∗ ≤
𝑛𝑛) as the secret key in an authenticated encryption scheme. Claim: The attacker wins 
CCA-Security game with probability �1 𝑛𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 at best.

• Case 1: Attacker Queries H(j) at 𝑗𝑗 = 𝑖𝑖∗

• Attacker might win, but we only reach this case with probability �1 𝑛𝑛
• Case 2: Attacker does not query H(i*) 

• Secret Key K is uniformly random in this case
• This *is* the standard CCA-security game.
• Odds of PPT attacker winning are negligible.
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Exam Recap

• Tougher Questions
• Question 11: (AKA the most popular choice for bonus question)

• Part D. Attacker has 𝑛𝑛 queries to H(.) and we use K = Hn(i*) (for a uniformly random 𝑖𝑖∗ ≤
𝑛𝑛) as the secret key in an authenticated encryption scheme. Claim: The attacker wins 
CCA-Security game with probability �1 𝑛𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 at best.

• Case 1: Attacker Queries H (.) at Hn-1(i*)
• Attacker might win, but we only reach this case with probability ⁄1 𝑛𝑛 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛
• Intuition, it should take n-1 queries to compute Hn-1(i*) and one more to check

• Case 2: Attacker does not query H(.) at Hn-1(i*)
• Secret Key K is uniformly random in this case
• This *is* the standard CCA-security game.
• Odds of PPT attacker winning are negligible.
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Mid-Semester Recap

• We built an authenticated encryption scheme
• Theory: From one-way functions

• Encrypt then MAC
• Practice: AES-GCM

• Authenticated Encryption guarantees
• Secrecy (attacker cannot decrypt message)
• Integrity (attacker cannot modify ciphertext)

• What else is there to do?
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Public Key Cryptography

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that 

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin 
• Can they use Anakin to exchange a secret key? 
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Public Key Cryptography

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that 

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin 
• Can they use Anakin to exchange a secret key? 
• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private 

just in case.
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Public Key Cryptography

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that 

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin 
• Can they use Anakin to exchange a secret key? 
• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private 

just in case.

• Need for Public-Key Crypto
• We can solve the key-exchange problem using public-key cryptography.
• No solution is known using symmetric key cryptography alone
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Public Key Cryptography

• Suppose we have n people and 
each pair of people want to be able 
to maintain a secure communication
channel.

• How many private keys per person?
• Answer: n-1

• Key Explosion Problem
• n can get very big if you are Google or Amazon!
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Number Theory

• Key tool behind public key-crypto 
• RSA, El-Gamal, Diffie-Hellman Key Exchange

• Aside: don’t worry we will still use symmetric key crypto
• It is more efficient in practice
• First step in many public key-crypto protocols is to generate symmetric key 

• Then communicate using authenticated encryption 
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Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For i=1,…,N

if N/i is an integer then 
Output I

Running time: O(N) steps
Correctness: Always returns a factor

15

Did we just break RSA?



Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For i=1,…,N

if N/i is an integer then 
Output I

Running time: O(N) steps
Correctness: Always returns a factor
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We measure running time of an arithmetic 
algorithm (multiply, divide, GCD, remainder) in 

terms of the number of bits necessary to encode 
the inputs.

How many bits 𝑁𝑁 to encode N?
Answer: 𝑁𝑁 = log2(N)



Polynomial Time Operations on Integers 

• Addition
• Multiplication
• Division with Remainder

• Input: a and b
• Output: quotient q and remainder r < b such that

𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
Convenient Notation: r = a mod b

• Greatest Common Divisor
• Example: gcd(9,15) = 3

• Extended GCD(a,b)
• Output integers X,Y such that

𝑋𝑋𝒂𝒂 + 𝑌𝑌𝒃𝒃 = gcd(𝒂𝒂,𝒃𝒃)
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Polynomial time in 𝑎𝑎 and 𝑏𝑏



Polynomial Time Operations on Integers

• Division with Remainder
• Input: a and b 
• Output: quotient q and remainder r < b such that

𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
• Greatest Common Divisor

• Key Observation: if 𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
Then gcd(a,b) = gcd(r, b)=gcd(a mod b, b)

Proof:
• Let d = gcd(a,b). Then d divides both a and b. Thus, d also divides r=a-qb.

d=gcd(a,b) ≤ gcd(r, b)
• Let d’ = gcd(r, b). Then d’ divides both b and r. Thus, d’ also divides a = qb+r.
gcd(a,b) ≥ gcd(r, b)=d’

• Conclusion: d=d’.
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More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time 
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product 

[ab mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists
5. Compute the exponentiation [ab mod N]
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More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in 
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product 

[ab mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists
5. Compute the exponentiation [ab mod N]
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Remark: Part 3 and 4 use extended GCD 
algorithm



More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in 
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute the exponentiation [ab mod N]

Attempt 1: 

X =1
For i=1,…,b

X = X*a 

21

What is wrong?



More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in 𝑎𝑎 , 𝑏𝑏 and 𝑁𝑁 .
1. Compute the exponentiation [ab mod N]

Attempt 2: 
If (b=0) return 1
X[0]=a; 
For i=1,…,log2(b)+1

X[i] = X[i-1]*X[i-1]         // Invariant: X[i] = 𝒂𝒂2𝑖𝑖

[ab mod N]=𝒂𝒂∑𝑖𝑖 𝒃𝒃[𝑖𝑖]2𝑖𝑖mod 𝐍𝐍
= �

𝑖𝑖

b[i] X[i] mod 𝐍𝐍
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What is wrong?

The number of bits in 𝒂𝒂2 𝑏𝑏 +1 is 
O(2 𝑏𝑏 +1).



More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in 𝑎𝑎 , 𝑏𝑏 and 𝑁𝑁 .
1. Compute the exponentiation [ab mod N]

Fixed Algorithm: 
If (b=0) return 1
X[0]=a; 
For i=1,…,log2(b)+1

X[i] = X[i-1]*X[i-1] mod N // Invariant: X[i] = 𝒂𝒂2𝑖𝑖 mod N
[ab mod N]=𝒂𝒂∑𝑖𝑖 𝒃𝒃[𝑖𝑖]2𝑖𝑖mod 𝐍𝐍

= �
𝑖𝑖

b[i] X[i] mod 𝐍𝐍
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More Polynomial Time Operations on Integers

(Sampling) Let 
ℤ𝑁𝑁 = 1, … ,𝑁𝑁

ℤ
𝑁𝑁
∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

Examples:
ℤ6∗ = 1,5

ℤ7∗ = 1,2,3,4,5,6

24
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More Polynomial Time Operations on Integers

(Sampling) Let 
ℤ𝑁𝑁 = 1, … ,𝑁𝑁

ℤ
𝑁𝑁
∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

• There is a probabilistic polynomial time algorithm (in |N|) to sample 
from ℤ

𝑁𝑁
∗ and ℤ𝑁𝑁

• Algorithm to sample from ℤ
𝑁𝑁
∗ is allowed to output “fail” with 

negligible probability in |N|.
• Conditioned on not failing sample must be uniform.

25

Presenter
Presentation Notes
Example: 



Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑦𝑦 mod N] ∈ ℤ
N

∗

Example 1: ℤ8∗ = 1,3,5,7

3 × 7 mod 8 = 21 mod 8 = [5 mod 8] ∈ ℤ
N

∗

Proof:  gcd(xy,N) = d
Suppose d>1 then for some prime p and integer q we have d=pq. 
Now p must divide N and xy (by definition) and hence p must divide either x 
or y. 
(WLOG) say p divides x. In this case gcd(x,N)=p > 1, which means 𝑥𝑥 ∉ ℤ

N

∗
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More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑦𝑦 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have 

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1
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More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑦𝑦 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 𝑥𝑥

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖
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Next Class

• Read Katz and Lindell 8.1
• And review number theory background in appendix (B.1 and B.2)

• More Number Theory

29
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