
Recap

• Random Oracle Model
• Pros (Easier Proofs/More Efficient Protocols/Solid Evidence for Security in Practice)
• Cons (Strong Assumption)

• Hashing Applications
• Block Ciphers, SPNs, Feistel Networks, DES
• Meet in the Middle, 3DES
• Building Stream Ciphers

• Linear Feedback Shift Registers (+ Attacks)
• RC4 (+ Attacks)
• Trivium

1



DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes) 

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
• How could we increase key-length?

2



Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?

3



Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 given known 
plaintext/ciphertext pair(s) (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥 ).

• Solution? 
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝑘𝑘2
−1 c

• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential n-bit key K and store 𝑲𝑲, 𝐹𝐹𝐾𝐾−1 c and 
𝑲𝑲, 𝐹𝐹𝐾𝐾 x

• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x ) to find K1 and K2.

4



Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

5



Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 3n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

6

Allows backward compatibility 
with DES by setting k1=k2=k3



Triple DES Variant 2

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1, 𝑘𝑘2 of length 2n can be defined 
by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘1 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack still requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

• Key length is still just 112 bits (NIST recommends 128+ bits)

7

Just two keys!



Triple DES Variant 1

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher 
operations)

• Current gold standard: AES

8



Stream Cipher vs PRG

• PRG pseudorandom bits output all at once

• Stream Cipher
• Pseudorandom bits can be output as a stream
• RC4, RC5 (Ron’s Code)

st0 := Init(s)
For i=1 to ℓ:  

(yi,sti):=GetBits(sti-1)
Output: y1,…,yℓ

9



Linear Feedback Shift Register

10



Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers) 
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛

11



Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers) 
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛 − 1
• State at time t+1:⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 ,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, and 𝑠𝑠𝑖𝑖𝑡𝑡+1 = 𝑠𝑠𝑖𝑖+1𝑡𝑡 for i < n − 1

Output at time t+1: 𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

12



Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑠𝑠𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0

13



Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑠𝑠𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

14



Linear Feedback Shift Register

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑠𝑠𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

𝑦𝑦2𝑛𝑛 = 𝑦𝑦2𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦𝑛𝑛𝑥𝑥0 mod 2

15

…



Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Feedback:
𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= 𝑔𝑔 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

16

Non linear function



Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2

17

Non linear function



Trivium (2008)

• Won the eSTREAM competition
• Currently, no known attacks are better than brute force
• Couples Output from three nonlinear Feedback Shift Registers
• First 4*288 “output bits” are discared

18



Tr
iv

iu
m

(2
00

8)

19



Tr
iv

iu
m

(2
00

8)

20



Tr
iv

iu
m

(2
00

8)

21



Combination Generator

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2

22

Non linear function



Feedback Shift Registers

• Good performance in hardware

• Performance is less ideal for software

23



Cryptography
CS 555

Week 7: 
• Hash Functions from Block Ciphers
• Block Ciphers, AES
• Stream Ciphers
• One Way Functions
• Readings: Katz and Lindell Chapter 6.2.5, 6.3, 7.1-7.4

24Fall 2018



CS 555: Week 7: Topic 1
Block Ciphers (Continued)

25



Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher 
then Davies-Meyer construction is a collision-resistant hash function 
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random 
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)

26



Advanced Encryption Standard (AES)

• (1997) US National Institute of Standards and Technology (NIST) announces 
competition for new block cipher to replace DES

• Fifteen algorithms were submitted from all over the world
• Analyzed by NIST

• Contestants given a chance to break competitors schemes

• October, 2000 NIST announces a winner Rijndael
• Vincent Rijmen and Joan Daemen
• No serious vulnerabilities found in four other finalists
• Rijndael was selected for efficiency, hardware performance, flexibility etc… 

27



Advanced Encryption Standard

• Block Size: 128 bits (viewed as 4x4 byte array)
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key XOR with current 

state
• SubBytes: Each byte of state array (16 bytes) is replaced by another byte 

according a a single S-box (lookup table)
• ShiftRows – shift ith row by i bytes
• MixColumns – permute the bits in each column

28



Substitution Permutation Networks

• S-box a public “substitution function” (e.g. S ∈ Perm8).

• S is not part of a secret key, but can be used with one 
f(x) = S x⨁𝑘𝑘

Input to round: x, k (k  is subkey for current round)
1. Key Mixing: Set x ≔ x⨁𝑘𝑘
2. Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

3. Bit Mixing Permutation: permute the bits of x to obtain the round 
output

29

Note: there are only n! 
possible bit mixing 
permutations of [n] as 
opposed to 2n! 
Permutations of {0,1}n



Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed 
function defined by a Substitution 
Permutation Network. Then for any 
keys/number of rounds Fk is a 
permutation.

• Why? Composing permutations f,g
results in another permutation 
h(x)=g(f(x)).

30



Advanced Encryption Standard

• Block Size: 128 bits
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key, XOR 

with current state array
• SubBytes: Each byte of state array (16 bytes) is replaced by 

another byte according a single S-box (lookup table)
• ShiftRows
• MixColumns

31

Permutation

Key Mixing

Substitution



11110000

01100010 …

00110000 …

11111111 …

32

State

00001111

10100011 …

11001100 …

01111111 …

Round Key (16 Bytes)

AddRoundKey:

⨁

11111111

11000001 …

11111100 …

10000000 …

=



33

State

11111111

11000001 …

11111100 …

10000000 …

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

SubBytes (Apply S-box)



34

State

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

Shift Rows

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)



35

State

Mix Columns

Invertible (linear) transformation. 

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)



AES

• We just described one round of the SPN

• AES uses 
• 10 rounds (with 128 bit key)
• 12 rounds (with 192 bit key)
• 14 rounds (with 256 bit key)

36



AES Attacks?

• Side channel attacks affect a few specific implementations
• But, this is not a weakness of AES itself
• Timing attack on OpenSSL’s implementation AES encryption (2005, Bernstein)

• (2009) Related-Key Attack on 11 round version of AES 
• Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
• recovers 256-bit key in time 270

• But AES is 14 round (with 256 bit key) so the attack doesn’t apply in practice
• (2009) Related Key Attack on 192-bit and 256 bit version of AES

• recovers 256-bit key in time 299.5.
• (2011) Key Recovery attack on AES-128 in time 2126.2.

• Improved to 2126.0 for AES-128, 2189.9 for AES-192 and 2254.3 for AES-256
• First public cipher approved by NSA for Top Secret information

• SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)

37

Presenter
Presentation Notes
In April 2005, D.J. Bernstein announced a cache-timing attack that he used to break a custom server that used OpenSSL's AES encryption.[20] The custom server was designed to give out as much timing information as possible (the server reports back the number of machine cycles taken by the encryption operation), and the attack required over 200 million chosen plaintexts.[21] 



NIST Recommendations

38Recommendations from Other Groups (Including NIST): www.keylength.com

Ok, to use for HMAC, Key 
Derivation and as PRG

Ok, as CRHF and in Digital 
Signatures

80 bits-security is no 
longer acceptable

http://www.keylength.com/


Linear Cryptanalysis

𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑛𝑛 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝑜𝑜𝑜𝑜𝑡𝑡′
are said to have 𝜀𝜀-linear bias if the following holds

𝑃𝑃𝑜𝑜 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝜀𝜀

(randomness taken over the selection of input x and secret key K)

39



Linear Cryptanalysis

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑛𝑛 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝑜𝑜𝑜𝑜𝑡𝑡′ are said to 
have 𝜀𝜀-linear bias if the following holds

𝑃𝑃𝑜𝑜 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝜀𝜀

(randomness taken over the selection of input x and secret key K, 𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥 )

Matsui: DES can be broken with just 243 known plaintext/ciphertext pairs.
• Lots of examples needed! 
• But the examples do not need to be chosen plaintext/ciphertext pairs…
• One encrypted file can provide a large amounts of known plaintext

40



Differential Cryptanalysis

Definition: We say that the differential △𝑥𝑥 ,△𝑦𝑦 occurs with 
probability 𝑝𝑝 in the keyed block cipher 𝐹𝐹 if

𝑃𝑃𝑜𝑜 𝐹𝐹𝐾𝐾 𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾 𝑥𝑥1⨁△𝑥𝑥 =△𝑦𝑦 ≥ 𝑝𝑝

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires:  well over 1

𝑝𝑝
chosen plaintext-ciphertext 

pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

41



CS 555: Week 8: Topic 1:
One Way Functions

42

What are the minimal assumptions necessary for symmetric key-
cryptography?



One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Definition: A function f: 0,1 ∗ → 0,1 ∗ is one way if it is 
1. (Easy to compute) There is a polynomial time algorithm (in |x|) for 

computing f(x).
2. (Hard to Invert) Select x ← 0,1 𝑛𝑛 uniformly at random and give the 

attacker input 1n, f(x). The probability that a PPT attacker outputs x’ such 
that f 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) is negligible.

43



One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Key Takeaway: One-Way Functions is a necessary and sufficient 
assumption for most of symmetric key cryptography.
• From OWFs we can construct PRGs, PRFs, Authenticated Encryption
• From eavesdropping secure encryption (weakest) notion we can 

construct OWFs

44



One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
• A function that is not one-way is not necessarily always easy to invert 

(even often)
• Any such function can be inverted in time 2n (brute force)
• Length-preserving OWF: |f(x)| = |x|
• One way permutation: Length-preserving + one-to-one

45



One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. f(x) does not necessarily hide all information about x.
2. If f(x) is one way then so is 𝐟𝐟′ 𝐱𝐱 = 𝐟𝐟 𝐱𝐱 ∥ 𝑳𝑳𝑳𝑳𝑳𝑳 𝒙𝒙 .

46



One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. Actually we usually consider a family of one-way functions

𝒇𝒇𝑰𝑰: 𝟎𝟎,𝟏𝟏 𝑰𝑰 → 𝟎𝟎,𝟏𝟏 𝑰𝑰

47



Candidate One-Way Functions (OWFs)

𝑓𝑓𝑝𝑝,𝑔𝑔 𝑥𝑥 = [𝑔𝑔𝑥𝑥 mo𝑑𝑑 𝑝𝑝]
(Discrete Logarithm Problem)

Note: The existence of OWFs implies P ≠ 𝑁𝑁𝑃𝑃 so we cannot be absolutely
certain that they do exist.

50



Hard Core Predicates

• Recall that a one-way function f may potentially reveal lots of 
information about input

• Example: f(x1,x2)=(x1,g(x2)), where g is a one-way function.
• Claim: f is one-way (even if f(x1,x2) reveals half of the input bits!)

51



Hard Core Predicates

Definition: A predicate hc: 0,1 ∗ → 0,1 is called a hard-core 
predicate of a function f if 
1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function 

negl such that we have 

𝐏𝐏𝐏𝐏𝑥𝑥← 0,1 𝑖𝑖 𝐴𝐴 1𝑛𝑛, 𝑓𝑓(𝑥𝑥) = hc(𝑥𝑥) ≤
1
2

+ 𝑛𝑛𝑜𝑜𝑔𝑔𝑛𝑛(𝑛𝑛)

52



Attempt 1: Hard-Core Predicate

Consider the predicate
hc x = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖

Hope: hc is hard core predicate for any OWF.

Counter-example:

f(x) = (g(x), ⨁𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖)

53



Trivial Hard-Core Predicate

Consider the function
f(x1,…,xn) = x1,…,xn-1

f has a trivial hard core predicate
hc x = 𝑥𝑥𝑛𝑛

Not useful for crypto applications (e.g., f is not a OWF)

54



Attempt 3: Hard-Core Predicate

Consider the predicate
hc x, r = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑜𝑜𝑖𝑖
(the bits 𝑜𝑜1,…, 𝑜𝑜𝑛𝑛 will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a 
hard-core predicate of g(x,r)=(f(x),r).

55



Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we 
can construct a PRG G with expansion factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1.

Construction: 
𝐺𝐺 𝑠𝑠 = 𝑓𝑓(𝑠𝑠) ∥ hc(𝑠𝑠)

Intuition: f(s) is actually uniformly distributed 
• s is random
• f(s) is a permutation
• Last bit is hard to predict given f(s) (since hc is hard-core for f)

56



Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Construction: 
• G(x) = y||b.        (n+1 bits)
• G1(x) = G(y)||b    (n+2 bits)
• Gi+1(x) = G(y)||b  where Gi (x) = y||b (n+2 bits)

57



Any Beyond

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a 
strong pseudorandom permutation.

58



Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs 
and strong PRPs all exist. 

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs. 

59



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x)     (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …

60



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

61

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

62



PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof by Hybrids: Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒋𝒋+𝟏𝟏 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

63



PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

64



PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

65



Hybrid H1

66

66

r

r0 r1

G0(r0) G1(r0)

……

G0(r1) G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a 
strong pseudorandom permutation.

69



From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs 
and strong PRPs all exist. 

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs. 

70



Are OWFs Necessary for Private Key Crypto

• Previous results show that OWFs are sufficient.

• Can we build Private Key Crypto from weaker assumptions?

• Short Answer: No, OWFs are also necessary for most private-key 
crypto primitives

71



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Question: why can we assume that we have an PRG with expansion 
2n?
Answer: Last class we showed that a PRG with expansion factor 
ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Implies the existence of a PRG with expansion p(n) for 
any polynomial.

72



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.

Claim: G is also a OWF!
(Easy to Compute?) ✓
(Hard to Invert?) 

Intuition: If we can invert G(x) then we can distinguish G(x) from a 
random string. 

73



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible 
probability.
Reduction: Assume (for contradiction) that A can invert G(s) with non-
negligible probability p(n).  
Distinguisher D(y): Simulate A(y) 
Output 1 if and only if A(y) outputs x s.t. G(x)=y. 

74



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible 
probability.
Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random. 
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such 
that G(x)=y.

Why not?

75



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Intuition: If we can invert G(x) then we can distinguish G(x) from a random string. 
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that 
G(x)=y.

• Why not? Simple counting argument, 22n possible y’s and 2n x’s. 
• Probability there exists such an x is at most 2-n (for a random y)

76



What other assumptions imply OWFs?

• PRGs  OWFs
• (Easy Extension) PRFs  PRGs  OWFs

• Does secure crypto scheme imply OWFs?
• CCA-secure? (Strongest)
• CPA-Secure?  (Weaker)
• EAV-secure?  (Weakest)

• As long as the plaintext is longer than the secret key
• Perfect Secrecy?  X (Guarantee is information theoretic)

77



EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Recap: EAV-secure. 
• Attacker picks two plaintexts m0,m1 and is given c=EncK(mb) for 

random bit b.
• Attacker attempts to guess b.
• No ability to request additional encryptions (chosen-plaintext attacks) 
• In fact, no ability to observe any additional encryptions

78



EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝑷𝑷 = 𝑬𝑬𝒏𝒏𝑬𝑬𝒌𝒌 𝒎𝒎; 𝑷𝑷 ‖𝒎𝒎. 
Input: 4n bits
(For simplicity assume that Enck accepts n bits of randomness)

Claim: f is a OWF

79



EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝑷𝑷 = 𝑬𝑬𝒏𝒏𝑬𝑬𝒌𝒌 𝒎𝒎; 𝑷𝑷 ‖𝒎𝒎. 
Claim: f is a OWF
Reduction: If attacker A can invert f, then attacker A’ can break EAV-
security as follows. Given c=Enck(mb;r) run A(c‖𝑚𝑚0). If A outputs 
(m’,k’,r’) such that f(m′, k′, r′) = c‖𝑚𝑚0 then output 0; otherwise 1;

80



MACs OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against 
an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private 
key cryptography.

OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing? 
• OWFs are known to be necessary
• Not known (or believed) to be sufficient.

81



Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from 

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is 

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑜𝑜𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑜𝑜𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are 
computationally indistinguishable if for all PPT distinguishers D, there is a negligible 
function negl(n), such that we have 

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑜𝑜𝑔𝑔𝑛𝑛(𝑛𝑛)

82


	Recap
	DES Security
	Double DES
	Meet in the Middle Attack
	Triple DES Variant 1
	Triple DES Variant 1
	Triple DES Variant 2
	Triple DES Variant 1
	Stream Cipher vs PRG
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Removing Linearity
	Removing Linearity
	Trivium (2008)
	Trivium (2008)
	Trivium (2008)
	Trivium (2008)
	Combination Generator
	Feedback Shift Registers
	Cryptography�CS 555
	CS 555: Week 7: Topic 1�Block Ciphers (Continued)
	Hash Functions from Block Ciphers
	Advanced Encryption Standard (AES)
	Advanced Encryption Standard
	Substitution Permutation Networks
	Substitution Permutation Networks
	Advanced Encryption Standard
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	AES
	AES Attacks?
	NIST Recommendations
	Linear Cryptanalysis
	Linear Cryptanalysis
	Differential Cryptanalysis
	CS 555: Week 8: Topic 1:�One Way Functions
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	Candidate One-Way Functions (OWFs)
	Hard Core Predicates
	Hard Core Predicates
	Attempt 1: Hard-Core Predicate
	Trivial Hard-Core Predicate
	Attempt 3: Hard-Core Predicate
	Using Hard-Core Predicates
	Arbitrary Expansion
	Any Beyond
	Any Beyond
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	Hybrid H1
	From OWFs (Recap)
	From OWFs (Recap)
	Are OWFs Necessary for Private Key Crypto
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	What other assumptions imply OWFs?
	EAV-Secure Crypto  OWFs
	EAV-Secure Crypto  OWFs
	EAV-Secure Crypto  OWFs
	MACs OWFs
	Computational Indistinguishability

