### **Course Business**

- Midterm is on March 1
  - Allowed to bring one index card (double sided)
- Final Exam is Monday, May 1 (7 PM)
  - Location: Right here

# Cryptography CS 555

Topic 18: AES, Differential Cryptanalysis, Hashing

#### **Goals for This Week:**

• Practical Constructions of Symmetric Key Primitives

Last Class: DES/3DES

- 16 round Feistel Network
- DES can now be broken by brute-force attacks in practice

**Today's Goals: AES/Hash Functions** 

# Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
  - Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
  - Vincent Rijmen and Joan Daemen
  - No serious vulnerabilities found in four other finalists
  - Rijndael was selected for efficiency, hardware performance, flexibility etc...

## Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4x4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
  - AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
  - **SubBytes:** Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
  - **ShiftRows** shift ith row by i bytes
  - MixColumns permute the bits in each column

#### Substitution Permutation Networks

- S-box a public "substitution function" (e.g.  $S \in Perm_8$ ).
- S is not part of a secret key, but can be used with one  $f(x) = S(x \oplus k)$

**Input to round:** x, k (k is subkey for current round)

- **1.** Key Mixing: Set  $x \coloneqq x \oplus k$
- **2.** Substitution:  $\mathbf{x} \coloneqq S_1(\mathbf{x}_1) \parallel S_2(\mathbf{x}_2) \parallel \cdots \parallel S_8(\mathbf{x}_8)$
- **3.** Bit Mixing Permutation: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2<sup>n</sup>! Permutations of {0,1}<sup>n</sup>

#### Substitution Permutation Networks



- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F<sub>k</sub> is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

# Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256

Key Mixing

- Essentially a Substitution Permutation Network
  - AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
  - SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
  - ShiftRows
  - MixColumns

Permutation

| Add      | RoundKey:            |          |          |  |  |        |
|----------|----------------------|----------|----------|--|--|--------|
|          | Round Key (16 Bytes) |          |          |  |  | lytes) |
|          |                      |          | 00001111 |  |  |        |
|          |                      |          | 10100011 |  |  |        |
|          |                      |          | 11001100 |  |  |        |
|          | State                | (+)      | 01111111 |  |  |        |
|          | Jiale                | Y        |          |  |  |        |
| 11110000 |                      |          |          |  |  |        |
| 01100010 |                      |          |          |  |  |        |
| 00110000 |                      |          |          |  |  |        |
| 11111111 |                      |          |          |  |  |        |
|          |                      |          |          |  |  |        |
|          |                      |          |          |  |  |        |
|          |                      | 11111111 |          |  |  |        |
|          |                      | 11000001 |          |  |  |        |
|          |                      | 11111100 |          |  |  |        |
|          |                      | 1000000  |          |  |  |        |



#### SubBytes (Apply S-box)

| S(1111111)  |     |     |     |
|-------------|-----|-----|-----|
| S(11000001) | S() |     |     |
| S(11111100) |     | S() |     |
| S(1000000)  |     |     | S() |

| AddRo       | undKey:    |     |            |                      |         |         |      |         |
|-------------|------------|-----|------------|----------------------|---------|---------|------|---------|
|             |            |     |            | Round Key (16 Bytes) |         |         |      | )       |
|             |            |     |            |                      |         |         |      |         |
|             |            |     |            |                      |         |         |      |         |
|             |            |     |            |                      |         |         |      |         |
|             | State      |     |            |                      |         |         |      |         |
| S(11111111) |            |     |            |                      |         |         |      |         |
| S(11000001) | S()        |     |            |                      |         |         |      |         |
| S(11111100) |            | S() |            |                      |         |         |      |         |
| S(1000000)  |            |     | S()        |                      |         |         |      |         |
|             | Shift Rows |     |            |                      |         |         |      |         |
|             |            |     | S(11111111 | L)                   |         |         |      |         |
|             |            |     |            | S(11                 | 000001) | S()     |      |         |
|             |            |     | S()        |                      |         | S(11111 | 100) |         |
|             |            |     |            |                      |         | S()     | S(10 | 000000) |



#### **Mix Columns**

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

- We just described one round of the SPN
- AES uses
  - 10 rounds (with 128 bit key)
  - 12 rounds (with 192 bit key)
  - 14 rounds (with 256 bit key)

#### AES Attacks?

- Side channel attacks affect a few specific implementations
  - But, this is not a weakness of AES itself
  - Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Attack on 11 round version of AES
  - recovers 256-bit key in time 2<sup>70</sup>
  - But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Attack on 192-bit and 256 bit version of AES
  - recovers 256-bit key in time 2<sup>99.5</sup>.
- First public cipher approved by NSA for Top Secret information

Basic Goal:

- Find specific differences in the input that lead to specific differences in output with probability (slightly) greater than we would expect for a random permutation
- Suppose that we pick  $x_1$  and  $x_2$  uniformly at random subject to the constraint

$$x_1 \oplus x_2 = \Delta_x$$

• Question: What is the probability that?

 $F_k(x_1) \oplus F_k(x_2) = \Delta_y$ 

- Suppose that we pick  $x_1$  and  $x_2$  uniformly at random subject to the constraint  $x_1 \bigoplus x_2 = \Delta_x$
- Question: What is the probability that?  $F_k(x_1) \bigoplus F_k(x_2) = \Delta_y$
- Answer for Ideal Cipher:  $\approx 2^{-n}$
- Possible Answer for Weak Block Cipher:  $p \gg 2^{-n}$
- Attacker who finds  $\Delta_x$  and  $\Delta_y$  such that  $p \gg 2^{-n}$  can exploit this observation

- Start by finding differential(s) for S-Box
- How?
- Brute force!
- Use differential for S-box to construct differential for entire cipher

• Question: What is the probability that?

 $F_k(x_1) \oplus F_k(x_2) = \Delta_y$ 

- Answer for Ideal Cipher:  $2^{-n}$
- Example 1: FEAL-8.
  - Differential cryptanalysis can quickly recover key after just 1,000 chosen plaintexts

#### • Example 2: DES.

- Differential cryptanalysis can quickly recover key after ``just" 2<sup>43</sup> known plaintext/ciphertext pairs
- Differential Cryptanalysis discovered (publicly) after DES
- NSA knew about differential cryptanalysis before DES

### Hash Function from Block Ciphers

**Davies-Meyer Construction** 

$$h(k, x) = F_k(x) \oplus x$$

How to prove collision resistance?

- We don't actually know how if we only use the assumption that F is strong pseudorandom permutation
- We can prove collision resistance in the ideal-cipher model
  - All parties have oracle access to truly random keyed permutation F, F<sup>-1</sup>

### Hash Function from Block Ciphers

**Davies-Meyer Construction** 

 $h(k, x) = F_k(x) \oplus x$ 

**Theorem:** If F is modeled as an ideal cipher then an attacker making  $q < 2^{n/2}$  queries to F finds a collision with probability at most  $\frac{q^2}{2^n}$ .

### Davies-Meyer Construction

- Security proof in ideal-cipher model may not translate to real world
- **Example**: Davies-Meyer + DES is broken.

# Other Hashing Algorithms

#### • MD5

- Chinese cryptanalysists found a collision in 2004
- Collisions can now be found on a desktop PC in < 60 seconds
- Extension of attacks generates "controlled collisions"
- SHA1, SHA2
  - Use Davies-Meyer Construction with special block ciphers
  - Theoretical analysis: can find SHA1 collision in time 2<sup>80</sup>.
  - SHA2 is widely deployed (e.g., in Bitcoin, PBKDF2-SHA256)

# SHA3 (Keccak)

- NIST announced public competition in 2007 for SHA3
  - In response to weaknesses of SHA1 and MD5
- (2012) NIST selected Keccak as the winner of the competition
  - Based on an (unkeyed) permutation with large block length
  - Uses sponge construction instead of Merkle-Damgard to handle arbitrary length inputs
  - Very different from SHA1 and SHA2
- Proof of security in random-permutation model
  - Weaker than ideal-cipher model

#### Next Class

- Read Katz and Lindell 7.1-7.2, 7.5
- Theoretical Foundations for Symmetric Key Cryptography
  - One Way Functions
  - Pseudo randomness