Cryptography CS 555

Topic 14: Random Oracle Model, Hashing Applications

Recap

- HMACs
- Birthday Attack
- Small Space Birthday Attack
- Precomputation Attack

Today's Goals:

- Random Oracle Model
- Applications of Hash Functions

(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t. H(x) = H(y)

How to formalize this intuition?

- Attempt 1: For all PPT A, $\Pr[A_{x,y}(1^n) = (x, y) \text{ s. } t \text{ } H(x) = H(y)] \le negl(n)$
- The Problem: Let x,y be given s.t. H(x)=H(y) $A_{x,y}(1^n) = (x, y)$
- We are assuming that |x| > |H(x)|. Why?
 - H(x)=x is perfectly collision resistant! (but with no compression)

(Recap) Keyed Hash Function Syntax

• Two Algorithms

- Gen(1ⁿ; R) (Key-generation algorithm)
 - Input: Random Bits R
 - Output: Secret key s
- $H^{s}(m)$ (Hashing Algorithm)
 - Input: key s and message $m \in \{0,1\}^*$ (unbounded length)
 - Output: hash value $H^{s}(m) \in \{0,1\}^{\ell(n)}$
- Fixed length hash function
 - $m \in \{0,1\}^{\ell'(n)}$ with $\ell'(n) > \ell(n)$

When Collision Resistance Isn't Enough

- Example: Message Commitment
 - Alice sends Bob: $H^{s}(r \parallel m)$ (e.g., predicted winner of NCAA Tournament)
 - Alice can later reveal message (e.g., after the tournament is over)
 - Just send r and m (note: r has fixed length)
 - Why can Alice not change her message?
 - In the meantime Bob shouldn't learn *anything* about m

• Problem: Let (Gen,H') be collision resistant then so is (Gen,H)

$$H^{s}(x_{1},\ldots,x_{d}) = H^{\prime s}(x_{1},\ldots,x_{d}) \parallel x_{d}$$

When Collision Resistance Isn't Enough

• **Problem**: Let (Gen,H') be collision resistant then so is (Gen,H)

$$H^s(x_1, \dots, x_d) = H'^s(x_1, \dots, x_d) \parallel x_d$$

- (Gen,H) definitely does not hide all information about input (x1,..., xd)
- **Conclusion**: Collision resistance is not sufficient for message commitment

The Tension

- Example: Message Commitment
 - Alice sends Bob: H^s(r || m)
 - Alice can later reveal message
- (e.g., predicted winners of NCAA Final Four) (e.g., after the Final Four is decided)
- In the meantime Bob shouldn't learn anything about m

This is still a reasonable approach in practice!

- No attacks when instantiated with any reasonable candidate (e.g., SHA3)
- Cryptographic hash functions seem to provide "something" beyond collision resistance, but how do we model this capability?

Random Oracle Model

- Model hash function H as a truly random function
- Algorithms can only interact with H as an oracle
 - Query: x
 - **Response**: H(x)
- If we submit the same query you see the same response
- If x has not been queried, then the value of H(x) is uniform
- **Real World:** H instantiated as cryptographic hash function (e.g., SHA3) of fixed length (no Merkle-Damgård)

Back to Message Commitment

- Example: Message Commitment
 - Alice sends Bob: $H(r \parallel m)$ (e.g., predicted winners of NCAA Final Four)
 - Alice can later reveal message (e.g., after the Final Four is decided)
 - Just send r and m (note: r has fixed length)
 - Why can Alice not change her message?
 - In the meantime Bob shouldn't learn anything about m
- Random Oracle Model: Above message commitment scheme is secure (Alice cannot change m + Bob learns nothing about m)
- Information Theoretic Guarantee against any attacker with q queries to H

Random Oracle Model: Pros

- It is easier to prove security in Random Oracle Model
- Suppose we are simulating attacker A in a reduction
 - Extractability: When A queries H at x we see this query and learn x (and can easily find H(x))
 - **Programmability**: We can set the value of H(x) to a value of our choice
 - As long as the value is correctly distribute i.e., close to uniform
- Both Extractability and Programmability are useful tools for a security reduction!

Random Oracle Model: Pros

- It is easier to prove security in Random Oracle Model
- Provably secure constructions in random oracle model are often much more efficient (compared to provably secure construction is "standard model"
- Sometimes we only know how to design provably secure protocol in random oracle model

Random Oracle Model: Cons

- Lack of formal justification
- Why should security guarantees translate when we instantiate random oracle with a real cryptographic hash function?
- We can construct (contrived) examples of protocols which are
 - Secure in random oracle model...
 - But broken in the real world

Random Oracle Model: Justification

"A proof of security in the random-oracle model is significantly better than no proof at all."

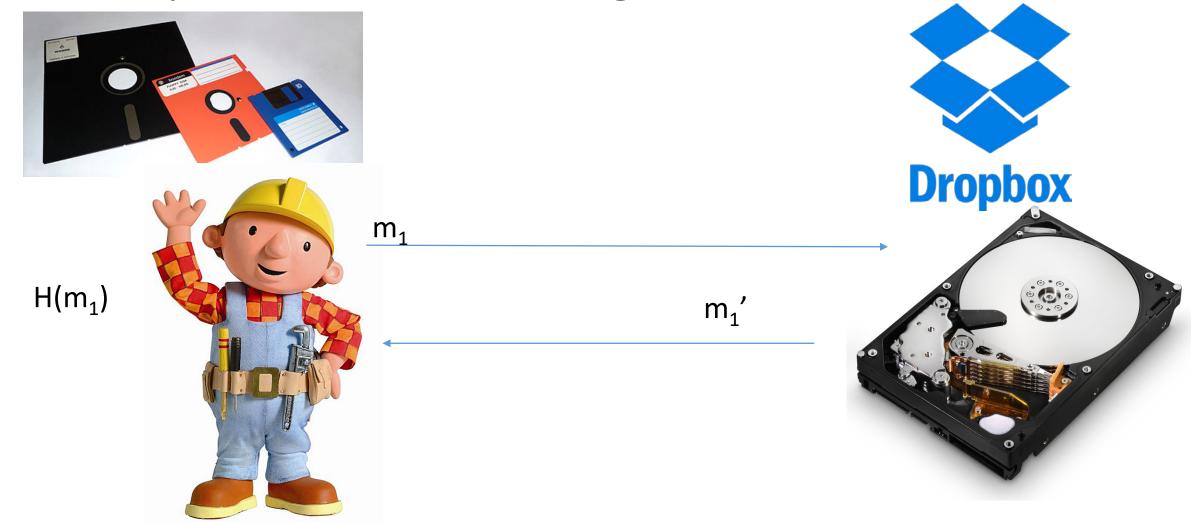
- Evidence of sound design (any weakness involves the hash function used to instantiate the random oracle)
- Empirical Evidence for Security

"there have been no successful real-world attacks on schemes proven secure in the random oracle model"

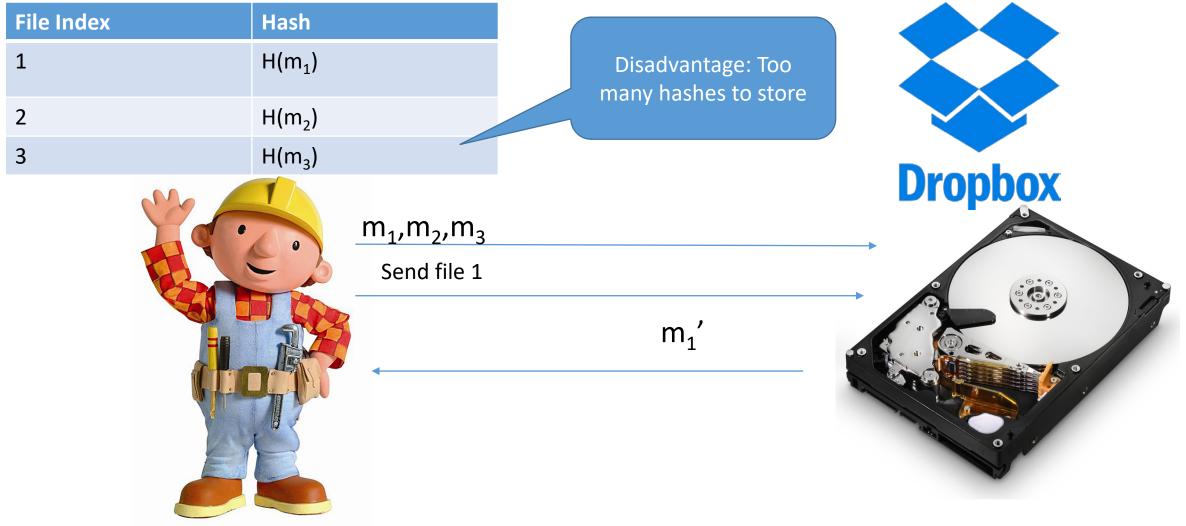
Hash Function Application: Fingerprinting

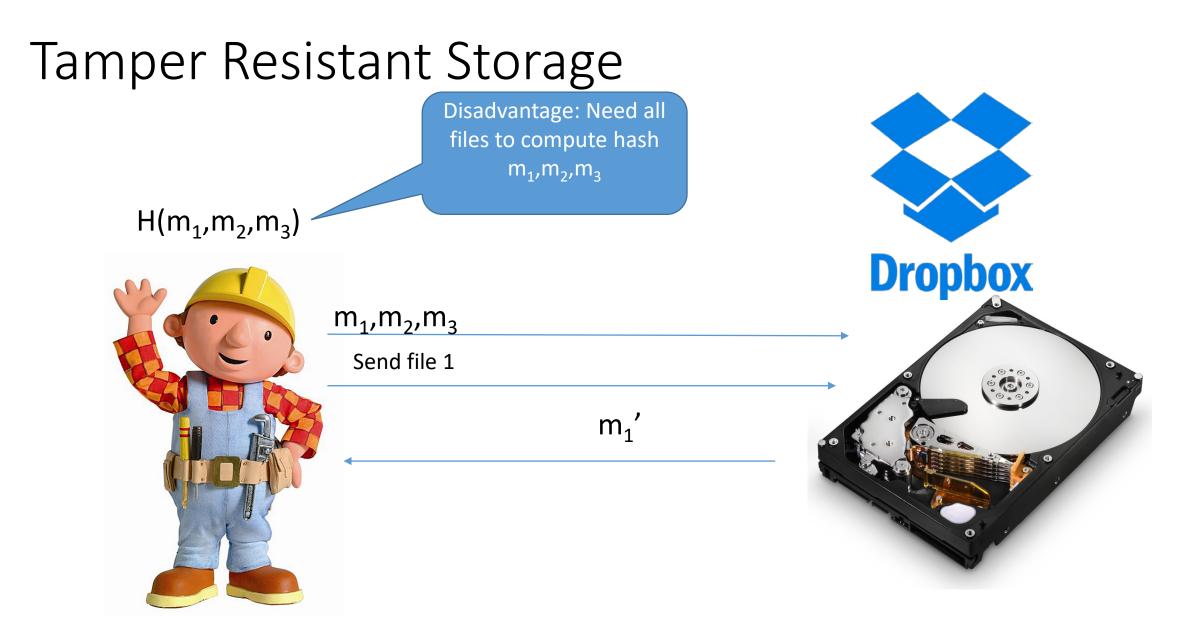
- The hash h(x) of a file x is a unique identifier for the file
 - Collision Resistance \rightarrow No need to worry about another file y with H(y)=H(y)
- Application 1: Virus Fingerprinting
- Application 2: P2P File Sharing
- Application 3: Data deduplication

Tamper Resistant Storage



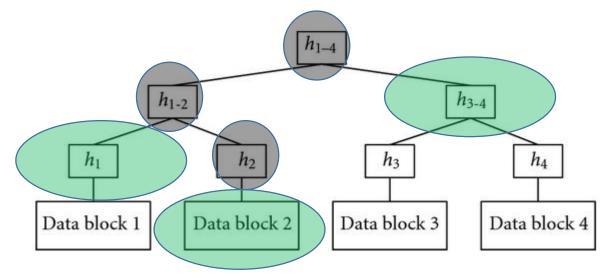
Tamper Resistant Storage





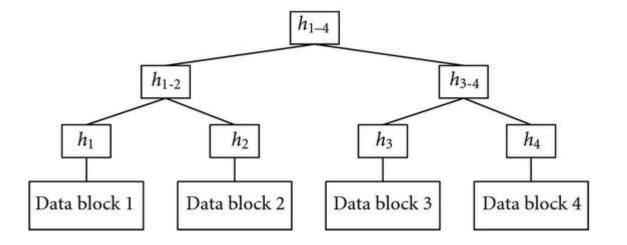
Merkle Trees

• Proof of Correctness for data block 2

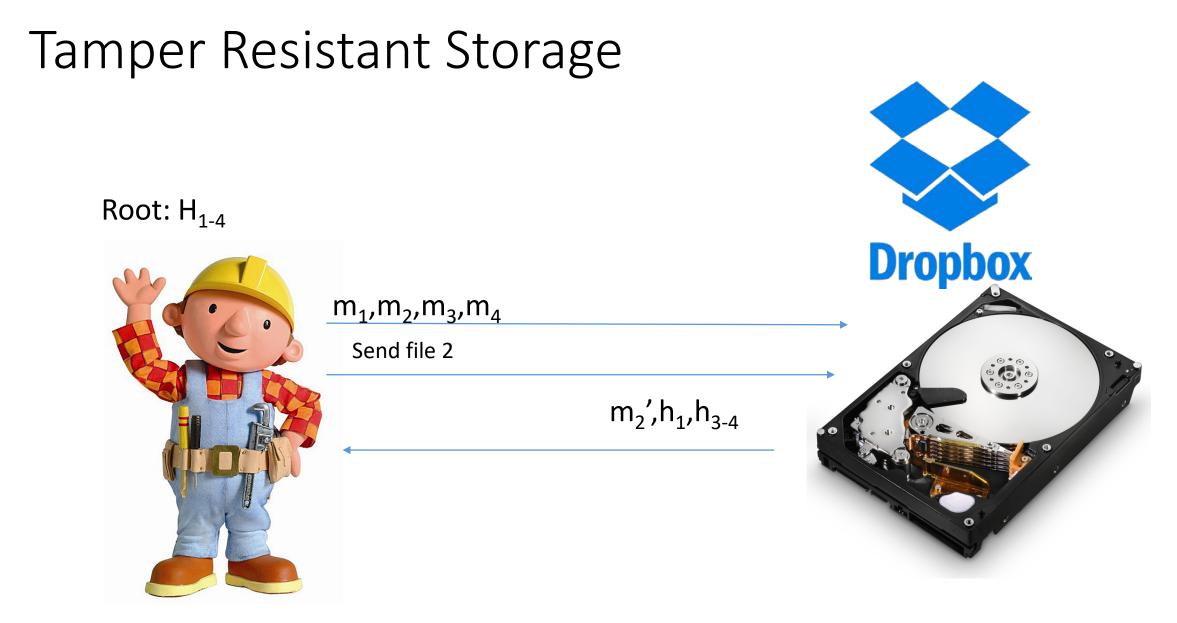


- Verify that root matches
- Proof consists of just log(n) hashes
 - Verifier only needs to permanently store only one hash value

Merkle Trees



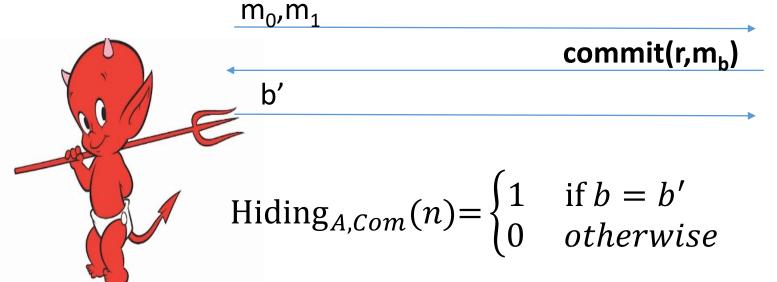
Theorem: Let (Gen, h^s) be a collision resistant hash function and let H^s(m) return the root hash in a Merkle Tree. Then H^s is collision resistant.



Commitment Schemes

- Alice wants to commit a message m to Bob
 - And possibly reveal it later at a time of her choosing
- Properties
 - Hiding: commitment reveals nothing about m to Bob
 - Binding: it is infeasible for Alice to alter message

Commitment Hiding $(\text{Hiding}_{A,Com}(n))$



r = Gen(.) Bit b

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Hiding}_{A,Com}(n) = 1] \leq \frac{1}{2} + \mu(n)$

Commitment Binding (Binding_{A.Com}(n))

r₀,r₁,m₀,m₁

Binding_{A,Com}(n) = $\begin{cases} 1 & \text{if commit}(\mathbf{r_0}, \mathbf{m_0}) = \text{commit}(\mathbf{r_1}, \mathbf{m_1}) \\ 0 & otherwise \end{cases}$

 $\forall PPT \ A \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Binding}_{A.Com}(n) = 1] \le \mu(n)$

Secure Commitment Scheme

- Definition: A secure commitment scheme is hiding and binding
- Hiding

$$\forall PPT \ A \ \exists \mu \ (negligible) \ s.t$$

 $\Pr[\text{Hiding}_{A,Com}(n) = 1] \le \frac{1}{2} + \mu(n)$

• Binding

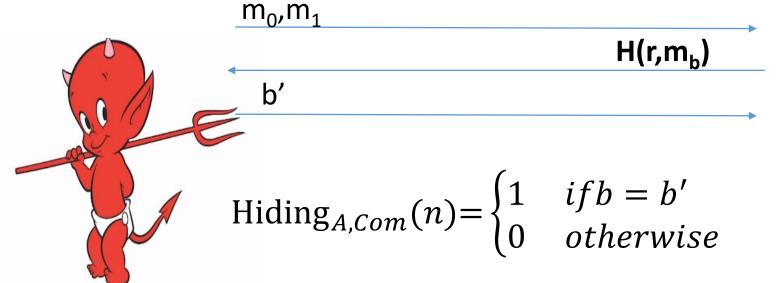
 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Binding}_{A,Com}(n) = 1] \leq \mu(n)$

Commitment Scheme in Random Oracle Model

- **Commit**(r,m):=H(m|r)
- **Reveal**(c):= (m,r)

Theorem: In the random oracle model this is a secure commitment scheme.

Commitment Hiding $(\text{Hiding}_{A,Com}(n))$



r = Gen(.) Bit b

 $\forall PPT \ A \ making \ q(n) \ queries \ s.t$ $\Pr[\text{Hiding}_{A,Com}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^{|r|}}$

Other Applications

- Password Hashing
- Key Derivation

Next Class

- Read Katz and Lindell 6.1
- Stream Ciphers