# Cryptography CS 555

Topic 1: Course Overview & What is Cryptography

#### Administrative Note

- Professor Blocki is traveling and will be back on Wednesday.
  - E-mail: jblocki@purdue.edu
- Thanks to Professor Spafford for covering the first lecture!

https://www.cs.purdue.edu/homes/jblocki/courses/555\_Spring17/index.html (also on syllabus)

#### What is Cryptography?

"the art of writing or solving codes" – Concise Oxford English Dictionary



## What is Cryptography?

"The study of mathematical techniques for securing digital information, systems and distributed computation against adversarial attacks."

-- Intro to Modern Cryptography



#### What Does It Mean to "Secure Information"

- Confidentiality (Security/Privacy)
  - Only intended recipient can see the communication







#### What Does It Mean to "Secure Information"

- Confidentiality (Security/Privacy)
  - Only intended recipient can see the communication
- Integrity (Authenticity)
  - The message was actually sent by the alleged sender



#### Two Attacker Models

- Passive Attacker
  - Attacker can eavesdrop
  - Protection Requires?
    - Confidentiality
- Active Attacker
  - Has full control over communication channel
  - Protection Requires?
    - Confidentiality & Integrity

## Steganography vs Cryptography

#### Steganography

- Goal: Hide existence of a message
  - Invisible Ink, Tattoo Underneath Hair, ...



• Assumption: Method is secret

## Steganography vs Cryptography

#### Steganography

- Goal: Hide existence of a message
  - Invisible Ink, Tattoo Underneath Hair, ...
- Assumption: Method is secret
- Cryptography
  - Goal: Hide the meaning of a message
  - Depends only on secrecy of a (short) key
  - Kerckhoff's Principle: Cipher method should not be required to be secret.



#### Symmetric Key Encryption

- What cryptography has historically been all about (Pre 1970)
- Two parties (sender and receiver) share secret key
- Sender uses key to encrypt ("scramble") the message before transmission
- Receiver uses the key to decrypt ("unscramble") and recover the original message

#### Encryption: Basic Terminology

- Plaintext
  - The original message m
- Plaintext Space (Message Space)
  - The set  ${\mathcal M}$  of all possible plaintext messages
  - Example 1:  $\mathcal{M} = \{ 'attack', 'retreat', 'hold current position' \}$
  - Example 2:  $\mathcal{M} = \{0,1\}^n$  all n bit messages
- Ciphertext  $c \in C$ 
  - An encrypted ("scrambled") message  $c \in C$  (ciphertext space)
- Key/Keyspace  $\mathbf{k} \in \mathcal{K}$

#### Private Key Encryption Syntax

- Message Space:  ${\mathcal M}$
- Key Space:  $\mathcal K$
- Three Algorithms
  - Gen(R) (Key-generation algorithm)
    - Input: Random Bits R
    - Output: Secret key  $k \in \mathcal{K}$
  - Enc<sub>k</sub>(*m*) (Encryption algorithm)
    - Input: Secret key  $k \in \mathcal{K}$  and message  $m \in \mathcal{M}$
    - Output: ciphertext *c*
  - $\text{Dec}_k(c)$  (Decryption algorithm)
    - Input: Secret key  $k \in \mathcal{K}$  and a ciphertex c
    - Output: a plaintext message  $m \in \mathcal{M}$
- Invariant: Dec<sub>k</sub>(Enc<sub>k</sub>(m))=m

Typically picks  $k \in \mathcal{K}$ uniformly at random

Trusted Parties (e.g., Alice and Bob) must run Gen in advance to obtain secret k.

Assumption: Adversary does not get to see output of Gen

#### Cryptography History

- 2500+ years
- Ongoing battle
  - Codemakers and codebreakers

**Formalization of** Modern Crypto (1976+)



#### **Caesar Shift Cipher (50 BC)**



**Frequency Analysis** 

#### Shannon Entropy/Perfect Secrecy (~1950)



**Cipher Machines (1900s)** 

**1970s** 



Public Key Crypto/RSA

## Who Uses Cryptography

- Traditionally: Militias
- Modern Times: Everyone!



#### Course Goals

- Understand the mathematics underlying cryptographic algorithms and protocols
- Understand the power (and limitations) of common cryptographic tools
- Understand the formal approach to security in modern cryptography

#### Course Background

- Some probability
- Algorithms and complexity
- General Mathematical Maturity
  - Understand what is (is not) a proper definition
  - Know how to write a proof

#### Coming Up...

- Classic Ciphers + Frequency Analysis
- Before Next Class
  - Read: Katz and Lindell 1.3
  - Plus Katz and Lindell 1.1-1.2 if you haven't already