Cryptography CS 555

Topic 21: Midterm Review

Course Business

- Midterm is on Wednesday (in class)
 - Allowed to bring one index card (double sided)
 - 3x5 inches
 - Good review, but you won't have time to consult for every question
- Format: Multiple Choice/True-False/Select all that Apply
- Everything we have covered in lecture is fair game for midterm

- Perfect Secrecy
 - Definition(s)/Constructions/Limitations/Required Properties
- Security against Eavesdropping Attacks
 - Single Eavesdropping
 - Multiple Eavesdropping
 - Constructions
 - Limitations

- Chosen Plaintext Attacks and CPA-Security
 - Definition
 - Constructions
 - Showing a scheme is not CPA-secure
 - Required Properties
- CCA-Secure Encryption
 - Definition
 - Constructions
 - Showing a scheme is/is not CPA-secure
- Authenticated Encryption

Good Things to Know: Primitives

- PRGs
 - Definition
 - And how to use them
 - Example: Construct encryption scheme with security against eavesdropping attacks
 - Correction: $\operatorname{Enc}_{K}(m) = \operatorname{G}(m) \oplus m$
 - Secure against single eavesdropping attacks, but not multiple
- PRFs and PRPs (pseudorandom permutation)
 - Security Definitions
 - And how to use them
 - Examples:
 - Construct MACs (bounded length)
 - Construct CPA-Secure Encryption

- MACs
 - Secrecy vs Integrity
 - Security Definition
 - Constructions
 - Fixed Length: MAC_K(m) = f_K(m)
- Collision Resistant Hash Functions
 - Definition
 - Applications
 - Generic Attacks
 - Random Oracle Model

Block Ciphers

- Substitution Permutation Network
 - AES
 - S-boxes
 - How to encrypt/decrypt
- Feistel Network
 - DES/3DES
 - S-boxes
 - How to encrypt/decrypt

- One-way functions
 - Definition
 - Necessary for Private Key Crypto
 - Sufficient for Private Key Crypto
 - Does it hide information about input?
- Hard Core Predicates
 - Definition
 - Application(s)
- These two topics will be tested less heavily

Let F_K be a PRF with n-bit inputs/outputs and let $MAC_K(m_1, ..., m_8) = F_K(m_1) \|F_K(m_2)\| ... \|F_K(m_8)$

True (T) or False (F) or More Information (M): The above construction is a secure MAC for messages of length 8n.

Let F_K be a PRF with n-bit inputs/outputs and let $MAC_K(m_1, ..., m_8) = F_{K_1}(m_1) \|F_{K_2}(m_2)\|...\|F_{K_8}(m_8)$

True (T) or False (F) or More Information (M): The above construction is a secure MAC for messages of length 8n.

Let F_K be a PRF with n-bit inputs/outputs and let $MAC_K(m_1, ..., m_8) = F_{K_1}(000||m_1) ||F_{K_2}(001||m_2) ||... ||F_{K_8}(111||m_8)$

True (T) or False (F) or More Information (M): The above construction is a secure MAC for messages of length 8n.

Let $f(x) = x \oplus 1^n$ which of the following claims are true? (Circle all that apply)

- A. f is a permutation
- B. f is collision resistant
- C. f is one-way

Let F_K be a secure PRF which of the following claims are *necessarily* true? (Circle all that apply)

- A. $G(X) = F_{\chi}(0^n) || F_{\chi}(10^{n-1})$ is a secure PRG
- B. $G(X) = F_{0^n}(x) || F_{10^{n-1}}(x)$ is a secure PRG
- C. $G(X) = F_{\chi}(0^n) || F_{\chi}(10^{n-1})$ is a secure PRG here $y = F_{\chi}(0^n)$
- D. $f(x,k) = k || F_k(x)$ is a one-way function
- E. $f(x) = F_x(0^n)$ is a one-way function

Next Class

Midterm