Midterm Exam

- Date: Tuesday, October 16th
- Time: 3PM-4:15PM (in class)
- Location: Lawson B134 (right here)
- Closed Book/No Calculator

Note: Our TA (Duc Le) will proctor the midterm **Content:** Includes today's lecture (chapters 1-7) **Preparation:**

- You may prepare one 3x5 inch index card (double sides).
- Take the practice final
- Review homework solutions, book, lecture notes etc.

Final Exam (Tentative)

- **Date:** Tuesday, December 11th (Subject to Change*)
- Time: 8AM (Subject to Change*)
- Location: LWSN B151 (Subject to Change*)
- * Purdue will not reimburse you for flight re-booking fees

Cryptography CS 555

Week 8:

• One-Way Functions (Part 2)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

We saw how to build PRGs from One-Way-Permutations...

PRFs from PRGs $G(x):=G_0(x) || G_1(x)$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Proof:

Claim 1: For any t(n) and any PPT attacker A we have $\left|\Pr\left[A\left(r_1 \parallel \cdots \parallel r_{t(n)}\right)\right] - \Pr\left[A\left(G(s_1) \parallel \cdots \parallel G(s_{t(n)})\right)\right]\right| < negl(n)$

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Proof by Triangle Inequality: Fix j Adv_j $= \left| Pr\left[A\left(r_1 \parallel \cdots \parallel r_{j+1} \parallel G\left(s_{j+2}\right) \ldots \parallel G\left(s_{t(n)}\right) \right) \right]$

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$ Proof

$$\begin{aligned} \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \\ &\leq \sum_{j < t(n)} Adv_j \\ &\leq t(n) \times negl(n) = negl(n) \end{aligned}$$

Hybrid H₀ (Real Construction)

Hybrid H₁ (Real Construction)

Hybrid H₂

Hybrid H_n (truly random function!)

Hybrid H₁ vs H₂

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 2: Attacker who makes t(n) oracle queries to our function cannot distinguish H_i from H_{i+1} (except with negligible probability).

Proof: Indistinguishability follows by Claim 1

Let x_1, \dots, x_t denote the t queries. Let y_1, \dots, y_t denote first i bits of each query.

 $(H_{i+1} \text{ vs } H_i : \text{ replaced } G(r_{y_i}) \text{ with } r_{y_i \parallel 0} \parallel r_{y_i \parallel 1})$

Triangle Inequality

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 2: Attacker who makes t(n) queries to F_k (or f) cannot distinguish H_2 from the real game (except with negligible probability).

 \rightarrow Triangle Inequality: Attacker cannot distinguish $F_k(H_0)$ from f (H_n) .

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Are OWFs Necessary for Private Key Crypto

- Previous results show that OWFs are <u>sufficient</u>.
- Can we build Private Key Crypto from weaker assumptions?

 Short Answer: No, OWFs are also <u>necessary</u> for most private-key crypto primitives

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Question:** why can we assume that we have an PRG with expansion

Question: why can we assume that we have an PRG with expansion 2n?

Answer: Last class we showed that a PRG with expansion factor $\ell(n) = n + 1$. Implies the existence of a PRG with expansion p(n) for any polynomial.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim: G is also a OWF!

- (Easy to Compute?) \checkmark
- (Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Reduction: Assume (for contradiction) that A can invert G(s) with non-negligible probability p(n).

Distinguisher D(y): Simulate A(y)

Output 1 if and only if A(y) outputs x s.t. G(x)=y.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.

Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

Why not?

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Claim 1:** Any PPT A, given G(s), cannot find s except with negligible probability. **Intuition:** If we can invert G(x) then we can distinguish G(x) from a random string. **Fact:** Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

- Why not? Simple counting argument, 2²ⁿ possible y's and 2ⁿ x's.
- Probability there exists such an x is at most 2⁻ⁿ (for a random y)

What other assumptions imply OWFs?

- PRGs \rightarrow OWFs
- (Easy Extension) PRFs \rightarrow PRGs \rightarrow OWFs
- Does secure crypto scheme imply OWFs?
 - CCA-secure? (Strongest)
 - CPA-Secure? (Weaker)
 - EAV-secure? (Weakest)
 - As long as the plaintext is longer than the secret key
 - Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts m₀,m₁ and is given c=Enc_K(m_b) for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Input: 4n bits

(For simplicity assume that **Enc**_k accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Claim: f is a OWF

Reduction: If attacker A can invert f, then attacker A' can break EAVsecurity as follows. Given $c=Enc_k(m_b;r)$ run $A(c||m_0)$. If A outputs (m',k',r') such that $f(m',k',r') = c||m_0$ then output 0; otherwise 1;

$MACs \rightarrow OWFs$

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.

 \rightarrow OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

- Looks similar to definition of PRGs
 - X_n is distribution $G(U_n)$ and
 - Y_n is uniform distribution $U_{\ell(n)}$ over strings of length $\ell(n)$.

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Theorem 7.32: Let t(n) be a polynomial and let $P_n = X_n^{t(n)}$ and $Q_n = Y_n^{t(n)}$ then the ensembles $\{P_n\}_{n \in \mathbb{N}}$ and $\{Q_n\}_{n \in \mathbb{N}}$ are <u>computationally</u> <u>indistinguishable</u>

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Fact: Let $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ be <u>computationally indistinguishable</u> and let $\{Z_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ be <u>computationally indistinguishable</u> Then

 $\{X_n\}_{n\in\mathbb{N}}$ and $\{Z_n\}_{n\in\mathbb{N}}$ are <u>computationally indistinguishable</u>

Practice Problems

- Suppose that f is a OWF. Build another OWF f' s.t. f' is not collision resistant.
- Suppose that h^s(.) is collision resistant hash function mapping 2n-bit strings to n-bit strings. Show that f(s,x)= (s,h^s(x)) is a one-way function.
- Suppose that h^s(.) is collision resistant hash function mapping 2n-bit strings to n-bit strings. Show that f(s,x)= h^s(x) is not necessarily a OWF.
- $f(m, k, r) = Enc_k(m; r) ||m|$ is a OWF. What about $f(m, k, r) = Enc_k(m; r)$? Is it necessarily One-Way?