Course Business

Homework 2 Due Now

Midterm is on March 1

- Final Exam is Monday, May 1 (7 PM)
 - Location: Right here

Cryptography CS 555

Topic 17: DES, 3DES

Recap

Goals for This Week:

Practical Constructions of Symmetric Key Primitives

Last Class: Block Ciphers

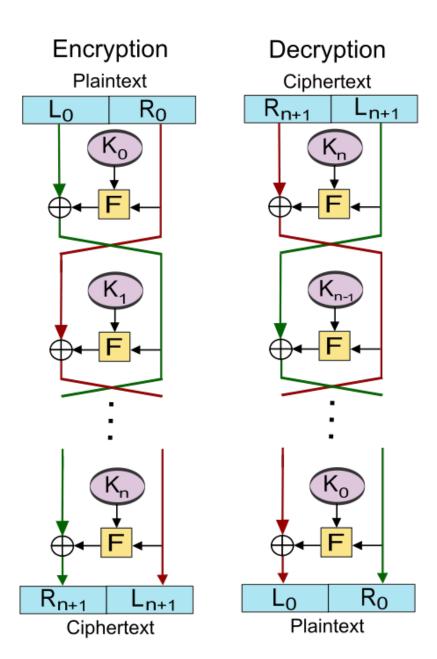
Today's Goals: DES/3DES

Data Encryption Standard

Feistel Networks

Alternative to Substitution Permutation Networks

 Advantage: underlying functions need not be invertible, but the result is still a permutation



•
$$L_{i+1} = R_i$$

•
$$R_{i+1} := L_i \oplus F_{k_i}(R_i)$$

Proposition: the function is invertible.

Data Encryption Standard

Developed in 1970s by IBM (with help from NSA)

Adopted in 1977 as Federal Information Processing Standard (US)

- Data Encryption Standard (DES): 16-round Feistel Network.
- Key Length: 56 bits
 - Vulnerable to brute-force attacks in modern times
 - 1.5 hours at 14 trillion keys/second (e.g., Antminer S9)

DES Round

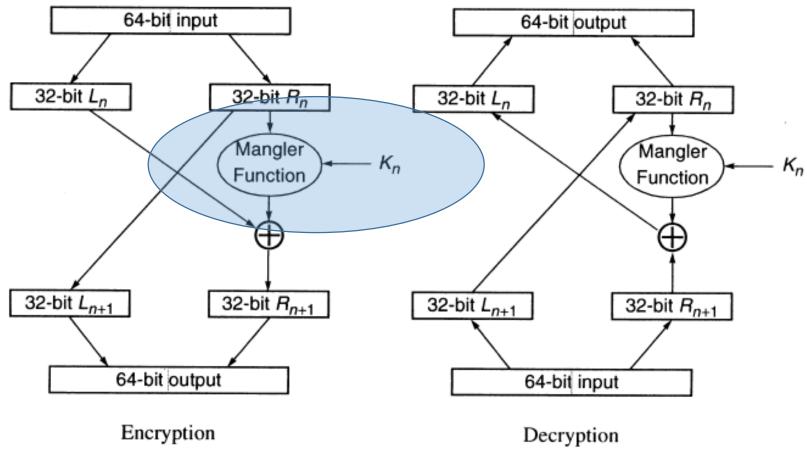


Figure 3-6. DES Round

DES Mangle Function

 Expand E: 32-bit input → 48-bit output (duplicates 16 bits)

• S-boxes: S₁,...,S₈

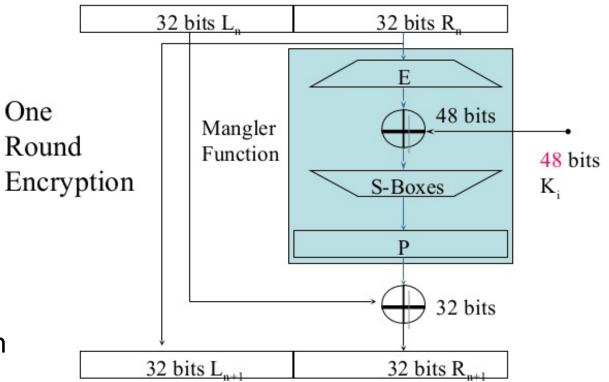
• Input: 6-bits

• Output: 4 bits

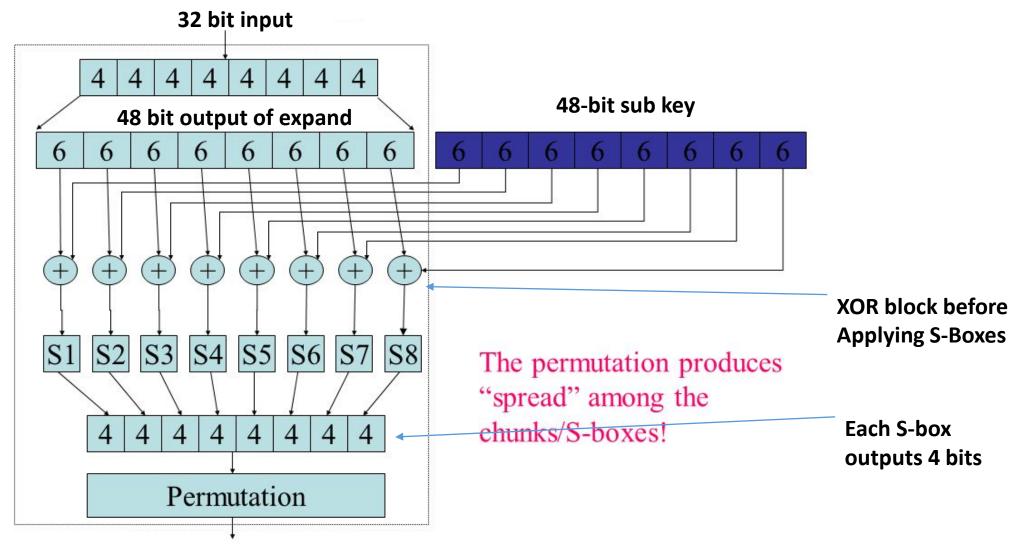
Not a permutation!

- 4-to-1 function
 - Exactly four inputs mapped to each possible output

A DES Round



Mangle Function



S-Box Representation as Table 4 columns (2 bits)

		00	01	10	11
bits)	0000				
16 columns (4 bi	0001				
	0010				
	0011				
	0100				
	0101				
	0110				S(x)=1101
	••••				
	1111				

$$x = 101101$$

$$S(x) = Table[0110,11]$$

S-Box Representation

Each column is permutation

4 columns (2 bits)

		00	01	10	11
1mns (4	0000				
	0001				
	0010				
	0011				
	0100				
	0101				
	0110				S(x)=1101
	••••				
	1111				

$$x = 101101$$

$$S(x) = T[0110,11]$$

Pseudorandom Permutation Requirements

- Consider a truly random permutation $F \in \mathbf{Perm}_{128}$
- Let inputs x and x' differ on a single bit

- We expect outputs F(x) and F(x') to differ on approximately half of their bits
 - F(x) and F(x') should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!
- Requirement: DES Avalanche Effect!

DES Avalanche Effect

 Permutation the end of the mangle function helps to mix bits

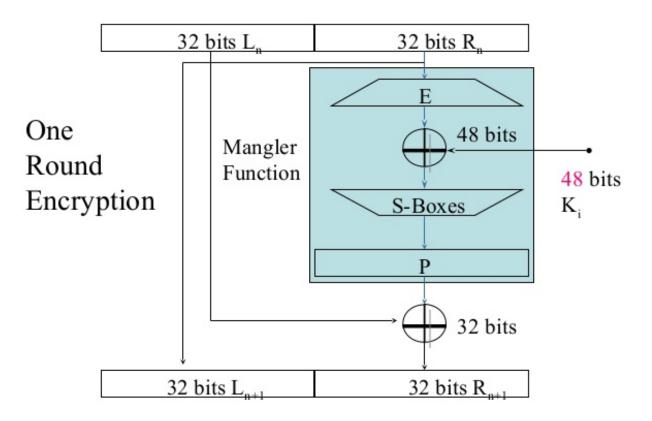
Special S-box property #1

Let x and x' differ on one bit then $S_i(x)$ differs from $S_i(x')$ on two bits.

Avalanche Effect Example

- Consider two 64 bit inputs
 - (L_n, R_n) and $(L_n', R'_n = R_n)$
 - L_n and L_n' differ on one bit
- This is worst case example
 - $L_{n+1} = L_{n+1}' = R_n$
 - But now R'_{n+1} and R_{n+1} differ on one bit
- Even if we are unlucky $E(R'_{n+1})$ and $E(R_{n+1})$ differ on 1 bit
- \rightarrow R_{n+2} and R'_{n+2} differ on two bits
- \rightarrow $L_{n+2} = R'_{n+1}$ and $L_{n+2}' = R'_{n+1}$ differ in one bit

A DES Round



Avalanche Effect Example

- R_{n+2} and R'_{n+2} differ on two bits
- $L_{n+2} = R_{n+1}$ and $L_{n+2}' = R'_{n+1}$ differ in one bit

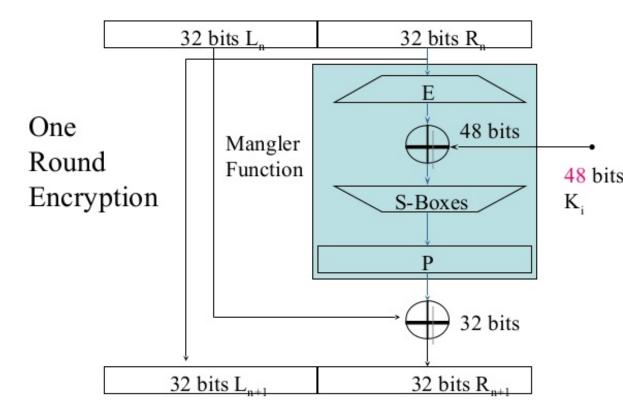
 \rightarrow R_{n+3} and R'_{n+3} differ on four bits since we have different inputs to two of the S-boxes

- \rightarrow L_{n+3} = R'_{n+2} and L_{n+2}' = R'_{n+2} now differ on two bits
- Seven rounds we expect all 32 bits in right half to be "affected" by input change

. . .

DES has sixteen rounds

A DES Round



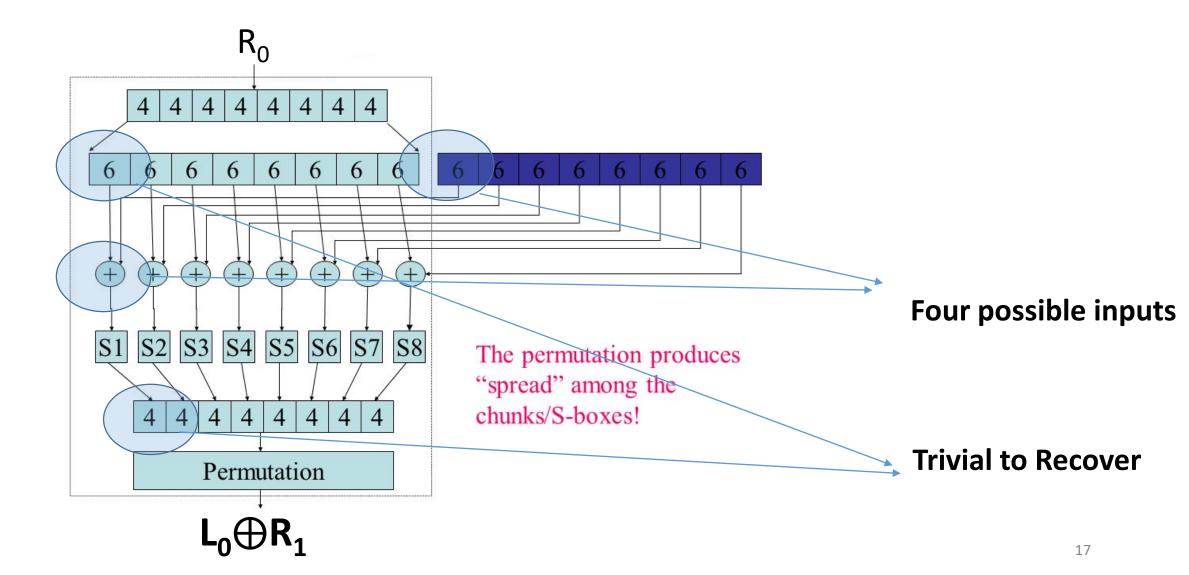
Attack on One-Round DES

- Given input output pair (x,y)
 - y=(L₁,R₁)
 - $X=(L_0,R_0)$
- Note: R₀=L₁
- Note: $R_1 = L_0 \oplus f_1(R_0)$ where f is the Mangling Function with key k_1

Conclusion:

$$f_1(R_0)=L_0\oplus R_1$$

Attack on One-Round DES



Attack on Two-Round DES

- Output $y = (L_2, R_2)$
- Note: $R_1 = L_0 \oplus f_1(R_0)$
 - Also, $R_1 = L_2$
 - Thus, $f_1(R_0) = L_2 \oplus L_0$
- So we can still attack the first round key k1 as before as R_0 and $L_2 \oplus L_0$ are known
- Note: $R_2 = L_1 \oplus f_2(R_1)$
 - Also, $L_1 = R_0$ and $R_1 = L_2$
 - Thus, $f_2(L_2) = R_2 \oplus R_0$
- So we can attack the second round key k2 as before as L_2 and $R_2 \oplus R_0$ are known

Attack on Three-Round DES

$$f_1(\mathbf{R_0}) \oplus f_3(\mathbf{R_2}) = (\mathsf{L_0} \oplus \mathsf{L_2}) \oplus (\mathsf{L_2} \oplus \mathsf{R_3})$$

= $\mathsf{L_0} \oplus \mathsf{R_3}$

We know all of the values L_0 , R_0 , R_3 and $L_3 = R_2$.

Leads to attack in time $\approx 2^{n/2}$

(See details in textbook)

Remember that DES is 16 rounds

DES Security

- Best Known attack is brute-force 2⁵⁶
 - Except under unrealistic conditions (e.g., 2⁴³ known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
 - Output is a few terabytes
 - Subsequently keys are cracked in 2³⁸ DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked

Even in 1970 there were objections to the short key length for DES

Double DES

Let F_k(x) denote the DES block cipher

 \bullet A new block cipher F' with a key $k=(k_1,k_2)$ of length 2n can be defined by

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

Goal: Given $(x, F'_k(x))$ try to find secret key k in time and space $O(n2^n)$.

• Solution?

See Homework 1 ©

Let F_k(x) denote the DES block cipher

• A new block cipher F' with a key $k=(k_1,k_2,k_3\,)$ of length 2n can be defined by

$$F'_k(x) = F_{k_3} \left(F_{k_2}^{-1} \left(F_{k_1}(x) \right) \right)$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Allows backward compatibility with DES by setting $k_1=k_2=k_3$

• Let $F_k(x)$ denote the DES block cipher

 \bullet A new block cipher F' with a key $k=(k_1,k_2,k_3\,)$ of length 2n can be defined by

$$F'_k(x) = F_{k_3} \left(F_{k_2}^{-1} \left(F_{k_1}(x) \right) \right)$$

ullet Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Just two keys!

- Let F_k(x) denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by

$$F'_{k}(x) = F_{k_{1}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

- ullet Meet-in-the-Middle Attack still requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$
- Key length is still just 112 bits (128 bits is recommended)

$$F'_k(x) = F_{k_3} \left(F_{k_2}^{-1} \left(F_{k_1}(x) \right) \right)$$

Standardized in 1999

Still widely used, but it is relatively slow (three block cipher operations)

Current gold standard: AES

Next Class

- Read Katz and Lindell 6.2.5-6.3
- AES & Differential Cryptanalysis + Hash Functions