Course Business

- Homework 3 Released

- I am travelling early next week to attend a workshop on data-privacy
- Midterm Exam Grading (in progress via gradescope)
- Guest Lecture (Professor Kate)

Cryptography CS 555

Week 9:

- Number Theory

Readings: Katz and Lindell Chapter 7, B.1, B.2, 8.1-8.2

CS 555: Week 9: Topic 2 Number Theory/Public KeyCryptography

Public Key Cryptography

- Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
- Obi-Wan and Yoda don't have time to meet privately and generate one
- Obi-Wan and Yoda share an asymmetric key with Anakin
- Can they use Anakin to exchange a secret key?

Public Key Cryptography

- Key-Exchange Problem:
- Obi-Wan and Yoda want to communicate securely
- Suppose that
- Obi-Wan and Yoda don't have time to meet privately and generate one
- Obi-Wan and Yoda share an asymmetric key with Anakin
- Can they use Anakin to exchange a secret key?
- Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

THRUSTED YOU!

Public Key Cryptography

- Key-Exchange Problem:
- Obi-Wan and Yoda want to communicate securely
- Suppose that
- Obi-Wan and Yoda don't have time to meet privately and generate one
- Obi-Wan and Yoda share an asymmetric key with Anakin
- Can they use Anakin to exchange a secret key?
- Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.
- Need for Public-Key Crypto
- We can solve the key-exchange problem using public-key cryptography.
- No solution is known using symmetric key cryptography alone

Public Key Cryptography

- Suppose we have n people and each pair of people want to be able to maintain a secure communication channel.
- How many private keys per person?
- Answer: n-1
- Key Explosion Problem

- n can get very big if you are Google or Amazon!

Number Theory

- Key tool behind (most) public key-crypto
- RSA, El-Gamal, Diffie-Hellman Key Exchange
- Aside: don't worry we will still use symmetric key crypto
- It is more efficient in practice
- First step in many public key-crypto protocols is to generate symmetric key
- Then communicate using authenticated encryption

Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For $\mathrm{i}=1, \ldots, \mathrm{~N}$
if N / i is an integer then Output I

Running time: $\mathrm{O}(\mathrm{N})$ steps
Correctness: Always returns a factor

Did we just break RSA?

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N
For $\mathrm{i}=1, \ldots, \mathrm{~N}$
if N / i is an integer then Output I

We measure running time of an arithmetic algorithm (multiply, divide, GCD, remainder) in terms of the number of bits necessary to encode the inputs.

How many bits ||N\| to encode N? Answer: $\|N\|=\log _{2}(\mathrm{~N})$

Running time: $\mathrm{O}(\mathrm{N})$ steps
Correctness: Always returns a factor

Polynomial Time Operations on Integers

- Addition
- Multiplication
- Division with Remainder
- Input: a and divisor b
- Output: quotient q and remainder $r<b$ such that

$$
\boldsymbol{a}=q \boldsymbol{b}+r
$$

Convenient Notation: $\mathbf{r}=\mathbf{a} \bmod \mathbf{b}$

- Greatest Common Divisor
- Example: $\operatorname{gcd}(9,15)=3$
- Extended GCD(a,b)
- Output integers X, Y such that

$$
X \boldsymbol{a}+Y \boldsymbol{b}=\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})
$$

Polynomial Time Operations on Integers

- Division with Remainder
- Input: a and b
- Output: quotient q and remainder $r<b$ such that

$$
\boldsymbol{a}=q \boldsymbol{b}+r
$$

- Greatest Common Divisor
- Key Observation: if $\boldsymbol{a}=q \boldsymbol{b}+r$

Then $\operatorname{gcd}(\mathbf{a}, \mathbf{b})=\operatorname{gcd}(\mathbf{r}, \mathbf{b})=\operatorname{gcd}(\mathbf{a} \bmod \mathbf{b}, \mathbf{b})$

Proof:

- Let $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Then d divides both a and b . Thus, d also divides $\mathrm{r}=\mathrm{a}-\mathrm{qb}$.

$$
\rightarrow \mathrm{d}=\operatorname{gcd}(\mathbf{a}, \mathbf{b}) \leq \operatorname{gcd}(\mathrm{r}, \mathbf{b})
$$

- Let $d^{\prime}=\operatorname{gcd}(r, b)$. Then d^{\prime} divides both b and r. Thus, d^{\prime} also divides $a=q b+r$. $\rightarrow \operatorname{gcd}(\mathbf{a}, \mathbf{b}) \geq \operatorname{gcd}(\mathrm{r}, \mathbf{b})=\mathrm{d}^{\prime}$
- Conclusion: $\mathrm{d}=\mathrm{d}^{\prime}$.

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The following operations are polynomial time in $\|a\|$ and $\|b\|$ and $\|N\|$.

1. Compute $[\mathbf{a} \bmod \mathbf{N}]$
2. Compute sum $[(\mathbf{a}+\mathbf{b}) \bmod \mathbf{N}]$, difference $[(\mathbf{a}-\mathbf{b}) \bmod \mathbf{N}]$ or product [ab mod N]
3. Determine whether a has an inverse \mathbf{a}^{-1} such that $1=\left[\mathbf{a a}^{-1} \bmod \mathbf{N}\right]$
4. Find \mathbf{a}^{-1} if it exists
5. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The

1. Compute $[\mathbf{a} \bmod \mathrm{N}]$

Remark: Part 3 and 4 use extended GCD algorithm

2. Compute sum [ab mod ${ }^{1}$
3. Det ormine whether a has an inverse \mathbf{a}^{-1} such that $1=\left[\mathbf{a a}^{-1} \bmod \mathbf{N}\right]$
4. Find a^{-1} if it exists
5. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The following operations are polynomial time in in $\|a\|$ and $\|b\|$ and $\|N\|$.

1. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

Attempt 1:

$$
X=1
$$

$$
x=x * a
$$

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in $\|a\|,\|b\|$ and $\|N\|$.

1. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

Attempt 2:

If $(b=0)$ return 1
$X[0]=a$;
For $i=1, \ldots, \log _{2}(b)+1$

$$
X[\mathrm{i}]=\mathrm{X}[\mathrm{i}-1]^{*} \mathrm{X}[\mathrm{i}-1]
$$

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in $\|a\|,\|b\|$ and $\|N\|$.

1. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

Fixed Algorithm:

```
If (b=0) return 1
X[0]=a;
For i=1,\ldots,log}2(b)+
    X[i] = X[i-1]*X[i-1] mod N
        // Invariant: X[i] = 程i
        [\mp@subsup{\mathbf{a}}{}{\mathbf{b}}\operatorname{mod}\mathbf{N}]=\mp@subsup{\boldsymbol{a}}{}{\mp@subsup{\sum}{i}{}\boldsymbol{b}[i]2}\mp@subsup{2}{}{i}}\operatorname{mod}\mathbf{N
    = \prod
```


More Polynomial Time Operations on Integers

(Sampling) Let

$$
\begin{gathered}
\mathbb{Z}_{N}=\{1, \ldots, N\} \\
\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}
\end{gathered}
$$

Examples:

$$
\begin{gathered}
\mathbb{Z}_{6}^{*}=\{1,5\} \\
\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}
\end{gathered}
$$

More Polynomial Time Operations on Integers

(Sampling) Let

$$
\begin{gathered}
\mathbb{Z}_{N}=\{1, \ldots, N\} \\
\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}
\end{gathered}
$$

- There is a probabilistic polynomial time algorithm (in $|\mathrm{N}|$) to sample from \mathbb{Z}_{N}^{*} and \mathbb{Z}_{N}
- Algorithm to sample from \mathbb{Z}_{N}^{*} is allowed to output "fail" with negligible probability in $\|N\|$.
- Conditioned on not failing sample must be uniform.

Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Example 1: $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$

$$
[3 \times 7 \bmod 8]=[21 \bmod 8]=[5 \bmod 8] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Proof: $\operatorname{gcd}(x y, N)=d$
Suppose $d>1$ then for some prime p and integer q we have $d=p q$.
Now p must divide N and xy (by definition) and hence p must divide either x or y .
(WLOG) say p divides x. In this case $\operatorname{gcd}(x, N)=p>1$, which means $x \notin \mathbb{Z}_{\mathrm{N}}^{*}$

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have

$$
\left[x^{\phi(N)} \bmod \mathrm{N}\right]=1
$$

Example: $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}, \phi(8)=4$

$$
\begin{gathered}
{\left[3^{4} \bmod 8\right]=[9 \times 9 \bmod 8]=1} \\
{\left[5^{4} \bmod 8\right]=[25 \times 25 \bmod 8]=1} \\
{\left[7^{4} \bmod 8\right]=[49 \times 49 \bmod 8]=1}
\end{gathered}
$$

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{\mathrm{N}}^{*}$ we have $\left[x^{\boldsymbol{\phi}(\boldsymbol{N})} \bmod \mathrm{N}\right]=1$

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Recap

- Polynomial time algorithms (in bit lengths $\|\boldsymbol{a}\|,\|\boldsymbol{b}\|$ and $\|\mathbf{N}\|$) to do important stuff
- GCD(a,b)
- Find inverse \mathbf{a}^{-1} of a such that $1=\left[a^{-1} \bmod \mathbf{N}\right]$ (if it exists)
- PowerMod: [ab $\bmod \mathbf{N}]$
- Draw uniform sample from $\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}$
- Randomized PPT algorithm

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have

$$
\left[x^{\phi(N)} \bmod \mathrm{N}\right]=1
$$

Example: $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}, \phi(8)=4$

$$
\begin{gathered}
{\left[3^{4} \bmod 8\right]=[9 \times 9 \bmod 8]=1} \\
{\left[5^{4} \bmod 8\right]=[25 \times 25 \bmod 8]=1} \\
{\left[7^{4} \bmod 8\right]=[49 \times 49 \bmod 8]=1}
\end{gathered}
$$

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{\mathrm{N}}^{*}$ we have $\left[x^{\boldsymbol{\phi}(\boldsymbol{N})} \bmod \mathrm{N}\right]=1$

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Example 0: Let p be a prime so that $\mathbb{Z}^{*}=\{1, \ldots, p-1\}$

$$
\boldsymbol{\phi}(\boldsymbol{p})=p\left(1-\frac{1}{p}\right)=p-1
$$

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(N)=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Example 1: $N=9=3^{2} \quad\left(m=1, e_{1}=2\right)$

$$
\boldsymbol{\phi}(\mathbf{9})=\prod_{i=1}^{1}\left(p_{i}-1\right) p_{i}^{2-1}=2 \times 3
$$

More Useful Facts

Example 1: $N=9=3^{2} \quad\left(m=1, e_{1}=2\right)$

$$
\boldsymbol{\phi}(\mathbf{9})=\prod_{i=1}^{1}\left(p_{i}-1\right) p_{i}^{2-1}=2 \times 3
$$

Double Check: $\mathbb{Z}_{9}^{*}=\{1,2,4,5,7,8\}$

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(N)=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Example 2: $\mathrm{N}=15=5 \times \frac{3}{2} \quad\left(\mathrm{~m}=2, \mathrm{e}_{1}=\mathrm{e}_{2}=1\right)$

$$
\boldsymbol{\phi}(\mathbf{1 5})=\prod_{i=1}^{2}\left(p_{i}-1\right) p_{i}^{1-1}=(5-1)(3-1)=8
$$

More Useful Facts

Example 2: $\mathrm{N}=15=5 \underset{2}{5} \times 3 \quad\left(\mathrm{~m}=2, \mathrm{e}_{1}=\mathrm{e}_{2}=1\right)$

$$
\boldsymbol{\phi}(\mathbf{1 5})=\prod_{i=1}\left(p_{i}-1\right) p_{i}^{1-1}=(5-1)(3-1)=8
$$

Double Check: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
I count 8 elements in \mathbb{Z}_{15}^{*}

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Special Case: $\mathrm{N}=\mathrm{pq} \quad(\mathrm{p}$ and q are distinct primes)

$$
\boldsymbol{\phi}(\boldsymbol{N})=(p-1)(q-1)
$$

More Useful Facts

Special Case: $\mathrm{N}=\mathrm{pq} \quad$ (p and q are distinct primes)

$$
\boldsymbol{\phi}(\boldsymbol{N})=(p-1)(q-1)
$$

Proof Sketch: If $x \in \mathbb{Z}_{\mathrm{N}}$ is not divisible by p or q then $x \in \mathbb{Z}_{\mathrm{N}}^{*}$. How many elements are not in $\mathbb{Z}_{\mathrm{N}}^{*}$?

- Multiples of $p: p, 2 p, 3 p, \ldots, p q$ (q multiples of p)
- Multiples of $q: q, 2 q, \ldots, p q \quad$ (p multiples of q)
- Double Counting? $\mathrm{N}=\mathrm{pq}$ is in both lists. Any other duplicates?
- No! $\mathrm{cq}=\mathrm{dp} \rightarrow \mathrm{q}$ divides d (since, $\operatorname{gcd}(\mathrm{p}, \mathrm{q})=1$) and consequently $\mathrm{d} \geq q$
- Hence, $\mathrm{dp} \geq p q=N$

More Useful Facts

Special Case: $\mathrm{N}=\mathrm{pq} \quad$ (p and q are distinct primes)

$$
\boldsymbol{\phi}(\boldsymbol{N})=(p-1)(q-1)
$$

Proof Sketch: If $x \in \mathbb{Z}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of $p: p, 2 p, 3 p, \ldots, p q$ (q multiples of p)
- Multiples of $q: q, 2 q, \ldots, p q \quad$ (p multiples of q)
- Answer: $p+q-1$ elements are not in \mathbb{Z}^{*}

$$
\begin{gathered}
\phi(N)=N-\left(p^{N}+q-1\right) \\
=\mathbf{p q}-\mathbf{p}-\mathbf{q}+\mathbf{1}=(p-\mathbf{1})(\mathbf{q}-\mathbf{1})
\end{gathered}
$$

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation o (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$
\mathrm{g} \circ \mathrm{e}=\mathrm{g}=\mathrm{e} \circ \mathrm{~g}
$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ \mathrm{~h}=\mathrm{e}$. We say that h is the inverse of g.
- (Associativity:) For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}$ we have

$$
\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)
$$

We say that the group is abelian if

- (Commutativity:) For all $\mathrm{g}, \mathrm{h} \in \mathbb{G}$ we have $\mathrm{g} \circ \mathrm{h}=\mathrm{h} \circ \mathrm{g}$

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when o denotes addition modulo N
- Identity: 0 , since $0 \circ x=[0+x \bmod N]=[x \bmod N]$.
- Inverse of x ? Set $x^{-1}=N-x$ so that $\left[x^{-1}+x \bmod N\right]=[N-x+x \bmod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1 , since $10 x=[1(x) \bmod N]=[x \bmod N]$.
- Inverse of x ? Run extended GCD to obtain integers a and b such that

$$
a x+b N=\operatorname{gcd}(x, N)=1
$$

Observe that: $x^{-1}=a$. Why?

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when o denotes addition modulo N
- Identity: 0 , since $0 \circ x=[0+x \bmod N]=[x \bmod N]$.
- Inverse of x ? Set $x^{-1}=N-x$ so that $\left[x^{-1}+x \bmod N\right]=[N-x+x \bmod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1 , since $10 x=[1(x) \bmod N]=[x \bmod N]$.
- Inverse of x ? Run extended GCD to obtain integers a and b such that

$$
a x+b N=\operatorname{gcd}(x, N)=1
$$

Observe that: $\mathrm{x}^{-1}=\mathrm{a}$, since $[\mathrm{ax} \bmod \mathrm{N}]=[1-\mathrm{bN} \bmod \mathrm{N}]=1$

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over G) and let $a, b, c \in \mathbb{G}$. If $a \circ c=b \circ c$ then $a=b$.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$
\begin{aligned}
\mathrm{a} \circ \mathrm{c}=\mathrm{b} \circ \mathrm{c} & \rightarrow(\mathrm{a} \circ \mathrm{c}) \circ c^{-1}=(\mathrm{b} \circ \mathrm{c}) \circ c^{-1} \\
& \rightarrow \mathrm{a} \circ\left(\mathrm{c} \circ c^{-1}\right)=\mathrm{b} \circ\left(\mathrm{c} \circ c^{-1}\right) \\
& \rightarrow \mathrm{a} \circ(e)=\mathrm{b} \circ(e) \\
& \rightarrow \mathrm{a}=\mathrm{b}
\end{aligned}
$$

(Remark: it is not to difficult to show that a group has a unique identity and that inverses are unique).

Group Exponentiation

Definition: Let \mathbb{G} be a group with a binary operation o (over G) let m be a positive integer and let $g \in \mathbb{G}$ be a group element then we define

$$
g^{m}=g \circ \cdots \circ g
$$

m times
Theorem: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|$ and let $g \in$ \mathbb{G} be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Group Exponentiation

Theorem 8.14: Let \mathbb{G} be finite group with size $\mathrm{m}=|\mathbb{G}|$ and let $\mathrm{g} \in \mathbb{G}$ be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G}=\left\{g_{1}, \ldots, g_{m}\right\}$ then we claim

$$
g_{1} \circ \cdots \circ g_{m}=\left(g \circ g_{1}\right) \circ \cdots \circ\left(g \circ g_{m}\right)
$$

Why? If $\left(g \circ g_{i}\right)=\left(g \circ g_{j}\right)$ then $g_{j}=g_{i}$ (by Lemma 8.13)

Group Exponentiation

Theorem 8.14: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G}=\left\{g_{1}, \ldots, g_{m}\right\}$ then we claim

$$
g_{1} \circ \cdots \circ g_{m}=\left(g \circ g_{1}\right) \circ \cdots \circ\left(g \circ g_{m}\right)
$$

Because \mathbb{G} is abelian we can re-arrange terms

$$
g_{1} \circ \cdots \circ g_{m}=\left(g_{1} \circ \cdots \circ g_{m}\right)\left(g^{m}\right)
$$

By Lemma 8.13 we have $1=g^{m}$.

Group Exponentiation

Theorem 8.14: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Corollary 8.15: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|>1$ and let $g \in \mathbb{G}$ be a group element then for any integer x we have $g^{x}=g^{[x \bmod m]}$.
Proof: $g^{x}=g^{q m+[x \bmod m]}=g^{[x \bmod m]}$, where q is unique integer such that $\mathrm{x}=\mathrm{qm}+[x \bmod m]$

Group Exponentiation

Special Case: \mathbb{Z}_{N}^{*} is a group of size $\boldsymbol{\phi}(\boldsymbol{N})$ so we have now proved

Corollary 8.22: For any $g \in \mathbb{Z}_{\mathrm{N}}^{*}$ and integer x we have

$$
\left[g^{x} \bmod \mathrm{~N}\right]=\left[g^{[x \bmod \phi(N)]} \bmod \mathrm{N}\right]
$$

Chinese Remainder Theorem

Theorem: Let $\mathrm{N}=\mathrm{pq}(\boldsymbol{w h e r e} \operatorname{gcd}(\mathrm{p}, \mathrm{q})=1)$ be given and let $f: \mathbb{Z}_{\mathrm{N}} \rightarrow \mathbb{Z}_{p} \times$ \mathbb{Z}_{q} be defined as follows

$$
f(x)=([x \bmod p],[x \bmod q])
$$

then

- f is a bijective mapping (invertible)
- f and its inverse $f^{-1}: \mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{\mathrm{N}}$ can be computed efficiently
- $f(x+y)=f(x)+f(y)$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have $f(x) f(y)=f(x y)$

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [1153 mod 15]
$\mathrm{f}(11)=([-1 \bmod 3],[1 \bmod 5])$
$f\left(11^{53}\right)=\left(\left[(-1)^{53} \bmod 3\right],\left[1^{53} \bmod 5\right]\right)=(-1,1)$
$f^{-1}(-1,1)=11$

Thus, $11=\left[11^{53} \bmod 15\right]$

