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Topic 13: HMACs and Generic Attacks 
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Recap

• Cryptographic Hash Functions
• Merkle-Damgård Transform

Today’s Goals:
• HMACs (constructing MACs from collision-resistant hash functions)
• Generic Attacks on Hash functions
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MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n, 
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length 
messages.
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Disadvantage 1: Long 
output

Randomized Construction (no 
canonical verification). Disadvantage?

Two Disadvantages:
1. Lose Strong-MAC Guarantee

2. Security game arguably 
should give attacker Vrfy(.) 

oracle 
(CPA vs CCA security)
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Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) 
a collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 can be 
canonical.
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Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a 
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen 
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚′ ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi
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Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for 
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚′ ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎′
• Violates security of the original fixed length MAC
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MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?
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𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚



HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?
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HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs
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HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and 
that (certain other plausible assumptions hold) this is a secure MAC. 

Weak Collision Resistance: Give attacker oracle access 
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden). 

Attacker Goal: Find distinct m,m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′
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HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC is efficient and unbroken
• CBC-MAC was not widely deployed because it as “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

12



Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

13

Can we do 
better?



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ
<

1
2
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Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?
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Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now   x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then  output x,x’
• Else x:= H(x), x’ = H(x)                     Now x=xj AND x′ = xi+j
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Finds collision after 
O 2ℓ/2 steps in 

expectation
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We have h(x_{j-1}) = h(x_{j+c-1}), 
X reaches x_{j-1} in j-1 steps and x’ reaches x_{j+c-1}=x_{j+2c-1} in j-1 – steps (since we start at j) 




Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list 
• Can traverse “linked list” by computing H
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• A cycle denotes a hash collision
• Occurs after O 2ℓ/2 steps by 

birthday paradox
• First attack phase detects cycle
• Second phase identifies collision
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Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space O 2ℓ

• Example:  S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by assigning unique binary string b x ∈ 0,1 ℓ of length  to  
each 𝑥𝑥 ∈ 𝑆𝑆

xi = 𝐻𝐻(b xi−1 )
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Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(pwd)
• Goal find x’ s.t. H(x’) = y

• There is an attack which requires
• Precomputation Time: 𝑂𝑂( 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑆𝑆 )
• Space: 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑆𝑆 2/3

• On input y finds pwd in Time: 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑆𝑆 2/3

• Cracking costs amortize over many users…
• Other time-memory tradeoffs are possible…
• Defense 1: y=H(pwd|salt)     [password salting]
• Defense 2: Make sure that H is moderately expensive to compute (MHFs)
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Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(x)

• Goal find x’ s.t. H(x’) = y

• Precomputation (sketch)
• Store s = 2ℓ/3 pairs SPi,EPi where EPi = 𝐻𝐻𝑡𝑡 SPi and t = 2ℓ/3

• Let y=y0
• For i=1,2…., 2ℓ/3

• yi = 𝐻𝐻(yi−1)
• For each j s.t EPj=yi

• Check if y is in the hash chain SPi,EPi
• Yes  Found desired x’
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Total #j′s = 𝑠𝑠𝑠𝑠2

2ℓ
< 𝑂𝑂(1)

Space:                               2ℓ/3

Precomputation Time:   22ℓ/3

Total Runtime = 𝑂𝑂 𝑡𝑡 = 𝑂𝑂(2ℓ/3)

Success Rate ≈ 1
4𝑠𝑠
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Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(x)

• Goal find x’ s.t. H(x’) = y

• Precomputation (sketch)
• Store 4st = 4 × 22ℓ/3 pairs SP𝑖𝑖

𝑗𝑗,EPi
j where EPi

j= 𝐻𝐻𝑡𝑡 𝑀𝑀𝑗𝑗⨁SPi and t = 2ℓ/3

• Let y=y0
• For i=1,2…., 2ℓ/3

• yi
j= 𝐻𝐻(𝑀𝑀𝑗𝑗⨁yi−1)

• Foreach j s.t EPi
j= yi

j

• Check if y is in the hash chain SPi,EPi
• Yes  Found desired x’
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Repeat for each j < t

Space:                               22ℓ/3

Precomputation Time:   2ℓ=22ℓ/32ℓ/3

Total Runtime = 𝑂𝑂 𝑡𝑡 × 𝑡𝑡 = 𝑂𝑂(22ℓ/3)

Success Rate > 0.63
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Targeted Collisions (Other Applications)

• Define H(K) = Fk(x)

• Suppose attacker obtains a pair x,Fk(x) (chosen plaintext attack)
• There is a key recovery attack with

• Precomputation Time: 𝒦𝒦
• Space: 𝒦𝒦 2/3

• Cracking Time: 𝒦𝒦 2/3

• Precomputation costs amortize if we are attacking multiple different 
keys 

• As long as we have x,Fk’(x) we don’t need to repeat precomputation phase
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Next Class

• Read Katz and Lindell 5.5-5.6
• Random Oracle Model + Applications of Hashing.
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