
Cryptography
CS 555

Topic 13: HMACs and Generic Attacks

1

Recap

• Cryptographic Hash Functions
• Merkle-Damgård Transform

Today’s Goals:
• HMACs (constructing MACs from collision-resistant hash functions)
• Generic Attacks on Hash functions

2

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

3

Presenter
Presentation Notes
Disadvage for not using randomized construction.
 1. This may not be a Strong-MAC.

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

4

Disadvantage 1: Long
output

Randomized Construction (no
canonical verification). Disadvantage?

Two Disadvantages:
1. Lose Strong-MAC Guarantee

2. Security game arguably
should give attacker Vrfy(.)

oracle
(CPA vs CCA security)

Presenter
Presentation Notes
Disadvage for not using randomized construction.
 1. This may not be a Strong-MAC.

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H)
a collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 can be
canonical.

5

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚′ ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

6

Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚′ ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎′
• Violates security of the original fixed length MAC

7

MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

8

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?

9

Presenter
Presentation Notes
Bad joke, I know…

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs

10

Presenter
Presentation Notes
Bad joke, I know…

HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and
that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden).

Attacker Goal: Find distinct m,m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′

11

HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC is efficient and unbroken
• CBC-MAC was not widely deployed because it as “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

12

Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

13

Can we do
better?

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ
<

1
2

14

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?

15

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

16

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

17

Finds collision after
O 2ℓ/2 steps in

expectation

Presenter
Presentation Notes
Let j denote the length of the chain before the cycle starts (3) in the example and let c denote the length of the cycle
Let c denote length of cycle and suppose that x_{2i} = x_i then we have 2i-j=i-j mod c. Implies that 2i=c+i.

We have h(x_{j-1}) = h(x_{j+c-1}),
X reaches x_{j-1} in j-1 steps and x’ reaches x_{j+c-1}=x_{j+2c-1} in j-1 – steps (since we start at j)

Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list
• Can traverse “linked list” by computing H

18

• A cycle denotes a hash collision
• Occurs after O 2ℓ/2 steps by

birthday paradox
• First attack phase detects cycle
• Second phase identifies collision

Presenter
Presentation Notes
Let j denote the length of the chain before the cycle starts (3) in the example and let c denote the length of the cycle
Let c denote length of cycle and suppose that x_{2i} = x_i then we have 2i-j=i-j mod c. Implies that 2i=c+i.

We have h(x_{j-1}) = h(x_{j+c-1}),
X reaches x_{j-1} in j-1 steps and x’ reaches x_{j+c-1}=x_{j+2c-1} in j-1 – steps (since we start at j)

Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space O 2ℓ

• Example: S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by assigning unique binary string b x ∈ 0,1 ℓ of length to
each 𝑥𝑥 ∈ 𝑆𝑆

xi = 𝐻𝐻(b xi−1)

19

Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(pwd)
• Goal find x’ s.t. H(x’) = y

• There is an attack which requires
• Precomputation Time: 𝑂𝑂(𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑆𝑆)
• Space: 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑆𝑆 2/3

• On input y finds pwd in Time: 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑆𝑆 2/3

• Cracking costs amortize over many users…
• Other time-memory tradeoffs are possible…
• Defense 1: y=H(pwd|salt) [password salting]
• Defense 2: Make sure that H is moderately expensive to compute (MHFs)

20

Presenter
Presentation Notes
Expected number of j’s such that EPj=yi is s/2ℓ

Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(x)

• Goal find x’ s.t. H(x’) = y

• Precomputation (sketch)
• Store s = 2ℓ/3 pairs SPi,EPi where EPi = 𝐻𝐻𝑡𝑡 SPi and t = 2ℓ/3

• Let y=y0
• For i=1,2…., 2ℓ/3

• yi = 𝐻𝐻(yi−1)
• For each j s.t EPj=yi

• Check if y is in the hash chain SPi,EPi
• Yes  Found desired x’

21

Total #j′s = 𝑠𝑠𝑠𝑠2

2ℓ
< 𝑂𝑂(1)

Space: 2ℓ/3

Precomputation Time: 22ℓ/3

Total Runtime = 𝑂𝑂 𝑡𝑡 = 𝑂𝑂(2ℓ/3)

Success Rate ≈ 1
4𝑠𝑠

Presenter
Presentation Notes
Expected number of j’s such that EPj=yi is s/2ℓ

Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(x)

• Goal find x’ s.t. H(x’) = y

• Precomputation (sketch)
• Store 4st = 4 × 22ℓ/3 pairs SP𝑖𝑖

𝑗𝑗,EPi
j where EPi

j= 𝐻𝐻𝑡𝑡 𝑀𝑀𝑗𝑗⨁SPi and t = 2ℓ/3

• Let y=y0
• For i=1,2…., 2ℓ/3

• yi
j= 𝐻𝐻(𝑀𝑀𝑗𝑗⨁yi−1)

• Foreach j s.t EPi
j= yi

j

• Check if y is in the hash chain SPi,EPi
• Yes  Found desired x’

22

Repeat for each j < t

Space: 22ℓ/3

Precomputation Time: 2ℓ=22ℓ/32ℓ/3

Total Runtime = 𝑂𝑂 𝑡𝑡 × 𝑡𝑡 = 𝑂𝑂(22ℓ/3)

Success Rate > 0.63

Presenter
Presentation Notes
Expected number of j’s such that EPj=yi is s/2ℓ

Targeted Collisions (Other Applications)

• Define H(K) = Fk(x)

• Suppose attacker obtains a pair x,Fk(x) (chosen plaintext attack)
• There is a key recovery attack with

• Precomputation Time: 𝒦𝒦
• Space: 𝒦𝒦 2/3

• Cracking Time: 𝒦𝒦 2/3

• Precomputation costs amortize if we are attacking multiple different
keys

• As long as we have x,Fk’(x) we don’t need to repeat precomputation phase

23

Next Class

• Read Katz and Lindell 5.5-5.6
• Random Oracle Model + Applications of Hashing.

24

	Cryptography�CS 555
	Recap
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Hash and MAC Construction
	Hash and MAC Construction
	Hash and MAC Construction
	MAC from Collision Resistant Hash
	HMAC
	HMAC
	HMAC Security
	HMAC in Practice
	Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Small Space Birthday Attack
	Small Space Birthday Attack
	Floyd’s Cycle Finding Algorithm
	Small Space Birthday Attack
	Targeted Collision (e.g., Password Cracking)
	Targeted Collision (e.g., Password Cracking)
	Targeted Collision (e.g., Password Cracking)
	Targeted Collisions (Other Applications)
	Next Class

