Recap

- Random Oracle Model
 - Pros (Easier Proofs/More Efficient Protocols/Solid Evidence for Security in Practice)
 - Cons (Strong Assumption)
- Hashing Applications
- Block Ciphers, SPNs, Feistel Networks, DES
- Meet in the Middle, 3DES
- Building Stream Ciphers
 - Linear Feedback Shift Registers (+ Attacks)
 - RC4 (+ Attacks)
 - Trivium

DES Security

- Best Known attack is brute-force 2⁵⁶
 - Except under unrealistic conditions (e.g., 2⁴³ known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
 - Output is a few terabytes
 - Subsequently keys are cracked in 2³⁸ DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked
- Even in 1970 there were objections to the short key length for DES
- How could we increase key-length?

Double DES

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

• Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

Goal: try to find secret key k in time and space $O(n2^n)$ given known plaintext/ciphertext pair(s) (x, $c = F'_k(x)$).

- Solution?
 - Key Observation

$$F_{k_1}(x) = F_{k_2}^{-1}(c)$$

- Compute $F_K^{-1}(c)$ and $F_K(x)$ for each potential n-bit key K and store $(K, F_K^{-1}(c))$ and $(K, F_K(x))$
- Sort each list of pairs (by $F_K^{-1}(c)$ or $F_K(x)$) to find K₁ and K₂.

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Allows backward compatibility with DES by setting $k_1 = k_2 = k_3$

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 3n can be defined by $E'(x) = E \left(\sum_{k=1}^{n-1} (k_k k_3) \right)$

$$\Gamma_k(x) = \Gamma_{k_3}(\Gamma_{k_2}(\Gamma_{k_1}(x)))$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Just two keys!

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by $F'_k(x) = F_{k_1}\left(F_{k_2}^{-1}\left(F_{k_1}(x)\right)\right)$
- Meet-in-the-Middle Attack still requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$
- Key length is still just 112 bits (NIST recommends 128+ bits)

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Standardized in 1999

- Still widely used, but it is relatively slow (three block cipher operations)
- Current gold standard: AES

Stream Cipher vs PRG

- PRG pseudorandom bits output all at once
- Stream Cipher
 - Pseudorandom bits can be output as a stream
 - RC4, RC5 (Ron's Code)

```
st<sub>0</sub> := Init(s)

For i=1 to \ell:

(y_i, st_i):=GetBits(st<sub>i-1</sub>)

Output: y_1, ..., y_\ell
```


- State at time t: s_{n-1}^t , ..., s_1^t , s_0^t (n registers)
- Feedback Coefficients: $S \subseteq \{0, ..., n\}$

- State at time t: s_{n-1}^t , ..., s_1^t , s_0^t (n registers)
- Feedback Coefficients: $S \subseteq \{0, ..., n-1\}$
- State at time t+1: $\bigoplus_{i \in S} s_i^t$, s_{n-1}^t , ..., s_1^t ,

$$s_{n-1}^{t+1} = \bigoplus_{i \in S} s_i^t, \quad \text{and} \quad s_i^{t+1} = s_{i+1}^t \text{ for } i < n-1$$

Output at time t+1: $y_{t+1} = s_0^t$

• Observation 1: First n bits of output reveal initial state

$$y_1, \dots, y_n = s_0^0, s_1^0, \dots, s_{n-1}^0$$

• **Observation 2**: Next n bits allow us to solve for n unknowns $x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & otherwise \end{cases}$

$$y_{n+1} = y_n x_{n-1} + \dots + y_1 x_0$$

• Observation 1: First n bits of output reveal initial state

$$y_1, \dots, y_n = s_0^0, s_1^0, \dots, s_{n-1}^0$$

• **Observation 2**: Next n bits allow us to solve for n unknowns $x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & otherwise \end{cases}$

$$y_{n+1} = y_n x_{n-1} + \dots + y_1 x_0 \mod 2$$

• Observation 2: Next n bits allow us to solve for n unknowns

$$x_{i} = \begin{cases} 1 & \text{if } i \in S \\ 0 & otherwise \end{cases}$$

$$y_{n+1} = y_{n}x_{n-1} + \dots + y_{1}x_{0} \mod 2$$

$$\vdots$$

$$y_{2n} = y_{2n-1}x_{n-1} + \dots + y_{n}x_{0} \mod 2$$

Removing Linearity

Attacks exploited linear relationship between state and output bits

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination: $y_{t+1} = s_0^t$ Non linear function $y_{t+1} = f(s_0^t, s_1^t, \dots, s_{n-1}^t)$
- **Important**: f must be balanced!

$$\Pr[f(x) = 1] \approx \frac{1}{2}$$

Trivium (2008)

- Won the eSTREAM competition
- Currently, no known attacks are better than brute force
- Couples Output from three nonlinear Feedback Shift Registers
- First 4*288 "output bits" are discared

Combination Generator

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination: $y_{t+1} = s_0^t$ Non linear function $y_{t+1} = f(s_0^t, s_1^t, \dots, s_{n-1}^t)$
- **Important**: f must be balanced!

$$\Pr[f(x) = 1] \approx \frac{1}{2}$$

Feedback Shift Registers

- Good performance in hardware
- Performance is less ideal for software

Cryptography CS 555

Week 7:

- Hash Functions from Block Ciphers
- Block Ciphers, AES
- Stream Ciphers
- One Way Functions
- **Readings:** Katz and Lindell Chapter 6.2.5, 6.3, 7.1-7.4

CS 555: Week 7: Topic 1 Block Ciphers (Continued)

Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher F_K

$$H(K, x) = F_K(x)$$

Theorem: If $F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (**Concrete:** Need roughly $q \approx 2^{\lambda/2}$ queries to find collision)

- Ideal Cipher Model: For each key K model F_{κ} as a truly random permutation which may only be accessed in black box manner.
 - (Equivalent to Random Oracle Model)

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
 - Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
 - Vincent Rijmen and Joan Daemen
 - No serious vulnerabilities found in four other finalists
 - Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4x4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
 - **SubBytes:** Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
 - **ShiftRows** shift ith row by i bytes
 - MixColumns permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in Perm_8$).
- S is not part of a secret key, but can be used with one $f(x) = S(x \oplus k)$

Input to round: x, k (k is subkey for current round)

- **1.** Key Mixing: Set $x \coloneqq x \oplus k$
- **2.** Substitution: $\mathbf{x} \coloneqq S_1(\mathbf{x}_1) \parallel S_2(\mathbf{x}_2) \parallel \cdots \parallel S_8(\mathbf{x}_8)$
- **3.** Bit Mixing Permutation: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2ⁿ! Permutations of {0,1}ⁿ

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_k is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256

Key Mixing

- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
 - SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
 - ShiftRows
 - MixColumns

Permutation

AddRo	oundKey:							
	4		Round Key (16 Bytes)					
			00001111					
			10100011					
			11001100					
	State	\oplus	01111111					
	State	v						
11110000								
01100010								
00110000								
11111111								
		11111111						
		11000001						
		11111100						
		1000000				22		

SubBytes (Apply S-box)

S(1111111)			
S(11000001)	S()		
S(11111100)		S()	
S(1000000)			S()

AddRoundKey:											
							Round	key (16	Bytes)		
	State										
	State										
S(11111111)											
S(11000001)	S()										
S(11111100)		S()									
S(1000000)				S()							
Shift Rows											
			S(111	11111)							
					S(110	00001)	S()				
			S()				S(111	11100)			
							S()		S(1000	0000)	

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

- We just described one round of the SPN
- AES uses
 - 10 rounds (with 128 bit key)
 - 12 rounds (with 192 bit key)
 - 14 rounds (with 256 bit key)
AES Attacks?

- Side channel attacks affect a few specific implementations
 - But, this is not a weakness of AES itself
 - Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Related-Key Attack on 11 round version of AES
 - Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
 - recovers 256-bit key in time 2⁷⁰
 - But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Related Key Attack on 192-bit and 256 bit version of AES
 - recovers 256-bit key in time 2^{99.5}.
- (2011) Key Recovery attack on AES-128 in time 2^{126.2}.
 - Improved to 2^{126.0} for AES-128, 2^{189.9} for AES-192 and 2^{254.3} for AES-256
- First public cipher approved by NSA for Top Secret information
 - SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)

NIST Recommendations						Ok, as CRHF and in Digital Signatures			Ok, to use for HMAC, Key Derivation and as PRG	
0 Ic	bits-security is onger acceptabl	no le								
	Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus	Dis Loga Key	crete arithm Group	Elliptic Curve	Hash (A) Hash (B)		
	(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1**		
	2016 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-512/2 SHA3-22	4 224 4	
	2016 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/2 SHA3-25	6 256 SHA-1 6	
	2016 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-384 SHA3-38	4 SHA-224 4 SHA-512/224	
	2016 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-512 SHA3-51	SHA-256 SHA-512/256 2 SHA-384 2 SHA-512 SHA3-512	
					CONTRACTOR OF STREET, S				Notice and the second of the second	

Recommendations from Other Groups (Including NIST): www.keylength.com

Linear Cryptanalysis

$$y=F_K(x)$$

Definition: Fixed set of input bits i_1, \ldots, i_{in} and output bits i_1', \ldots, i_{out}' are said to have ε -linear bias if the following holds

$$\left| Pr[x_{i_1} \oplus x_{i_2} \dots \oplus x_{i_{i_n}} \oplus y_{i_1'} \oplus y_{i_2'} \dots \oplus y_{i_{out'}}] \right| = \varepsilon$$

(randomness taken over the selection of input x and secret key K)

Linear Cryptanalysis

Definition: Fixed set of input bits $i_1, ..., i_{in}$ and output bits $i_1', ..., i_{out}'$ are said to have ε -linear bias if the following holds $\left| Pr[x_{i_1} \oplus x_{i_2} ... \oplus x_{i_{in}} \oplus y_{i_{1'}} \oplus y_{i_{2'}} ... \oplus y_{i_{out'}}] \right| = \varepsilon$

(randomness taken over the selection of input x and secret key K, $y = F_K(x)$)

Matsui: DES can be broken with just 2^{43} known plaintext/ciphertext pairs.

- Lots of examples needed!
- But the examples do not need to be chosen plaintext/ciphertext pairs...
- One encrypted file can provide a large amounts of known plaintext

Differential Cryptanalysis

Definition: We say that the differential $(\triangle_x, \triangle_y)$ occurs with probability p in the keyed block cipher F if $|Pr[F_K(x_1) \oplus F_K(x_1 \oplus \triangle_x) = \triangle_y]| \ge p$

Can Lead to Efficient (Round) Key Recovery Attacks **Exploiting Weakness Requires:** well over $\frac{1}{p}$ chosen plaintext-ciphertext pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

CS 555: Week 8: Topic 1: One Way Functions

What are the minimal assumptions necessary for symmetric keycryptography?

f(x) = y

Definition: A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is one way if it is

- **1.** (Easy to compute) There is a polynomial time algorithm (in |x|) for computing f(x).
- **2.** (Hard to Invert) Select $x \leftarrow \{0,1\}^n$ uniformly at random and give the attacker input 1^n , f(x). The probability that a PPT attacker outputs x' such that f(x') = f(x) is negligible.

f(x) = y

Key Takeaway: One-Way Functions is a necessary and sufficient assumption for most of symmetric key cryptography.

- From OWFs we can construct PRGs, PRFs, Authenticated Encryption
- From eavesdropping secure encryption (weakest) notion we can construct OWFs

f(x) = y

Remarks:

- A function that is not one-way is not necessarily always easy to invert (even often)
- Any such function can be inverted in time 2ⁿ (brute force)
- Length-preserving OWF: |f(x)| = |x|
- One way permutation: Length-preserving + one-to-one

f(x) = y

Remarks:

- 1. f(x) does not necessarily hide all information about x.
- 2. If f(x) is one way then so is $f'(x) = f(x) \parallel LSB(x)$.

f(x) = y

Remarks:

1. Actually we usually consider a family of one-way functions $f_I: \{0, 1\}^I \to \{0, 1\}^I$

Candidate One-Way Functions (OWFs)

$f_{p,g}(x) = [g^x \mod p]$

(Discrete Logarithm Problem)

Note: The existence of OWFs implies $P \neq NP$ so we cannot be *absolutely certain* that they do exist.

Hard Core Predicates

- Recall that a one-way function f may potentially reveal lots of information about input
- **Example**: $f(x_1, x_2) = (x_1, g(x_2))$, where g is a one-way function.
- Claim: f is one-way (even if f(x₁,x₂) reveals half of the input bits!)

Hard Core Predicates

Definition: A predicate $hc: \{0,1\}^* \rightarrow \{0,1\}$ is called a hard-core predicate of a function f if

- 1. (Easy to Compute) hc can be computed in polynomial time
- 2. (Hard to Guess) For all PPT attacker A there is a negligible function negl such that we have

$$\mathbf{Pr}_{x \leftarrow \{0,1\}^n}[A(1^n, f(x)) = \operatorname{hc}(x)] \le \frac{1}{2} + \operatorname{negl}(n)$$

Attempt 1: Hard-Core Predicate

Consider the predicate

$$hc(\mathbf{x}) = \bigoplus_{i=1}^n x_i$$

Hope: hc is hard core predicate for any OWF.

Counter-example:

$$f(x) = (g(x), \bigoplus_{i=1}^n x_i)$$

Trivial Hard-Core Predicate

Consider the function

$$f(x_1,...,x_n) = x_1,...,x_{n-1}$$

f has a trivial hard core predicate $hc(x) = x_n$

Not useful for crypto applications (e.g., f is not a OWF)

Attempt 3: Hard-Core Predicate

Consider the predicate

 $hc(\mathbf{x},\mathbf{r}) = \bigoplus_{i=1}^n x_i r_i$

(the bits $r_1, ..., r_n$ will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hard-core predicate of g(x,r)=(f(x),r).

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we can construct a PRG G with expansion factor $\ell(n) = n + 1$.

Construction:

 $G(s) = f(s) \parallel hc(s)$

Intuition: f(s) is actually uniformly distributed

- s is random
- f(s) is a permutation
- Last bit is hard to predict given f(s) (since hc is hard-core for f)

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Construction:

- G(x) = y || b. (n+1 bits)
- $G^{1}(x) = G(y)||b (n+2 bits)$
- $G^{i+1}(x) = G(y)||b$ where $G^i(x) = y||b(n+2)|$

Any Beyond

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Let $G(x) = G_0(x) ||G_1(x)$ (first/last n bits of output)

$$F_{K}(x_{1},\ldots,x_{n})=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right)\ldots\right)$$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Proof:

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Proof by Hybrids: Fix j $Adv_{j} = \left| Pr\left[A\left(r_{1} \parallel \cdots \parallel r_{j+1} \parallel G\left(s_{j+2}\right) \ldots \parallel G\left(s_{t(n)}\right) \right) \right]$

Claim 1: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ &\leq \sum_{j < t(n)} Adv_j \\ &\leq t(n) \times negl(n) = negl(n) \end{aligned}$$

Claim 1: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ &\leq \sum_{j < t(n)} Adv_j \\ &\leq t(n) \times negl(n) = negl(n) \end{aligned}$$

Hybrid H₁

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Are OWFs Necessary for Private Key Crypto

- Previous results show that OWFs are <u>sufficient</u>.
- Can we build Private Key Crypto from weaker assumptions?

 Short Answer: No, OWFs are also <u>necessary</u> for most private-key crypto primitives

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Question:** why can we assume that we have an PRG with expansion

2n?

Answer: Last class we showed that a PRG with expansion factor $\ell(n) = n + 1$. Implies the existence of a PRG with expansion p(n) for any polynomial.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim: G is also a OWF!

- (Easy to Compute?) \checkmark
- (Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Reduction: Assume (for contradiction) that A can invert G(s) with non-negligible probability p(n).

Distinguisher D(y): Simulate A(y)

Output 1 if and only if A(y) outputs x s.t. G(x)=y.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.

Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

Why not?

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Claim 1:** Any PPT A, given G(s), cannot find s except with negligible probability. **Intuition:** If we can invert G(x) then we can distinguish G(x) from a random string. **Fact:** Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

- Why not? Simple counting argument, 2²ⁿ possible y's and 2ⁿ x's.
- Probability there exists such an x is at most 2⁻ⁿ (for a random y)
What other assumptions imply OWFs?

- PRGs \rightarrow OWFs
- (Easy Extension) PRFs \rightarrow PRGs \rightarrow OWFs
- Does secure crypto scheme imply OWFs?
 - CCA-secure? (Strongest)
 - CPA-Secure? (Weaker)
 - EAV-secure? (Weakest)
 - As long as the plaintext is longer than the secret key
 - Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts m₀,m₁ and is given c=Enc_K(m_b) for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Input: 4n bits

(For simplicity assume that **Enc**_k accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Claim: f is a OWF

Reduction: If attacker A can invert f, then attacker A' can break EAVsecurity as follows. Given $c=Enc_k(m_b;r)$ run $A(c||m_0)$. If A outputs (m',k',r') such that $f(m',k',r') = c||m_0$ then output 0; otherwise 1;

$MACs \rightarrow OWFs$

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.

 \rightarrow OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$