Cryptography CS 555

Topic 13: HMACs and Generic Attacks

Recap

- Cryptographic Hash Functions
- Merkle-Damgård Transform

Today's Goals:

- HMACs (constructing MACs from collision-resistant hash functions)
- Generic Attacks on Hash functions

MACs for Arbitrary Length Messages

Mac_k(m)=

- Select random n/4 bit string r
- Let $t_i = \operatorname{Mac}_K'(r \parallel \ell \parallel i \parallel m_i)$ for i=1,...,d
 - (Note: encode i and ℓ as n/4 bit strings)
- Output $\langle r, t_1, \dots, t_d \rangle$

Theorem 4.8: If Π' is a secure MAC for messages of fixed length n, above construction $\Pi = (Mac, Vrfy)$ is secure MAC for arbitrary length messages.

MACs for Arbitrary Lengt

i

and ℓ as n/4 or

Disadvantage 1: Long output Two Disadvantages: 1. Lose Strong-MAC Guarantee 2. Security game arguably should give attacker Vrfy(.) oracle (CPA vs CCA security)

• Output $\langle r, t_1, \dots, t_d \rangle$

Theorem 4.8: If Π' i above constructio messages.

Randomized Construction (no **Canonical verification**). Disadvantage?

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (Gen_H,H) a collision resistant hash function

$$Mac'_{\langle K_{M},S\rangle}(m) = Mac_{K_{M}}(H^{s}(m))$$

Theorem 5.6: Above construction is a secure MAC.

Note: If $\operatorname{Vrfy}_{K_M}(m, t)$ is canonical then $\operatorname{Vrfy}'_{\langle K_M, S \rangle}(m, t)$ can be canonical.

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (Gen_H,H) a collision resistant hash function

$$Mac'_{\langle K_{M},S\rangle}(m) = Mac_{K_{M}}(H^{s}(m))$$

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t' for unseen message m' then either

- Case 1: $H^{s}(m') = H^{s}(m_{i})$ for some previously requested message m_{i}
- Case 2: $H^{s}(m') \neq H^{s}(m_{i})$ for every previously requested message m_i

Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t' for unseen message m' then either

- Case 1: $H^{s}(m') = H^{s}(m_{i})$ for some previously requested message m_{i}
 - Attacker can find hash collisions!
- Case 2: $H^{s}(m') \neq H^{s}(m_{i})$ for every previously requested message m_{i}
 - Attacker forged a valid new tag on the "new message" $H^s(m')$
 - Violates security of the original fixed length MAC

MAC from Collision Resistant Hash

• Failed Attempt:

$$Mac_{\langle k,S\rangle}(m) = H^{s}(k \parallel m)$$

Broken if H^suses Merkle-Damgård Transform

 $Mac_{\langle k,S \rangle}(m_1 \parallel m_2 \parallel m_3) = h^s(h^s(h^s(0^n \parallel k) \parallel m_1) \parallel m_2) \parallel m_3)$ = $h^s(Mac_{\langle k,S \rangle}(m_1 \parallel m_2) \parallel m_3)$

Why does this mean $Mac_{\langle k,S \rangle}$ is broken?

HMAC

$$Mac_{\langle k,S \rangle}(m) = H^{s}((k \oplus \text{opad}) \parallel H^{s}((k \oplus \text{ipad}) \parallel m))$$

ipad?

$$Mac_{\langle k,S \rangle}(m) = H^{s} \left((k \oplus \text{opad}) \parallel H^{s} ((k \oplus \text{ipad}) \parallel m) \right)$$

 $\text{ipad} = \text{inner pad}$
 $\text{opad} = \text{outer pad}$

Both ipad and opad are fixed constants.

Why use key twice?

Allows us to prove security from *weak collision resistance* of H^s

HMAC Security

$$Mac_{\langle k,S \rangle}(m) = H^{s}((k \oplus \text{opad}) \parallel H^{s}((k \oplus \text{ipad}) \parallel m))$$

Theorem (Informal): Assuming that H^s is weakly collision resistant and that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access to $f(m) = H^s(k \parallel m)$ (secret key k remains hidden).

Attacker Goal: Find distinct m,m' such that f(m) = f(m')

HMAC in Practice

- MD5 can no longer be viewed as collision resistant
- However, HMAC-MD5 remained unbroken after MD5 was broken
 - Gave developers time to replace HMAC-MD5
 - Nevertheless, don't use HMAC-MD5!
- HMAC is efficient and unbroken
 - CBC-MAC was not widely deployed because it as "too slow"
 - Instead practitioners often used heuristic constructions (which were breakable)

Finding Collisions

- Ideal Hashing Algorithm
 - Random function H from $\{0,1\}^*$ to $\{0,1\}^\ell$
 - Suppose attacker has oracle access to H(.)
- Attack 1: Evaluate H(.) on $2^{\ell}+1$ distinct inputs.

THE PIGEONHOLE PRINCIPLE

Can we do better?

Birthday Attack for Finding Collisions

- Ideal Hashing Algorithm
 - Random function H from $\{0,1\}^*$ to $\{0,1\}^\ell$
 - Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on $q = 2^{(\ell/2)+1} + 1$ distinct inputs x_1, \dots, x_q .

$$\Pr[\forall i < j. H(\mathbf{x}_{i}) \neq H(\mathbf{x}_{j})] = 1\left(1 - \frac{1}{2^{\ell}}\right)\left(1 - \frac{2}{2^{\ell}}\right)\left(1 - \frac{3}{2^{\ell}}\right)...\left(1 - \frac{2^{(\ell/2)+1}}{2^{\ell}}\right) < \frac{1}{2}$$

Birthday Attack for Finding Collisions

- Ideal Hashing Algorithm
 - Random function H from $\{0,1\}^*$ to $\{0,1\}^\ell$
 - Suppose attacker has oracle access to H(.)

- Attack 2: Evaluate H(.) on $q = 2^{(\ell/2)+1} + 1$ distinct inputs x_1, \dots, x_q .
- Store values $(x_i, H(x_i))$ in a hash table of size q
 - Requires time/space $O(q) = O(\sqrt{2^{\ell}})$
 - Can we do better?

Small Space Birthday Attack

- Attack 2: Select random x_0 , define $x_i = H(x_{i-1})$
 - Initialize: x=x₀ and x'=x₀
 - Repeat for i=1,2,...
 - x:=H(x) now $x = x_i$
 - x':=H(H(x')) now $x' = x_{2i}$
 - If x=x' then break
 - Reset x=x₀ and set x'=x
 - Repeat for j=1 to i
 - If H(x) = H(x') then output x, x'
 - Else x:= H(x), x' = H(x) Now $x=x_j AND x' = x_{i+j}$

Small Space Birthday Attack

- Attack 2: Select random x_0 , define $x_i = H(x_{i-1})$
 - Initialize: x=x₀ and x'=x₀
 - Repeat for i=1,2,...
 - x:=H(x) now $x = x_i$
 - x':=H(H(x')) now $x' = x_{2i}$
 - If x=x' then break
 - Reset x=x₀ and set x'=x
 - Repeat for j=1 to i
 - If H(x) = H(x') then output x, x'
 - Else x:= H(x), x' = H(x) Now $x=x_i AND x' = x_{i+i}$

Finds collision after $O(2^{\ell/2})$ steps in expectation

Floyd's Cycle Finding Algorithm

- Analogy: Cycle detection in linked list
- Can traverse "linked list" by computing H

- A cycle denotes a hash collision
- Occurs after $O(2^{\ell/2})$ steps by birthday paradox
- First attack phase detects cycle
- Second phase identifies collision

Small Space Birthday Attack

- Can be adapted to find "meaningful collisions" if we have a large message space $O(2^{\ell})$
- **Example**: $S = S_1 \cup S_2$ with $|S_1| = |S_2| = 2^{\ell-1}$
 - S_1 = Set of positive recommendation letters
 - S_2 = Set of negative recommendation letters
- **Goal**: find $z_1 \in S_1$, $z_2 \in S_2$, such that $H(z_1) = H(z_2)$
- Can adapt previous attack by assigning unique binary string $b(x) \in \{0,1\}^{\ell}$ of length to each $x \in S$

$$\mathbf{x}_{i} = H(\mathbf{b}(\mathbf{x}_{i-1}))$$

Targeted Collision (e.g., Password Cracking)

- Attacker is given y=H(pwd)
- Goal find x' s.t. H(x') = y
- There is an attack which requires
 - Precomputation Time: *O*(|*PASSWORDS*|)
 - Space: |PASSWORDS|^{2/3}
 - On input y finds pwd in Time: $|PASSWORDS|^{2/3}$
- Cracking costs amortize over many users...
- Other time-memory tradeoffs are possible...
- **Defense 1:** y=H(pwd|salt) [password salting]
- Defense 2: Make sure that H is moderately expensive to compute (MHFs)

Targeted Collision (e.g., Password Cracking)

- Attacker is given y=H(x)
- Goal find x' s.t. H(x') = y

Space: $2^{\ell/3}$ Precomputation Time: $2^{2\ell/3}$

• Precomputation (sketch)

• Store $s = 2^{\ell/3}$ pairs (SP_i, EP_i) where EP_i = $Ht(SP_i)$ and $t = 2^{\ell/3}$

- Let y=y₀
- For i=1,2...., $2^{\ell/3}$
 - $\mathbf{y}_{i} = H(\mathbf{y}_{i-1})$
 - For each j s.t EP_i=y_i
 - Check if y is in the hash chain (SP_i, EP_i)
 - Yes \rightarrow Found desired x'

Total Runtime = $O(t) = O(2^{\ell/3})$

Success Rate
$$\approx \frac{1}{4t}$$

Total #j's = $\frac{st^2}{2\ell} < O(1)$

Targeted Collision (e.g., Password Cracking)

- Attacker is given y=H(x)
- Goal find x' s.t. H(x') = y
- Precomputation (sketch)
 - Store 4st = 4 × $2^{2\ell/3}$ pairs (SP_i^j, EP_i^j) where $EP_i^j = Ht(c_j \oplus SP_i)$ and t = $2^{\ell/3}$
- Let y=y₀
- For i=1,2...., $2^{\ell/3}$
 - $y_i^j = H(c_j \bigoplus y_{i-1})$
 - Foreach j s.t $EP_i^J = y_i^J$
 - Check if y is in the hash chain (SP_i, EP_i)
 - Yes \rightarrow Found desired x'

Space: $2^{2\ell/3}$ Precomputation Time: $2^{\ell} = 2^{2\ell/3} 2^{\ell/3}$

Repeat for each j < t

Total Runtime = $O(t \times t) = O(2^{2\ell/3})$

Success Rate > 0.63

Targeted Collisions (Other Applications)

- Define $H(K) = F_k(x)$
- Suppose attacker obtains a pair x, F_k(x) (chosen plaintext attack)
- There is a key recovery attack with
 - Precomputation Time: $|\mathcal{K}|$
 - Space: $|\mathcal{K}|^{2/3}$
 - Cracking Time: $|\mathcal{K}|^{2/3}$
- Precomputation costs amortize if we are attacking multiple different keys
 - As long as we have $x_{,F_{k'}}(x)$ we don't need to repeat precomputation phase

Next Class

- Read Katz and Lindell 5.5-5.6
- Random Oracle Model + Applications of Hashing.