Homework 4 Due date: Friday, April 7th 11:30 AM

Question 1 (20 points)

Find all of the points on the elliptic curve $E: y^2 = x^3 + 2x + 1$ over \mathbb{Z}_{11} . How many points are on this curve? (Don't forget about the identity!)

Question 2 (20 points)

- a. Show how to compute discrete logarithms efficiently in the group $(\mathbb{Z}_N, +)$ if the base g is a generator of \mathbb{Z}_N . (Note: in the group $(\mathbb{Z}_N, +)$ the identity is 0 and $g^4 = g + g + g + g + g$ mod N. Recall that g is a generator of \mathbb{Z}_N if and only if $\mathbf{gcd}(g, N) = 1$.).
- b. Show that if $ab = c \mod N$ and gcd(b, N) = d, then
 - i. d divides c (written d|c);
 - ii. $a \cdot (b/d) = (c/d) \mod (N/d)$; and
 - iii. gcd(b/d, N/d) = 1.
- c. Using the above operations show how to compute discrete logarithms efficiently in the group \mathbb{Z}_N even if the base g is not a generator of \mathbb{Z}_N .

Question 3 (10 points)

Consider the following key-exchange protocol Π :

- a. Alice chooses uniformly random strings $k, r \in \{0, 1\}^n$, and sends $s := k \oplus r$ to Bob.
- b. Bob chooses uniform $t \in \{0,1\}^n$ and sends $u := s \oplus t$ to Alice.
- c. Alice computes $w := u \oplus r$ and sends w to Bob.
- d. Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Is Π secure? Justify your answer with a security proof or by providing a concrete attack.

Question 4 (25 points)

Show that for any CPA-secure public-key encryption scheme for single-bit messages, the length of the ciphertext must be super logarithmic in the security parameter. **Hint:** Suppose that the length of a ciphertext was $|c| = k \log n$ for some constant k. What is the size of the ciphertext space C?

Question 5 (25 points)

Prove formally that the El Gamal encryption scheme is not CCA-secure.