Recap

- Random Oracle Model
- Pros (Easier Proofs/More Efficient Protocols/Solid Evidence for Security in Practice)
- Cons (Strong Assumption)
- Hashing Applications
- Block Ciphers, SPNs, Feistel Networks, DES
- Meet in the Middle, 3DES
- Building Stream Ciphers
- Linear Feedback Shift Registers (+ Attacks)
- RC4 (+ Attacks)
- Trivium

DES Security

- Best Known attack is brute-force 2^{56}
- Except under unrealistic conditions (e.g., 2^{43} known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
- Output is a few terabytes
- Subsequently keys are cracked in 2^{38} DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked
- Even in 1970 there were objections to the short key length for DES
- How could we increase key-length?

Double DES

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

- Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$
F_{k}^{\prime}(x)=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

Goal: try to find secret key k in time and space $\mathrm{O}\left(n 2^{n}\right)$ given known plaintext/ciphertext pair(s) (x, c $\left.=F_{k}^{\prime}(x)\right)$.

- Solution?

- Key Observation

$$
F_{k_{1}}(x)=F_{k_{2}}^{-1}(\mathrm{c})
$$

- Compute $F_{K}^{-1}(\mathrm{c})$ and $F_{K}(x)$ for each potential n -bit key K and store $\left(K, F_{K}^{-1}(\mathrm{c})\right)$ and $\left(\boldsymbol{K}, F_{K}(\mathrm{x})\right)$
- Sort each list of pairs (by $F_{K}^{-1}(\mathrm{c})$ or $F_{K}(\mathrm{x})$) to find K_{1} and $\mathrm{K}_{\mathbf{2}}$.

Triple DES Variant 1

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}, k_{3}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack Requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$

Triple DES Variant 1

Allows backward compatibility with DES by setting $k_{1}=k_{2}=k_{3}$

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}, k_{3}\right)$ of length 3 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack Requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$

Triple DES Variant 2

Just two keys!

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}\right)$ of length $2 n$ can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{1}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack still requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$
- Key length is still just 112 bits (NIST recommends $128+$ bits)

Triple DES Variant 1

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Standardized in 1999
- Still widely used, but it is relatively slow (three block cipher operations)
- Current gold standard: AES

Stream Cipher vs PRG

- PRG pseudorandom bits output all at once
- Stream Cipher
- Pseudorandom bits can be output as a stream
- RC4, RC5 (Ron's Code)

$$
\begin{aligned}
& s t_{0}:=\operatorname{Init}(\mathrm{s}) \\
& \text { For } \mathrm{i}=1 \text { to } \ell: \\
& \quad\left(y_{i}, \mathrm{st}_{\mathrm{i}}\right):=\text { GetBits }^{\left(s t_{i-1}\right)} \text {) }
\end{aligned}
$$

Output: y_{1}, \ldots, y_{ℓ}

Linear Feedback Shift Register

Linear Feedback Shift Register

- State at time t: $s_{n-1}^{t}, \ldots, s_{1}^{t}, s_{0}^{t}$ (n registers)
- Feedback Coefficients: $\mathrm{S} \subseteq\{0, \ldots, n\}$

Linear Feedback Shift Register

- State at time t: $s_{n-1}^{t}, \ldots, s_{1}^{t}, s_{0}^{t}$ (n registers)
- Feedback Coefficients: $S \subseteq\{0, \ldots, n-1\}$
- State at time $\mathbf{t + 1}: \oplus_{i \in S} s_{i}^{t}, s_{n-1}^{t}, \ldots, s_{1}^{t}$,

$$
s_{n-1}^{t+1}=\oplus_{i \in S} s_{i}^{t}, \quad \text { and } \quad s_{i}^{t+1}=s_{i+1}^{t} \text { for } \mathrm{i}<\mathrm{n}-1
$$

Linear Feedback Shift Register

- Observation 1: First n bits of output reveal initial state

$$
y_{1}, \ldots, y_{n}=s_{0}^{0}, s_{1}^{0}, \ldots, s_{n-1}^{0}
$$

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0}
\end{gathered}
$$

Linear Feedback Shift Register

- Observation 1: First n bits of output reveal initial state

$$
y_{1}, \ldots, y_{n}=s_{0}^{0}, s_{1}^{0}, \ldots, s_{n-1}^{0}
$$

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0} \bmod 2
\end{gathered}
$$

Linear Feedback Shift Register

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0} \bmod 2 \\
\vdots \\
y_{2 n}=y_{2 n-1} x_{n-1}+\cdots+y_{n} x_{0} \bmod 2
\end{gathered}
$$

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Feedback:

$$
\begin{gathered}
s_{n-1}^{t+1}=\bigoplus_{t \in S} S_{t^{\prime}}^{t} \\
S_{n-1}^{t+1}=g\left(s_{0}^{t}, S_{1}^{t}, \ldots, S_{n-1}^{t}\right)
\end{gathered}
$$

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination:

$$
y_{t+1}=f\left(s_{0}^{t}, s_{1}^{t}, \ldots, s_{n-1}^{t}\right)
$$

- Important: f must be balanced!

$$
\operatorname{Pr}[f(x)=1] \approx \frac{1}{2}
$$

Trivium (2008)

- Won the eSTREAM competition
- Currently, no known attacks are better than brute force
- Couples Output from three nonlinear Feedback Shift Registers
- First 4*288 "output bits" are discared

Combination Generator

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination:

$$
y_{t+1}=f\left(s_{0}^{t}, s_{1}^{t}, \ldots, s_{n-1}^{t}\right)
$$

- Important: f must be balanced!

$$
\operatorname{Pr}[f(x)=1] \approx \frac{1}{2}
$$

Feedback Shift Registers

- Good performance in hardware
- Performance is less ideal for software

Cryptography CS 555

Week 7:

- Hash Functions from Block Ciphers
- Block Ciphers, AES
- Stream Ciphers
- One Way Functions
- Readings: Katz and Lindell Chapter 6.2.5, 6.3, 7.1-7.4

CS 555: Week 7: Topic 1 Block Ciphers (Continued)

Hash Functions from Block Ciphers

- Davies-Meyer Construction from block cipher F_{K}

$$
H(K, x)=F_{K}(x)
$$

Theorem: If $F:\{0,1\}^{\lambda} \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (Concrete: Need roughly $q \approx 2^{\lambda / 2}$ queries to find collision)

- Ideal Cipher Model: For each key K model F_{K} as a truly random permutation which may only be accessed in black box manner.
- (Equivalent to Random Oracle Model)

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
- Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
- Vincent Rijmen and Joan Daemen
- No serious vulnerabilities found in four other finalists
- Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4×4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
- AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
- SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
- ShiftRows - shift ith row by i bytes
- MixColumns - permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in$ Perm $_{8}$).
- S is not part of a secret key, but can be used with one

$$
\mathrm{f}(\mathrm{x})=\mathrm{S}(\mathrm{x} \oplus k)
$$

Input to round: x, k (k is subkey for current round)

1. Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$

Note: there are only n ! possible bit mixing permutations of [n] as opposed to $2^{n!}$ Permutations of $\{0,1\}^{n}$
2. Substitution: $x:=S_{1}\left(x_{1}\right)\left\|S_{2}\left(x_{2}\right)\right\| \cdots \| S_{8}\left(x_{8}\right)$
3. Bit Mixing Permutation: permute the bits of x to obtain the round output

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_{k} is a permutation.
- Why? Composing permutations f,g results in another permutation $h(x)=g(f(x))$.

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
- AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
- SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
- ShiftRows
- MixColumns

AddRoundKey:
Round Key (16 Bytes)

11110000			
01100010	\ldots		
00110000		\ldots	
11111111			\ldots

11111111			
11000001	...		
11111100		...	
10000000			...

State

State

S(11111111)			
$\mathbf{S (1 1 0 0 0 0 0 1)}$	$S(\ldots)$		
$\mathbf{S (1 1 1 1 1 1 0 0)}$		$S(\ldots)$	
$\mathbf{S (1 0 0 0 0 0 0 0)}$			$S(\ldots)$

Shift Rows

$S(11111111)$			
	S(11000001)	$S(\ldots)$	
$S(\ldots)$		$S(11111100)$	
		$S(\ldots)$	$\mathbf{S (1 0 0 0 0 0 0 0)}$

State

$S(11111111)$			
	S(11000001)	$S(\ldots)$	
$S(\ldots)$		$S(11111100)$	
		$S(\ldots)$	$S(10000000)$

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in $b>0$ bytes then output differs in 5-b bytes (minimum)

AES

- We just described one round of the SPN
- AES uses
- 10 rounds (with 128 bit key)
- 12 rounds (with 192 bit key)
- 14 rounds (with 256 bit key)

AES Attacks?

- Side channel attacks affect a few specific implementations
- But, this is not a weakness of AES itself
- Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Related-Key Attack on 11 round version of AES
- Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
- recovers 256 -bit key in time 2^{70}
- But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Related Key Attack on 192-bit and 256 bit version of AES
- recovers 256-bit key in time $2^{99.5}$.
- (2011) Key Recovery attack on AES-128 in time $2^{126.2}$.
- Improved to $2^{126.0}$ for AES-128, $2^{189.9}$ for AES-192 and $2^{254.3}$ for AES-256
- First public cipher approved by NSA for Top Secret information
- SECRET level (AES-128,AES-192 \& AES-256), TOP SECRET level (AES-128,AES-192 \& AES-256)

NIST Recommendations

Ok, as CRHF and in Digital Signatures

Ok, to use for HMAC, Key Derivation and as PRG

Linear Cryptanalysis

$$
y=F_{K}(x)
$$

Definition: Fixed set of input bits $i_{1}, \ldots, i_{\text {in }}$ and output bits $i_{1}{ }^{\prime}, \ldots, i_{\text {out }}{ }^{\prime}$ are said to have ε-linear bias if the following holds

$$
\left|\operatorname{Pr}\left[x_{i_{1}} \oplus x_{i_{2}} \ldots \oplus x_{i_{i_{n}}} \oplus y_{i_{1}} \oplus y_{i_{2^{\prime}}} \ldots \oplus y_{i_{\text {out }}}\right]\right|=\varepsilon
$$

(randomness taken over the selection of input x and secret key K)

Linear Cryptanalysis

Definition: Fixed set of input bits $i_{1}, \ldots, i_{\text {in }}$ and output bits $i_{1}{ }^{\prime}, \ldots, i_{\text {out }}{ }^{\prime}$ are said to have ε-linear bias if the following holds

$$
\left|\operatorname{Pr}\left[x_{i_{1}} \oplus x_{i_{2}} \ldots \oplus x_{i_{i_{n}}} \oplus y_{i_{1}} \oplus y_{i_{2} \prime} \ldots \oplus y_{i_{o u t}^{\prime}}\right]\right|=\varepsilon
$$

(randomness taken over the selection of input x and secret key K, $y=F_{K}(x)$)

Matsui: DES can be broken with just 2^{43} known plaintext/ciphertext pairs.

- Lots of examples needed!
- But the examples do not need to be chosen plaintext/ciphertext pairs...
- One encrypted file can provide a large amounts of known plaintext

Differential Cryptanalysis

Definition: We say that the differential $\left(\triangle_{x}, \triangle_{y}\right)$ occurs with probability p in the keyed block cipher F if

$$
\left|\operatorname{Pr}\left[F_{K}\left(x_{1}\right) \oplus F_{K}\left(x_{1} \oplus \triangle_{x}\right)=\Delta_{y}\right]\right| \geq p
$$

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires: well over $\frac{1}{p}$ chosen plaintext-ciphertext pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

CS 555: Week 8: Topic 1: One Way Functions

What are the minimal assumptions necessary for symmetric keycryptography?

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Definition: A function f: $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is one way if it is

1. (Easy to compute) There is a polynomial time algorithm (in $|x|$) for computing $f(x)$.
2. (Hard to Invert) Select $x \leftarrow\{0,1\}^{n}$ uniformly at random and give the attacker input $1^{\mathrm{n}}, \mathrm{f}(\mathrm{x})$. The probability that a PPT attacker outputs x^{\prime} such that $\mathrm{f}\left(x^{\prime}\right)=f(x)$ is negligible.

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Key Takeaway: One-Way Functions is a necessary and sufficient assumption for most of symmetric key cryptography.

- From OWFs we can construct PRGs, PRFs, Authenticated Encryption
- From eavesdropping secure encryption (weakest) notion we can construct OWFs

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Remarks:

- A function that is not one-way is not necessarily always easy to invert (even often)
- Any such function can be inverted in time 2^{n} (brute force)
- Length-preserving OWF: $|f(x)|=|x|$
- One way permutation: Length-preserving + one-to-one

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Remarks:

1. $f(x)$ does not necessarily hide all information about x.
2. If $f(x)$ is one way then so is $f^{\prime}(x)=f(x) \| \operatorname{LSB}(x)$.

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Remarks:

1. Actually we usually consider a family of one-way functions

$$
f_{I}:\{\mathbf{0}, \mathbf{1}\}^{I} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{I}
$$

Candidate One-Way Functions (OWFs)

$f_{p, g}(x)=\left[g^{x} \bmod p\right]$

(Discrete Logarithm Problem)

Note: The existence of OWFs implies $\mathrm{P} \neq N P$ so we cannot be absolutely certain that they do exist.

Hard Core Predicates

- Recall that a one-way function f may potentially reveal lots of information about input
- Example: $f\left(x_{1}, x_{2}\right)=\left(x_{1}, g\left(x_{2}\right)\right)$, where g is a one-way function.
- Claim: f is one-way (even if $f\left(x_{1}, x_{2}\right)$ reveals half of the input bits!)

Hard Core Predicates

Definition: A predicate hc: $\{0,1\}^{*} \rightarrow\{0,1\}$ is called a hard-core predicate of a function f if

1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function negl such that we have

$$
\mathbf{P r}_{x \leftarrow\{0,1\}^{n}}\left[A\left(1^{n}, f(x)\right)=\operatorname{hc}(x)\right] \leq \frac{1}{2}+\operatorname{negl}(n)
$$

Attempt 1: Hard-Core Predicate

Consider the predicate

$$
\mathrm{hc}(\mathrm{x})=\oplus_{i=1}^{n} x_{i}
$$

Hope: hc is hard core predicate for any OWF.

Counter-example:

$$
\mathrm{f}(\mathrm{x})=\left(\mathrm{g}(\mathrm{x}), \oplus_{i=1}^{n} x_{i}\right)
$$

Trivial Hard-Core Predicate

Consider the function

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}, \ldots, x_{n-1}
$$

f has a trivial hard core predicate

$$
\mathrm{hc}(\mathrm{x})=x_{n}
$$

Not useful for crypto applications (e.g., f is not a OWF)

Attempt 3: Hard-Core Predicate

Consider the predicate

$$
\mathrm{hc}(\mathrm{x}, \mathrm{r})=\oplus_{i=1}^{n} x_{i} r_{i}
$$

(the bits r_{1}, \ldots, r_{n} will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f , hc is a hard-core predicate of $g(x, r)=(f(x), r)$.

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we can construct a PRG G with expansion factor $\ell(n)=n+1$.

Construction:

$$
G(s)=f(s) \| \operatorname{hc}(s)
$$

Intuition: $f(s)$ is actually uniformly distributed

- s is random
- $f(s)$ is a permutation
- Last bit is hard to predict given $f(s)$ (since hc is hard-core for f)

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=n+1$. Then for any polynomial $p($.$) there is a$ PRG with expansion factor $\mathrm{p}(\mathrm{n})$.

Construction:

- $G(x)=y| | b . \quad(n+1$ bits)
- $\mathrm{G}^{1}(\mathrm{x})=\mathrm{G}(\mathrm{y})| | \mathrm{b} \quad$ ($\mathrm{n}+2$ bits)
- $G^{i+1}(x)=G(y)| | b \quad$ where $G^{i}(x)=y| | b(n+2$ bits $)$

Any Beyond

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=n+1$. Then for any polynomial $p($.$) there is a$ PRG with expansion factor $\mathrm{p}(\mathrm{n})$.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCAsecure encryption schemes and secure MACs.

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

$$
\text { Let } \left.\mathrm{G}(\mathrm{x})=\mathrm{G}_{0}(\mathrm{x}) \| \mathrm{G}_{1}(\mathrm{x}) \quad \text { (first/last } \mathrm{n} \text { bits of output }\right)
$$

$$
F_{K}\left(x_{1}, \ldots, x_{n}\right)=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right) \ldots\right)
$$

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

Proof:
Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have $\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[\boldsymbol{A}\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Proof by Hybrids: Fix j

$$
\begin{aligned}
& A d v_{j} \\
& =\mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{j+1}\left\|G\left(s_{j+2}\right) \ldots\right\| G\left(s_{t(n)}\right)\right)\right]
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have $\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)$
Proof

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right] \mid \\
& \leq \sum_{j<t(n)} \operatorname{Ad} v_{j} \\
& \leq t(n) \times \operatorname{negl}(n)=\operatorname{negl}(n)
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have $\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)$
Proof

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right] \mid \\
& \leq \sum_{j<t(n)} \operatorname{Ad} v_{j} \\
& \leq t(n) \times \operatorname{negl}(n)=\operatorname{negl}(n)
\end{aligned}
$$

Hybrid H_{1}

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=n+1$. Then for any polynomial $p($.$) there is a$ PRG with expansion factor $p(n)$.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCAsecure encryption schemes and secure MACs.

Are OWFs Necessary for Private Key Crypto

- Previous results show that OWFs are sufficient.
- Can we build Private Key Crypto from weaker assumptions?
- Short Answer: No, OWFs are also necessary for most private-key crypto primitives

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Question: why can we assume that we have an PRG with expansion $2 n$?

Answer: Last class we showed that a PRG with expansion factor $\ell(n)=n+1$. Implies the existence of a PRG with expansion $p(n)$ for any polynomial.

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.

Claim: G is also a OWF!
(Easy to Compute?) \checkmark
(Hard to Invert?)
Intuition: If we can invert $\mathrm{G}(\mathrm{x})$ then we can distinguish $\mathrm{G}(\mathrm{x})$ from a random string.

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Reduction: Assume (for contradiction) that A can invert $\mathrm{G}(\mathrm{s})$ with nonnegligible probability $p(n)$.
Distinguisher D(y): Simulate A(y)
Output 1 if and only if $A(y)$ outputs x s.t. $G(x)=y$.

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Claim 1: Any PPT A, given $G(s)$, cannot find s except with negligible probability.
Intuition for Reduction: If we can find x s.t. $G(x)=y$ then y is not random.
Fact: Select a random 2 n bit string y . Then (whp) there does not exist x such that $G(x)=y$.

Why not?

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Claim 1: Any PPT A, given $G(s)$, cannot find s except with negligible probability. Intuition: If we can invert $\mathrm{G}(\mathrm{x})$ then we can distinguish $\mathrm{G}(\mathrm{x})$ from a random string. Fact: Select a random $2 n$ bit string y. Then (whp) there does not exist x such that $G(x)=y$.

- Why not? Simple counting argument, $2^{2 n}$ possible y^{\prime} s and $2^{n} x^{\prime}$ s.
- Probability there exists such an x is at most $2^{-\mathrm{n}}$ (for a random y)

What other assumptions imply OWFs?

- PRGs \rightarrow OWFs
- (Easy Extension) PRFs \rightarrow PRGs \rightarrow OWFs
- Does secure crypto scheme imply OWFs?
- CCA-secure? (Strongest)
- CPA-Secure? (Weaker)
- EAV-secure? (Weakest)
- As long as the plaintext is longer than the secret key
- Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts $\mathrm{m}_{0}, \mathrm{~m}_{1}$ and is given $\mathrm{c}=\mathrm{Enc}_{\mathrm{k}}\left(\mathrm{m}_{\mathrm{b}}\right)$ for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $\boldsymbol{f}(\boldsymbol{m}, \boldsymbol{k}, \boldsymbol{r})=\boldsymbol{E n c}_{\boldsymbol{k}}(\boldsymbol{m} ; \boldsymbol{r}) \| \boldsymbol{m}$.
Input: 4n bits
(For simplicity assume that Enc $_{\mathrm{k}}$ accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $\boldsymbol{f}(\boldsymbol{m}, \boldsymbol{k}, \boldsymbol{r})=\boldsymbol{E n c}_{\boldsymbol{k}}(\boldsymbol{m} ; \boldsymbol{r}) \| \boldsymbol{m}$.
Claim: f is a OWF
Reduction: If attacker A can invert f, then attacker A' can break EAVsecurity as follows. Given $\mathrm{c}=\mathrm{Enc}_{\mathrm{k}}\left(\mathrm{m}_{\mathrm{b}} ; \mathrm{r}\right)$ run $\mathrm{A}\left(\mathrm{c} \| m_{0}\right)$. If A outputs $\left(\mathrm{m}^{\prime}, \mathrm{k}^{\prime}, \mathrm{r}^{\prime}\right)$ such that $\mathrm{f}\left(\mathrm{m}^{\prime}, \mathrm{k}^{\prime}, \mathrm{r}^{\prime}\right)=\mathrm{c} \| m_{0}$ then output 0 ; otherwise 1 ;

MACs \rightarrow OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.
\rightarrow OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_{ℓ} or Y_{ℓ}.

The advantage of a distinguisher D is

$$
A d v_{D, \ell}=\left|P r_{s \leftarrow X_{\ell}}[D(s)=1]-P r_{s \leftarrow Y_{\ell}}[D(s)=1]\right|
$$

Definition: We say that an ensemble of distributions $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ are computationally indistinguishable if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$
A d v_{D, n} \leq \operatorname{negl}(n)
$$

