
Course Business

• Midterm is on March 1
• Allowed to bring one index card (double sided)

• Final Exam is Monday, May 1 (7 PM) 
• Location: Right here
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Cryptography
CS 555

Topic 19: One Way Functions, Pseudorandomness
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Recap

Last Week+:
• Practical Constructions of Symmetric Key Primitives

Remainder of the Weak:
• Theoretical Foundations for Cryptography

• Today:
• One Way Functions, PRGs, PRFs
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Definition: A function f: 0,1 ∗ → 0,1 ∗ is one way if it is 
1. (Easy to compute) There is a polynomial time algorithm (in |x|) for 

computing f(x).
2. (Hard to Invert) Select x ← 0,1 𝑛𝑛 uniformly at random and give the 

attacker input 1n, f(x). The probability that a PPT attacker outputs x’ such 
that f 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) is negligible.
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
• A function that is not one-way is not necessarily always easy to invert 

(even often)
• Any such function can be inverted in time 2n (brute force)
• Length-preserving OWF: |f(x)| = |x|
• One way permutation: Length-preserving + one-to-one
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. f(x) does not necessarily hide all information about x.
2. If f(x) is one way then so is 𝐟𝐟′ 𝐱𝐱 = 𝐟𝐟 𝐱𝐱 ∥ 𝑳𝑳𝑳𝑳𝑳𝑳 𝒙𝒙 .
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. Actually we usually consider a family of one-way functions

𝒇𝒇𝑰𝑰: 𝟎𝟎,𝟏𝟏 𝑰𝑰 → 𝟎𝟎,𝟏𝟏 𝑰𝑰
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Candidate One-Way Functions 

𝑓𝑓𝑠𝑠𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝐽𝐽 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,�
𝑖𝑖∈𝐽𝐽

𝑥𝑥𝑖𝑖 mo𝑑𝑑 2𝑛𝑛

(Subset Sum Problem is NP-Complete)

Note: 𝐽𝐽 ⊂ [𝑛𝑛] and 𝟎𝟎 ≤ 𝒙𝒙𝒊𝒊≤ 𝟐𝟐𝒏𝒏 − 𝟏𝟏
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Candidate One-Way Functions 

𝑓𝑓𝑠𝑠𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝐽𝐽 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,�
𝑖𝑖∈𝐽𝐽

𝑥𝑥𝑖𝑖 mo𝑑𝑑 2𝑛𝑛

(Subset Sum Problem is NP-Complete)

Question: Does P ≠ 𝑁𝑁𝑁𝑁 imply this is a OWF?

Answer: No! P ≠ 𝑁𝑁𝑁𝑁 only implies that any polynomial-time algorithm fails to solve “some 
instance” of subset sum. By contrast, we require that PPT attacker fails to solve “almost all 
instances” of subset sum. 
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Candidate One-Way Functions (OWFs)

𝑓𝑓𝑝𝑝,𝑔𝑔 𝑥𝑥 = [𝑔𝑔𝑥𝑥 mo𝑑𝑑 𝑝𝑝]
(Discrete Logarithm Problem)
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Hard Core Predicates

• Recall that a one-way function f may potentially reveal lots of 
information about input

• Example: f(x1,x2)=(x1,g(x2)), where g is a one-way function.
• Claim: f is one-way (even if f(x1,x2) reveals half of the input bits!)
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Hard Core Predicates

Definition: A predicate hc: 0,1 ∗ → 0,1 is called a hard-core 
predicate of a function f if 
1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function 

negl such that we have 

𝐏𝐏𝐏𝐏𝑥𝑥← 0,1 𝑛𝑛 𝐴𝐴 1𝑛𝑛, 𝑓𝑓(𝑥𝑥) = hc(𝑥𝑥) ≤
1
2

+ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)
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Attempt 1: Hard-Core Predicate

Consider the predicate
hc x = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖

Hope: hc is hard core predicate for any OWF.

Counter-example:

f(x) = (g(x), ⨁𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖)
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Trivial Hard-Core Predicate

Consider the function
f(x1,…,xn) = x1,…,xn-1

f has a trivial hard core predicate
hc x = 𝑥𝑥𝑛𝑛

Not useful for crypto applications (e.g., f is not a OWF)
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Attempt 3: Hard-Core Predicate

Consider the predicate
hc x, r = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
(the bits 𝑟𝑟1,…, 𝑟𝑟𝑛𝑛 will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a 
hard-core predicate of g(x,r)=(f(x),r).

Note: The existence of OWFs implies P ≠ 𝑁𝑁𝑁𝑁 so we cannot be 
absolutely certain that they do exist.
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Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we 
can construct a PRG G with expansion factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1.

Construction: 
𝐺𝐺 𝑠𝑠 = 𝑓𝑓(𝑠𝑠) ∥ hc(𝑠𝑠)

Intuition: f(s) is actually uniformly distributed 
• s is random
• f(s) is a permutation
• Last bit is hard to predict given f(s) (since hc is hard-core for f)
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Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Construction: 
• G(x) = y||b.        (n+1 bits)
• G1(x) = G(y)||b    (n+2 bits)
• Gi+1(x) = G(y)||b  where Gi (x) = y||b (n+2 bits)
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Any Beyond

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a 
strong pseudorandom permutation.
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Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs 
and strong PRPs all exist. 

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs. 
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x)     (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …

20



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof by Hybrids: Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒋𝒋+𝟏𝟏 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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Hybrid H1
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Hybrid H1 vs H2
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) queries to Fk (or f) cannot 
distinguish H2 from the real game (except with negligible 
probability).

Proof: Follows by Claim 1



Hybrid H2
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) queries to Fk (or f) cannot distinguish H2
from the real game (except with negligible probability).

Similarly, attacker cannot distinguish H2 from H3 etc…

 Attacker cannot distinguish Fk from f.



Next Class

• Read Katz and Lindell 7.7-7.8
• Theoretical Foundations for Symmetric Key Cryptography

• Private Key Crypto from OWFs
• Computational Indistinguishability
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