Cryptography CS 555

Topic 10: Constructing Message Authentication Codes

Reminder: Homework 1

• Due on Friday (next class) at the beginning of class

Please typeset your solutions

Recap

- Data Integrity
- Message Authentication Codes
- Side-Channel Attacks
- Build Secure MACs

Today's Goals:

- Build a Secure MAC
 - Key tool in Construction of CCA-Secure Encryption Schemes
- Construct CCA-Secure Encryption Scheme

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three algorithms $\Pi = (Gen, Mac, Vrfy)$

- $Gen(1^n; R)$ (Key-generation algorithm)
 - Input: security parameter 1ⁿ (unary) and random bits R
 - Output: Secret key $k \in \mathcal{K}$
- $Mac_k(m; R)$ (Tag Generation algorithm)
 - Input: Secret key $k \in \mathcal{K}$ and message $m \in \mathcal{M}$ and random bits R
 - Output: a tag t
- $Vrfy_k(m, t)$ (Verification algorithm)
 - Input: Secret key $k \in \mathcal{K}$, a message m and a tag t
 - Output: a bit b (b=1 means "valid" and b=0 means "invalid")

$$Vrfy_k(m, Mac_k(m; R)) = 1$$

Strong MAC Authentication (Macsforge_{A,Π}(n))

K = Gen(.)

 $\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$ $\Pr[\text{Macsforge}_{A,\Pi}(n) = 1] \leq \mu(n)$

Strong MAC Construction (Fixed Length)

Simply uses a secure PRF F $Mac_k(m) = F_K(m)$

Canonical Verification Algorithm...

$$Vrfy_k(m, t) = \begin{cases} 1 & \text{if } t = F_K(m) \\ 0 & \text{otherwise} \end{cases}$$

Strong MAC Construction (Fixed Length)

$$Mac_k(m) = F_K(m)$$

$$Vrfy_k(m, t) = \begin{cases} 1 & \text{if } t = F_K(m) \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for messages of length n.

Proof: Start with attacker who breaks MAC security and build an attacker who breaks PRF security (contradiction!)

Sufficient to start with attacker who breaks regular MAC security (why?)

Breaking MAC Security (Macforge_{A,Π}(n))

K = Gen(.)

 $\exists PPT \ A \ and \ \mu \ (positive/non negligible) s.t$ $\Pr[\mathsf{Macforge}_{A,\Pi}(n) = 1] > \mu(n)$

A Similar Game (Macforge_A

Why? Because f(m) is distributed uniformly in {0,1}ⁿ so Pr[f(m)=t]=2⁻ⁿ

Truly Random Function f ∈ Func_n

Claim: $\forall A (not just PPT)$

$$\Pr[\text{Macforge}_{A,\tilde{\Pi}}(n) = 1] \le 2^{-n}$$

PRF Distinguisher D

- Given oracle O (either F_K or truly random f)
- Run PPT Macforge adversary A
- When adversary queries with message m, respond with O(m)

- If O = f then $\Pr[D^0(1^n) = 1] = \Pr[\mathsf{Macforge}_{A,\widetilde{\Pi}}(n) = 1] \le 2^{-n}$
- If O=f then $\Pr[D^0(1^n)=1]=\Pr\big[\mathrm{Macforge}_{A,\Pi}(n)=1\big]>\mu(n)$

PRF Distinguisher D

- If O = f then $\Pr[D^0(1^n) = 1] = \Pr[\mathsf{Macforge}_{A,\widetilde{\Pi}}(n) = 1] \le 2^{-n}$
- If $O=F_K$ then $\Pr[D^O(1^n)=1]=\Pr[\mathrm{Macforge}_{A,\Pi}(n)=1]>\mu(n)$

Advantage:

$$[\Pr[D^{F_K}(1^n) = 1] - \Pr[D^f(1^n) = 1]| > \mu(n) - 2^{-n}]$$

Note that $\mu(n) - 2^{-n}$ is non-negligible and D runs in PPT if A does.

Strong MAC Construction (Fixed Length)

$$Mac_k(m) = F_K(m)$$

$$Vrfy_k(m, t) = \begin{cases} 1 & \text{if } t = F_K(m) \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for messages of length n.

Limitation: What if we want to authenticate a longer message?

• Building Block $\Pi'=(Mac',Vrfy')$, a secure MAC for length n messages

First: A few failed attempts

```
Let m = m_1,...,m_d where each m_i is n bits and let t_i = Mac_K'(m_i) Mac_K(m) = \langle t_1, ..., t_d \rangle
```

What is wrong?

Block-reordering attack $Mac_{\kappa}(m_d,...,m_1) = \langle t_d,...,t_1 \rangle$

• Building Block $\Pi'=(Mac',Vrfy')$, a secure MAC for length n messages

Attempt 2

```
Let m = m<sub>1</sub>,...,m<sub>d</sub> where each m<sub>i</sub> is n bits and let t_i = \text{Mac}_K'(i \parallel m_i) Mac<sub>K</sub>(m) = \langle t_1, ..., t_d \rangle
```

Addresses block-reordering attack.

Any other concerns?

Truncation attack!

$$Mac_{K}(m_{1},...,m_{d-1}) = \langle t_{1},...,t_{d-1} \rangle$$

• Building Block $\Pi'=(Mac',Vrfy')$, a secure MAC for length n messages

Attempt 3

```
Let \mathbf{m} = \mathbf{m}_1, ..., \mathbf{m}_d where each \mathbf{m}_i is n bits and \mathbf{m} has length \ell = nd Let t_i = \operatorname{Mac}_K'(i \parallel \ell \parallel m_i) \operatorname{Mac}_{\mathsf{K}}(\mathbf{m}) = \langle t_1, ..., t_d \rangle
```

Addresses truncation.

Any other concerns?

Mix and Match Attack!

Let $m = m_1,...,m_d$ where each m_i is n bits and m has length $\ell = nd$ Let $m' = m'_1,...,m'_d$ where each m'_i is n bits and m has length $\ell = nd$

```
Let t_i = \operatorname{Mac}_K'(i \parallel \ell \parallel m_i) and t'_i = \operatorname{Mac}_K'(i \parallel \ell \parallel m_i')
\operatorname{Mac}_{\mathsf{K}}(\mathsf{m}) = \langle t_1, \dots, t_d \rangle
\operatorname{Mac}_{\mathsf{K}}(\mathsf{m}') = \langle t'_1, \dots, t'_d \rangle
```

Mix and Match Attack!

$$Mac_{K}(m_{1},m'_{2},m_{3},...) = \langle t_{1},t'_{2},t_{3},... \rangle$$

- ◆ A non-failed approach ☺
- Building Block $\Pi'=(Mac',Vrfy')$, a secure MAC for length n messages
- Let m = $m_1,...,m_d$ where each m_i is n/4 bits and m has length $\ell < 2^{n/4}$

$Mac_{\kappa}(m)=$

- Select random n/4 bit string r
- Let $t_i = Mac_K'(r \parallel \ell \parallel i \parallel m_i)$ for i=1,...,d
 - (Note: encode i and ℓ as n/4 bit strings)
- Output $\langle r, t_1, ..., t_d \rangle$

 $Mac_{\kappa}(m)=$

- Select random n/4 bit string r
- Let $t_i = Mac_K'(r \parallel \ell \parallel i \parallel m_i)$ for i=1,...,d
 - (Note: encode i and ℓ as n/4 bit strings)
- Output $\langle r, t_1, ..., t_d \rangle$

Theorem 4.8: If Π' is a secure MAC for messages of fixed length n, above construction $\Pi = (Mac, Vrfy)$ is secure MAC for arbitrary length messages.

Next Class

- Read Katz and Lindell 4.4-4.5
- CBC-MAC and Authenticated Encryption