Cryptography CS 555

Topic 11: Authenticated Encryption + CCA-Security

Recap

- Message Authentication Codes
- Secrecy vs Confidentiality

Today's Goals:

- Authenticated Encryption
- Build Authenticated Encryption Scheme with CCA-Security

Authenticated Encryption

Encryption: Hides a message from the attacker

Message Authentication Codes: Prevents attacker from tampering with message

Unforgeable Encryption Experiment (Encforge_{A,Π}(n))

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Encforge}_{A,\Pi}(n) = 1] \leq \mu(n)$

Unforgeable Encryption Experiment (Encforge_{A,Π}(n))

 $c_1 = Enc_{\kappa}(m)$

Call П an **authenticated encryption scheme** if it is CCA-secure and any PPT attacker wins Encforge with negligible probability

m₁

 m_2

Game is very similar to MAC-Forge game

 $\Pr[\text{Encforge}_{A,\Pi}(n) = 1] \le \mu(n)$

6

Attempt 1: Let $Enc'_{K}(m)$ be a CPA-Secure encryption scheme and let $Mac'_{K}(m)$ be a secure MAC

$$Enc_{K}(m) = \langle Enc'_{K}(m), Mac'_{K}(m) \rangle$$

Any problems?

$$Enc'_{K}(m) = \langle r, F_{k}(r) \oplus m \rangle$$
$$Mac'_{K}(m) = F_{k}(m)$$

Attempt 1:

$$Enc_{K}(m) = \langle r, F_{k}(r) \oplus m, F_{k}(m) \rangle$$

CPA-Attack:

• Intercept ciphertext c

$$c = Enc_K(m) = \langle r, F_k(r) \oplus m, F_k(m) \rangle$$

• Ask to encrypt r

$$c_r = Enc_K(r) = \langle r', F_k(r') \oplus r, F_k(r) \rangle$$

$$m = F_k(r) \oplus (F_k(r) \oplus m)$$

Attempt 1: Let $Enc'_{K}(m)$ be a CPA-Secure encryption scheme and let $Mac'_{K}(m)$ be a secure MAC

 $Enc_{K}(m) = \langle \operatorname{Enc}_{K}'(m), \operatorname{Mac}_{K}'(m) \rangle$

Attack exploited fact that same secret key used for MAC'/Enc'

Independent Key Principle

"different instances of cryptographic primitives should always use independent keys"

Attempt 2: (Encrypt-and-Authenticate) Let $Enc'_{K_E}(m)$ be a CPA-Secure encryption scheme and let $Mac'_{K_M}(m)$ be a secure MAC. Let $K = (K_E, K_M)$ then

$$Enc_{K}(m) = \left\langle \operatorname{Enc}_{K_{E}}'(m), \operatorname{Mac}_{K_{M}}'(m) \right\rangle$$

Any problems?

$$\operatorname{Enc}_{K_{E}}^{\prime}(m) = \left\langle r, F_{K_{E}}(r) \oplus m \right\rangle$$
$$\operatorname{Mac}_{K_{M}}^{\prime}(m) = F_{K_{M}}(m)$$

Attempt 2:

$$Enc_{K}(m) = \langle r, F_{K_{E}}(r) \oplus m, F_{K_{M}}(m) \rangle$$

CPA-Attack:

- Select m₀,m₁
- Obtain ciphertext c

$$c = \left\langle r, F_{K_E}(r) \oplus mb, F_{K_M}(m_b) \right\rangle$$

• Ask to encrypt m₀

$$c_r = \left\langle r', F_{K_E}(r') \oplus m_0, F_{K_M}(m_0) \right\rangle$$

$$F_{K_M}(m_0) = ?F_{K_M}(m_b)$$

Attempt 2:

$$Enc_{K}(m) = \langle r, F_{K_{E}}(r) \oplus m, F_{K_{M}}(m) \rangle$$

CPA-Attack:

- Select m₀,m₁
- Obtain ciphertext c

$$c = \langle r, F_{K_E}(r) \oplus mb, F_{K_M} \rangle$$

• Ask to encrypt m₀

$$c_r = \langle r', F_{K_E}(r') \oplus m_0, F_{K_M}(m_0)$$

 $F_{K_M}(m_0) = ?F_{K_M}(m_b)$

Encrypt and Authenticate Paradigm does not work in general

Attempt 3: (Authenticate-then-encrypt) Let $\operatorname{Enc}_{K_E}'(m)$ be a CPA-Secure encryption scheme and let $\operatorname{Mac}_{K_M}'(m)$ be a secure MAC. Let $K = (K_E, K_M)$ then

$$Enc_{K}(m) = \langle Enc'_{K_{E}}(m \parallel t), \rangle$$
 where $t = Mac'_{K_{M}}(m)$

Doesn't necessarily work: See textbook

Attempt 4: (Encrypt-then-authenticate) Let $\operatorname{Enc}_{K_E}'(m)$ be a CPA-Secure encryption scheme and let $\operatorname{Mac}_{K_M}'(m)$ be a secure MAC. Let $K = (K_E, K_M)$ then

$$Enc_{K}(m) = \langle c, Mac'_{K_{M}}(c) \rangle$$
 where $c = Enc'_{K_{E}}(m)$

Secure?

Theorem: (Encrypt-then-authenticate) Let $\operatorname{Enc}_{K_E}'(m)$ be a CPA-Secure encryption scheme and let $\operatorname{Mac}_{K_M}'(m)$ be a secure MAC. Then the following construction is an authenticated encryption scheme.

$$Enc_{K}(m) = \langle c, Mac'_{K_{M}}(c) \rangle$$
 where $c = Enc'_{K_{E}}(m)$

Proof?

Two Tasks:

Encforge_{A,Π} CCA-Security

Theorem: (Encrypt-then-authenticate) Let $\operatorname{Enc}_{K_E}'(m)$ be a CPA-Secure encryption scheme and let $\operatorname{Mac}_{K_M}'(m)$ be a secure MAC. Then the following construction is an authenticated encryption scheme.

$$Enc_{K}(m) = \langle c, Mac'_{K_{M}}(c) \rangle$$
 where $c = Enc'_{K_{E}}(m)$

Proof Intuition: Suppose that we have already shown that any PPT attacker wins $Encforge_{A,\Pi}$ with negligible probability.

Why does CCA-Security now follow from CPA-Security? CCA-Attacker has decryption oracle, but cannot exploit it! Why?

Always sees \perp "invalid ciphertext" when he query with unseen ciphertext

Proof Sketch

- 1. Let ValidDecQuery be event that attacker submits new/valid ciphertext to decryption oracle
- 2. Show Pr[ValidDecQuery] is negl(n) for any PPT attacker
 - Hint: Follows from strong security of MAC since $Enc_{K}(m) = \langle c, Mac'_{K_{M}}(c) \rangle$
 - This also implies unforgeability.
- Show that attacker who does not issue valid decryption query wins CCAsecurity game with probability ½ + negl(n)
 - Hint: otherwise we can use A to break CPA-security
 - Hint 2: simulate decryption oracle by always returning \perp when given new ciphertext

Secure Communication Session

- Solution? Alice transmits c₁ = Enc_K(m₁) to Bob, who decrypts and sends Alice c₂ = Enc_K(m₂) etc...
- Authenticated Encryption scheme is
 - Stateless
 - For fixed length-messages
- We still need to worry about
 - Re-ordering attacks
 - Alice sends 2n-bit message to Bob as c₁ = Enc_K(m₁), c₂ = Enc_K(m₂)
 - Replay Attacks
 - Attacker who intercepts message $c_1 = Enc_K(m_1)$ can replay this message later in the conversation
 - Reflection Attack
 - Attacker intercepts message $c_1 = Enc_K(m_1)$ sent from Alice to Bob and replays to c_1 Alice only

Secure Communication Session

- Defense
 - Counters (CTR_{A,B},CTR_{B,A})
 - Number of messages sent from Alice to Bob (CTR_{A,B}) --- initially 0
 - Number of messages sent from Bob to Alice (CTR_{B,A}) --- initially 0
 - Protects against Re-ordering and Replay attacks
 - Directionality Bit
 - $b_{A,B} = 0$ and $b_{B,A} = 1$ (e.g., since A < B)
- Alice: To send m to Bob, set c=Enc_K(b_{A,B} || CTR_{A,B} ||m), send c and increment CTR_{A,B}
- Bob: Decrypts c, (if ⊥ then reject), obtain b || CTR ||m
 - If $CTR \neq CTR_{A,B}$ or $b \neq b_{A,B}$ then reject
 - Otherwise, output m and increment CTR_{A,B}

Authenticated Security vs CCA-Security

- Authenticated Encryption \rightarrow CCA-Security (by definition)
- CCA-Security does not necessarily imply Authenticate Encryption
 - But most natural CCA-Secure constructions are also Authenticated Encryption Schemes
 - Some constructions are CCA-Secure, but do not provide Authenticated Encryptions, but they are less efficient.
- Conceptual Distinction
 - CCA-Security the goal is secrecy (hide message from active adversary)
 - Authenticated Encryption: the goal is integrity + secrecy

Next Class

- Read Katz and Lindell 5.1-5.2
- Cryptographic Hash Functions
- Homework 2 Assigned