Homework 2

- Due: Tuesday, October $2^{\text {nd }}$ at 3PM (beginning of class)
- Please Typeset Your Solutions (LaTeX, Word etc...)
- You may collaborate, but must write up your own solutions in your own words

Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2 n bits to n bits
$H^{s}(x)=$

1. Break x into n bit segments $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{d}}$ (pad last block by 0 's)
2. $z_{0}=0^{n}$ (initialization)
3. For $\mathrm{i}=1$ to d

$$
\text { 1. } z_{i}=h^{s}\left(z_{i-1} \| x_{\mathrm{i}}\right)
$$

4. Output $z_{d+1}=h^{s}\left(z_{d} \| L\right)$ where $L:=x_{d+1}$ encodes $|x|$ as an n-bit string

Cryptography CS 555

Week 6:

- Random Oracle Model
- Applications of Hashing
- Stream Ciphers (time permitting)
- Block Ciphers
- Feistel Networks
- DES, 3DES

Readings: Katz and Lindell Chapter 6-6.2.4

Recap

- Hash Functions
- Definition
- Merkle-Damgard
- HMAC construction
- Generic Attacks on Hash Function
- Birthday Attack
- Small Space Birthday Attacks (cycle detection)
- Pre-Computation Attacks: Time/Space Tradeoffs

Week 6: Topic 1:

Random Oracle Model + Hashing Applications

(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x, y s.t. $H(x)=H(y)$

How to formalize this intuition?

- Attempt 1: For all PPT A,

$$
\operatorname{Pr}\left[A_{x, y}\left(1^{n}\right)=(x, y) \text { s.t } H(x)=H(y)\right] \leq \operatorname{negl}(n)
$$

- The Problem: Let x, y be given s.t. $\mathrm{H}(\mathrm{x})=\mathrm{H}(\mathrm{y})$

$$
A_{x, y}\left(1^{n}\right)=(x, y)
$$

- We are assuming that $|\mathrm{x}|>|\mathrm{H}(\mathrm{x})|$. Why?
- $\mathrm{H}(\mathrm{x})=\mathrm{x}$ is perfectly collision resistant! (but with no compression)

(Recap) Keyed Hash Function Syntax

- Two Algorithms
- Gen $\left(1^{n} ; R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: Secret key s
- $H^{s}(m)$ (Hashing Algorithm)
- Input: key s and message $m \in\{0,1\}^{*}$ (unbounded length)
- Output: hash value $H^{s}(m) \in\{0,1\}^{\ell(n)}$
- Fixed length hash function
- $m \in\{0,1\}^{\ell^{\prime}(n)}$ with $\ell^{\prime}(n)>\ell(n)$

Collision Experiment (HashColl $\left.{ }_{A, \Pi}(n)\right)$

$$
\mathrm{s}=\operatorname{Gen}\left(1^{n} ; R\right)
$$

Definition: $(\mathrm{Gen}, \mathrm{H})$ is a collision resistant hash function if
$\forall P P T A \exists \mu$ (negligible) s.t
$\operatorname{Pr}\left[\operatorname{HashColl}_{A, \Pi}(n)=1\right] \leq \mu(n)$

When Collision Resistance Isn't Enough

- Example: Message Commitment
- Alice sends Bob: $\mathrm{H}^{s}(r \| m) \quad$ (e.g., predicted winner of NCAA Tournament)
- Alice can later reveal message (e.g., after the tournament is over)
- Just send r and m (note: r has fixed length)
- Why can Alice not change her message?
- In the meantime Bob shouldn't learn anything about m

- Problem: Let ($\mathrm{Gen}, \mathrm{H}^{\prime}$) be collision resistant then so is (Gen, H)

$$
H^{s}\left(x_{1}, \ldots, x_{d}\right)=H^{\prime s}\left(x_{1}, \ldots, x_{d}\right) \| x_{d}
$$

When Collision Resistance Isn't Enough

- Problem: Let (Gen, H^{\prime}) be collision resistant then so is (Gen,H)

$$
H^{s}\left(x_{1}, \ldots, x_{d}\right)=H^{s}\left(x_{1}, \ldots, x_{d}\right) \| x_{d}
$$

- (Gen,H) definitely does not hide all information about input $\left(x_{1}, \ldots, x_{d}\right)$
- Conclusion: Collision resistance is not sufficient for message commitment

The Tension

- Example: Message Commitment
- Alice sends Bob: $\mathrm{H}^{s}(r \| m) \quad$ (e.g., predicted winners of NCAA Final Four)
- Alice can later reveal message (e.g., after the Final Four is decided)
- In the meantime Bob shouldn't learn anything about m

This is still a reasonable approach in practice!

- No attacks when instantiated with any reasonable candidate (e.g., SHA3)
- Cryptographic hash functions seem to provide "something" beyond collision resistance, but how do we model this capability?

Random Oracle Model

- Model hash function H as a truly random function
- Algorithms can only interact with H as an oracle
- Query: x
- Response: $\mathrm{H}(\mathrm{x})$
- If we submit the same query you see the same response
- If x has not been queried, then the value of $H(x)$ is uniform
- Real World: H instantiated as cryptographic hash function (e.g., SHA3) of fixed length (no Merkle-Damgård)

Back to Message Commitment

- Example: Message Commitment
- Alice sends Bob: H($m \| r$) (e.g., predicted winners of NCAA Final Four)
- Alice can later reveal message (e.g., after the Final Four is decided)
- Just send r and m (note: r has fixed length)
- Why can Alice not change her message?
- In the meantime Bob shouldn't learn anything about m
- Random Oracle Model: Above message commitment scheme is secure (Alice cannot change $m+$ Bob learns nothing about m)
- Information Theoretic Guarantee against any attacker with q queries to H

Random Oracle Model: Pros

- It is easier to prove security in Random Oracle Model
- Suppose we are simulating attacker A in a reduction
- Extractability: When A queries H at x we see this query and learn x (and can easily find $H(x)$)
- Programmability: We can set the value of $H(x)$ to a value of our choice
- As long as the value is correctly distribute i.e., close to uniform
- Both Extractability and Programmability are useful tools for a security reduction!

Random Oracle Claim

Theorem: Any algorithm A that makes q to a random oracle $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ will find a collision with probability at most

$$
\binom{q}{2} 2^{-n}
$$

Proof: For distinct strings x, y we have

$$
\operatorname{Pr}[H(x)=H(y)]=2^{-n}
$$

Let x_{1}, \ldots, x_{q} denote A's queries to random oracle. By the union bound

$$
\operatorname{Pr}\left[\exists i<j \leq q \text { s.t. } H\left(x_{i}\right)=H\left(x_{j}\right)\right] \leq\binom{ q}{2} 2^{-n} .
$$

Key Derivation

- Transform (low-entropy) password into high-entropy secret key K $\operatorname{KDF}(p w d)=H(p w d)$

Suppose that pwd $\in\{1, \ldots, n\}$ and attacker can make at most $q(n)=\sqrt{n}$ queries to random oracle H .

If attacker does not query $\mathrm{H}(\mathrm{pwd})$ then the secret key $\mathrm{K}=\mathrm{H}(\mathrm{pwd})$ can be viewed as a uniformly random λ-bit string!
\rightarrow Probability of violating MAC security with K is at most $\frac{q(n)}{n}+\operatorname{negl}(\lambda)$

Random Oracle Model: Pros

- It is easier to prove security in Random Oracle Model
- Provably secure constructions in random oracle model are often much more efficient (compared to provably secure construction is "standard model"
- Sometimes we only know how to design provably secure protocol in random oracle model

Random Oracle Model: Cons

- Lack of formal justification
- Why should security guarantees translate when we instantiate random oracle with a real cryptographic hash function?
- We can construct (contrived) examples of protocols which are
- Secure in random oracle model...
- But broken in the real world

Random Oracle Model: Justification

"A proof of security in the random-oracle model is significantly better than no proof at all."

- Evidence of sound design (any weakness involves the hash function used to instantiate the random oracle)
- Empirical Evidence for Security
"there have been no successful real-world attacks on schemes proven secure in the random oracle model"

Hash Function Application: Fingerprinting

- The hash $h(x)$ of a file x is a unique identifier for the file
- Collision Resistance \rightarrow No need to worry about another file y with $\mathrm{H}(\mathrm{y})=\mathrm{H}(\mathrm{y})$
- Application 1: Virus Fingerprinting
- Application 2: P2P File Sharing
- Application 3: Data deduplication

Tamper Resistant Storage

Tamper Resistant Storage

Tamper Resistant Storage

Disadvantage: Need all
files to compute hash
m_{1}, m_{2}, m_{3}

$H\left(m_{1}, m_{2}, m_{3}\right)$

$\mathrm{m}_{1}{ }^{\prime}$

Merkle Trees

- Proof of Correctness for data block 2

- Verify that root matches
- Proof consists of just $\log (\mathrm{n})$ hashes
- Verifier only needs to permanently store
 only one hash value

Merkle Trees

Theorem: Let (Gen, h^{s}) be a collision resistant hash function and let $\mathrm{H}^{\mathrm{s}}(\mathrm{m})$ return the root hash in a Merkle Tree. Then H^{s} is collision resistant.

Tamper Resistant Storage

Root: H_{1-4}
$m_{1}, m_{2}, m_{3}, m_{4}$
Send file 2

$$
\mathrm{m}_{2}^{\prime}, \mathrm{h}_{1}, \mathrm{~h}_{3-4}
$$

Commitment Schemes

- Alice wants to commit a message m to Bob
- And possibly reveal it later at a time of her choosing
- Properties
- Hiding: commitment reveals nothing about m to Bob
- Binding: it is infeasible for Alice to alter message

Commitment Hiding ($\left.\operatorname{Hiding}_{A, C o m}(n)\right)$

$\operatorname{Pr}\left[\operatorname{Hiding}_{A, C o m}(n)=1\right] \leq \frac{1}{2}+\mu(n)$

Commitment Binding $\left(\operatorname{Binding}_{A, C o m}(n)\right)$

Binding $_{A, \text { Com }}(n)= \begin{cases}1 & \text { if } \operatorname{commit}\left(r_{0}, \mathbf{m}_{0}\right)=\operatorname{commit}\left(r_{1}, \mathbf{m}_{1}\right) \\ 0 & \text { otherwise }\end{cases}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t }
$$

$\operatorname{Pr}\left[\operatorname{Binding}_{A, C o m}(n)=1\right] \leq \mu(n)$

Secure Commitment Scheme

- Definition: A secure commitment scheme is hiding and binding
- Hiding

$$
\begin{gathered}
\forall P P T A \exists \mu \text { (negligible) s.t } \\
\operatorname{Pr}\left[\operatorname{Hiding}_{A, C o m}(n)=1\right] \leq \frac{1}{2}+\mu(n)
\end{gathered}
$$

- Binding

$$
\begin{gathered}
\forall P P T A \exists \mu \text { (negligible) s.t } \\
\operatorname{Pr}\left[\operatorname{Binding}_{A, C o m}(n)=1\right] \leq \mu(n)
\end{gathered}
$$

Commitment Scheme in Random Oracle Model

- Commit(r, m) $:=\mathrm{H}(r \| m)$
- Reveal(c) := (r, m)

Theorem: In the random oracle model this is a secure commitment scheme.

Binding:
$\operatorname{commit}\left(r_{0}, m_{0}\right)=\operatorname{commit}\left(r_{1}, m_{1}\right) \leftrightarrow H\left(r_{0} \| m_{0}\right)=H\left(r_{1} \| m_{1}\right)$

Commitment Hiding ($\left.\operatorname{Hiding}_{A, C o m}(n)\right)$

$r=\operatorname{Gen}($.
Bit b
$\forall P P T$ A making $q(n)$ queries s.t
$\operatorname{Pr}\left[\operatorname{Hiding}_{A, \operatorname{Com}}(n)=1\right] \leq \frac{1}{2}+\frac{q(n)}{2^{|r|}}$

Commitment Hiding ($\left.\operatorname{Hiding}_{A, C o m}(n)\right)$

Other Applications

- Password Hashing
- Key Derivation
- Later
- Key Encapsulation Mechanism
- RSA-FDH etc...

CS 555: Week 6: Topic 6 Block Ciphers

An Existential Crisis?

- We have used primitives like PRGs, PRFs to build secure MACs, CCASecure Encryption, Authenticated Encryption etc...
- Do such primitives exist in practice?
- How do we build them?

Recap

- Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:

- Practical Constructions of Symmetric Key Primitives

Today's Goals: Block Ciphers

- Sbox
- Confusion Diffusion Paradigm
- Feistel Networks

Pseudorandom Permutation

A keyed function F: $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, which is invertible and "looks random" without the secret key k .

- Similar to a PRF, but
- Computing $\mathrm{F}_{\mathrm{k}}(\mathrm{x})$ and $F_{k}^{-1}(x)$ is efficient (polynomial-time)

Definition 3.28: A keyed function $\mathrm{F}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a strong pseudorandom permutation if for all PPT distinguishers D there is a negligible function μ s.t.

$$
\left|\operatorname{Pr}\left[D^{F_{k}(.), F_{k}^{-1}(.)}\left(1^{n}\right)\right]-\operatorname{Pr}\left[D^{f(.), f^{-1}(.)}\left(1^{n}\right)\right]\right| \leq \mu(n)
$$

Pseudorandom Permutation

Definition 3.28: A keyed function $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a strong pseudorandom permutation if for all PPT distinguishers D there is a negligible function μ s.t.

$$
\left|\operatorname{Pr}\left[D^{F_{k}(.), F_{k}^{-1}(.)}\left(1^{n}\right)\right]-\operatorname{Pr}\left[D^{f(.), f^{-1}(.)}\left(1^{n}\right)\right]\right| \leq \mu(n)
$$

Notes:

- the first probability is taken over the uniform choice of $k \in\{0,1\}^{n}$ as well as the randomness of D.
- the second probability is taken over uniform choice of $f \in \operatorname{Perm}_{n}$ as well as the randomness of D.
- D is never given the secret k
- However, D is given oracle access to keyed permutation and inverse

How many permutations?

- \mid Perm $_{\mathrm{n}} \mid=$?
- Answer: 2^{n} !
- How many bits to store $f \in$ Perm $_{n}$?
- Answer:

$$
\begin{gathered}
\log \left(2^{n}!\right)=\sum_{i=1}^{2^{n}} \log (\mathrm{i}) \\
\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \geq(n-1) \times 2^{n-1}
\end{gathered}
$$

How many bits to store permutations?

$$
\begin{gathered}
\log \left(2^{n}!\right)=\sum_{i=1}^{2^{n}} \log (\mathrm{i}) \\
\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \geq(n-1) \times 2^{n-1}
\end{gathered}
$$

Example: Storing $f \in \operatorname{Perm}_{50}$ requires over 6.8 petabytes (10^{15})
Example 2: Storing $f \in \operatorname{Perm}_{100}$ requires about 12 yottabytes (10^{24})
Example 3: Storing $f \in$ Perm $_{8}$ requires about 211 bytes

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$.
- Secret key: $k=f_{1}, \ldots, f_{16}$ (about 3 KB)
- Input: $x=x_{1}, \ldots, x_{16}$ (16 bytes)

$$
\mathrm{F}_{\mathrm{k}}(x)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{f}_{16}\left(\mathrm{x}_{16}\right)
$$

- Any concerns?

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$.

$$
\mathrm{F}_{\mathrm{k}}(x)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{f}_{16}\left(\mathrm{x}_{16}\right)
$$

- Any concerns?

$$
\begin{gathered}
F_{k}\left(x_{1}\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right) \\
F_{k}\left(0\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}(0)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right)
\end{gathered}
$$

- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $\mathrm{F} \in$ Perm $_{128}$ would not behave this way!

Pseudorandom Permutation Requirements

- Consider a truly random permutation $\mathrm{F} \in$ Perm $_{128}$
- Let inputs x and x^{\prime} differ on a single bit
- We expect outputs $F(x)$ and $F\left(x^{\prime}\right)$ to differ on approximately half of their bits
- $F(x)$ and $F\left(x^{\prime}\right)$ should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!

Confusion-Diffusion Paradigm

- Our previous construction was not pseudorandom, but apply the permutations do accomplish something
- They introduce confusion into F
- Attacker cannot invert (after seeing a few outputs)
- Approach:
- Confuse: Apply random permutations f_{1}, \ldots, , to each block of input to obtain y_{1}, \ldots,
- Diffuse: Mix the bytes y_{1}, \ldots, to obtain byes z_{1}, \ldots,
- Confuse: Apply random permutations f_{1}, \ldots, with inputs z_{1}, \ldots,
- Repeat as necessary

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$.

$$
\mathrm{F}_{\mathrm{k}}(x)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{f}_{16}\left(\mathrm{x}_{16}\right)
$$

- Any concerns?

$$
\begin{gathered}
F_{k}\left(x_{1}\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right) \\
F_{k}\left(0\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}(0)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right)
\end{gathered}
$$

- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $\mathrm{F} \in$ Perm $_{128}$ would not behave this way!

Confusion-Diffusion Paradigm

Example:

- Select 8 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$
- Select 8 extra random permutations on 8 -bits $g_{1}, \ldots, g_{8} \in$ Perm $_{8}$
$\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}\left\|\mathrm{x}_{2}\right\| \cdots \| \mathrm{x}_{8}\right)=$

1. $y_{1}\|\cdots\| y_{8}:=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{8}\left(x_{8}\right)$
2. $z_{1}\|\cdots\| z_{8}:=\operatorname{Mix}\left(y_{1}\|\cdots\| y_{8}\right)$
3. Output: $\mathrm{f}_{1}\left(\mathrm{z}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{z}_{2}\right)\right\| \cdots \| \mathrm{f}_{8}\left(\mathrm{z}_{8}\right)$

Example Mixing Function

$\operatorname{Mix}\left(\mathrm{y}_{1}\|\cdots\| \mathrm{y}_{8}\right)=$

1. For $\mathrm{i}=1$ to 8
2. $\quad \mathrm{z}_{\mathrm{i}}:=\mathrm{y}_{1}[\mathrm{i}]\|\cdots\| \mathrm{y}_{8}[\mathrm{i}]$
3. End For
4. Output: $\mathrm{g}_{1}\left(\mathrm{z}_{1}\right)\left\|\mathrm{g}_{2}\left(\mathrm{z}_{2}\right)\right\| \cdots \| \mathrm{g}_{8}\left(\mathrm{z}_{8}\right)$

$$
\begin{gathered}
\\
\mathrm{z}_{1} \\
\mathrm{y}_{1}=\left[\begin{array}{ccc}
\mathrm{y}_{1}[1] & \cdots & \mathrm{y}_{8}[8] \\
\vdots & \ddots & \vdots \\
\mathrm{y}_{8}=[1] & \cdots & \mathrm{y}_{8}[8]
\end{array}\right]
\end{gathered}
$$

Are We Done?

$\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}\left\|\mathrm{x}_{2}\right\| \cdots \| \mathrm{x}_{8}\right)=$

1. $y_{1}\|\cdots\| y_{8}:=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{8}\left(x_{8}\right)$
2. $z_{1}\|\cdots\| z_{8}:=\operatorname{Mix}\left(y_{1}\|\cdots\| y_{8}\right)$
3. Output: $f_{1}\left(z_{1}\right)\left\|f_{2}\left(z_{2}\right)\right\| \cdots \| f_{8}\left(z_{8}\right)$

$$
\begin{gathered}
\\
\mathrm{y}_{1}=\left[\begin{array}{ccc}
\mathrm{z}_{1} & & \mathrm{z}_{8} \\
\mathrm{y}_{1}[1] \\
\vdots & \cdots & \mathrm{y}_{1}[8] \\
\mathrm{y}_{8}= & \ddots & \vdots \\
\mathrm{y}_{8}[1] & \cdots & \mathrm{y}_{8}[8]
\end{array}\right]
\end{gathered}
$$

Suppose $f_{1}\left(x_{1}\right)=00110101=y_{1}$ and $f_{1}\left(x_{1}{ }_{1}\right)=00110101=y_{1}^{\prime}$
$F_{k}\left(x_{1}^{\prime}{ }_{1} x_{2}\|\cdots\| x_{8}\right)=$

1. $y^{\prime}{ }_{1}\|\cdots\| y_{8}:=f_{1}\left(x_{1}^{\prime}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{8}\left(x_{8}\right)$
2. $z_{1}\|\cdots\| z_{8}^{\prime}:=\operatorname{Mix}\left(y^{\prime}{ }_{1}\|\cdots\| y_{8}\right)$
3. Output: $\mathrm{f}_{1}\left(\mathrm{z}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{z}_{2}\right)\right\|\| \| \mathrm{f}_{8}\left(\mathrm{z}_{8}^{\prime}\right)$

Highly unlikely that a truly random permutation would behave this way!

Substitution Permutation Networks

- S-box a public "substitution function" (e.g.S \in Perm $_{8}$).
- S is not part of a secret key, but can be used with one

$$
\mathrm{f}(\mathrm{x})=\mathrm{S}(\mathrm{x} \oplus k)
$$

- Input to round: x, k (k is subkey for current round)
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$
- Substitution: $\mathrm{x}:=\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: permute the bits of x to obtain the round output

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_{k} is a permutation.
- Why? Composing permutations f,g results in another permutation $h(x)=g(f(x))$.

Remarks

- Want to achieve "avalanche effect" (one bit change should "affect" every output bit)
- Should a S-box be a random byte permutation?
- Better to ensure that $\mathrm{S}(\mathrm{x})$ differs from x on at least 2-bits (for all x)
- Helps to maximize "avalanche effect"
- Mixing Permutation should ensure that output bits of any given S-box are used as input to multiple S-boxes in the next round

Remarks

- How many rounds?
- Informal Argument: If we ensure that $S(x)$ differs from $S\left(x^{\prime}\right)$ on at least 2bits (for all x, x^{\prime} differing on at least 1 bit) then every input bit affects
- 2 bits of round 1 output
- 4 bits of round 2 output
- 8 bits of round 3 output
- ...
- 128 bits of round 4 output
- Need at least 7 rounds (minimum) to ensure that every input bit affects every output bit

Attacking Lower Round SPNs

- Trivial Case: One full round with no final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$
- Substitution: y := $\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: P permute the bits of y to obtain the round output
- Given input/output ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x})$)
- Permutations P and S_{i} are public and can be run in reverse
- $\mathrm{P}^{-1}\left(\mathrm{~F}_{\mathrm{k}}(\mathrm{x})\right)=\mathrm{S}_{1}\left(\mathrm{x}_{1} \oplus k_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2} \oplus k_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8} \oplus k_{8}\right)$
- $\mathrm{x}_{\mathrm{i}} \otimes k_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}}^{-1}\left(\mathrm{~S}_{1}\left(\mathrm{x}_{1} \oplus k_{1}\right)\right)$
- Attacker knows x_{i} and can thus obtain k_{i}

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \otimes k_{1}$
- Substitution: $y:=\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\|\| \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: $\mathrm{z}_{1}\|\cdots\| \mathrm{z}_{8}=\mathrm{P}(\mathrm{y})$
- Final Key Mixing: Output $\mathbf{z} \oplus k_{2}$
- Given input/output ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x}$))
- Permutations P and S_{i} are public and can be run in reverse once k_{2} is known
- Immediately yields attack in 2^{64} time ($\mathrm{k}_{1}, \mathrm{k}_{2}$ are each 64 bit keys) which narrows down key-space to 2^{64} but we can do much better!

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k_{1}$
- Substitution: y := $\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: $\mathrm{z}_{1}\|\cdots\| \mathrm{z}_{8}=\mathrm{P}(\mathrm{y})$
- Final Key Mixing: Output $\mathrm{z} \oplus k_{2}$
- Given input/output ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x})$)
- Permutations P and S_{i} are public and can be run in reverse once k_{2} is known
- Guessing 8 specific bits of k_{2} (which bits depends on P) we can obtain one value $y_{i}=$ $\mathrm{S}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \otimes k_{\mathrm{i}}\right)$
- Attacker knows x_{i} and can thus obtain k_{i} by inverting S_{i} and using XOR
- Narrows down key-space to 2^{64}, but in time 8×2^{8}

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k_{1}$
- Substitution: $\mathrm{y}:=\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: $\mathrm{z}_{1}\|\cdots\| \mathrm{z}_{8}=\mathrm{P}(\mathrm{y})$
- Final Key Mixing: Output $z \oplus k_{2}$
- Given several input/output pairs $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right)\right)$
- Can quickly recover k_{1} and k_{2}

Attacking Lower Round SPNs

- Harder Case: Two round SPN
- Exercise -

Feistel Networks

- Alternative to Substitution Permutation Networks
- Advantage: underlying functions need not be invertible, but the result is still a permutation

- $\mathrm{R}_{\mathrm{i}-1}=\mathrm{L}_{\mathrm{i}}$
- $\mathrm{L}_{\mathrm{i}-1}:=\mathrm{R}_{\mathrm{i}} \oplus F_{k_{i}}\left(\mathrm{R}_{\mathrm{i}-1}\right)$

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16round Feistel Network.

CS 555: Week 6: Topic 4 DES, 3DES

Feistel Networks

- Alternative to Substitution Permutation Networks
- Advantage: underlying functions need not be invertible, but the result is still a permutation

- $\mathrm{L}_{\mathrm{i}+1}=\mathrm{R}_{\mathrm{i}}$
- $\mathrm{R}_{\mathrm{i}+1}:=\mathrm{L}_{\mathrm{i}} \oplus F_{k_{i}}\left(\mathrm{R}_{\mathrm{i}}\right)$

Proposition: the function is invertible.

Data Encryption Standard

- Developed in 1970s by IBM (with help from NSA)
- Adopted in 1977 as Federal Information Processing Standard (US)
- Data Encryption Standard (DES): 16-round Feistel Network.
- Key Length: 56 bits
- Vulnerable to brute-force attacks in modern times
- 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s

DES Round

Figure 3-6. DES Round

Generating the Round Keys

- Initial Key: 64 bits
- Effective Key Length: 56 bits
- Round Key Length: 48 bits (each)
- 16 round keys derived from initial key

DES Mangle Function

- Expand E: 32-bit input \rightarrow 48-bit output (duplicates 16 bits)
- S-boxes: $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{8}$
- Input: 6-bits
- Output: 4 bits
- Not a permutation!
- 4-to-1 function
- Exactly four inputs mapped to each possible output

A DES Round

Mangle Function

S-Box Representation as Table
 4 columns (2 bits)

$$
x=101101
$$

S(x) = Table[0110,11]

S-Box Representation

Each column is permutation

 4 columns (2 bits)

$$
x=101101
$$

$S(x)=T[0110,11]$

Pseudorandom Permutation Requirements

- Consider a truly random permutation $\mathrm{F} \in$ Perm $_{128}$
- Let inputs x and x^{\prime} differ on a single bit
- We expect outputs $F(x)$ and $F\left(x^{\prime}\right)$ to differ on approximately half of their bits
- $F(x)$ and $F\left(x^{\prime}\right)$ should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!
- Requirement: DES Avalanche Effect!

DES Avalanche Effect

- Permutation the end of the mangle function helps to mix bits
- Special S-box property \#1

Let x and x^{\prime} differ on one bit then $S_{i}(x)$ differs from $S_{i}\left(x^{\prime}\right)$ on two bits.

Avalanche Effect Example

- Consider two 64 bit inputs
- $\left(L_{n}, R_{n}\right)$ and ($\left.L_{n}{ }^{\prime}, R_{n}^{\prime}=R_{n}\right)$
- L_{n} and L_{n}^{\prime} differ on one bit
- This is worst case example
- $L_{n+1}=L_{n+1}^{\prime}=R_{n}$
- But now $R^{\prime}{ }_{n+1}$ and R_{n+1} differ on one bit
- Even if we are unlucky $E\left(R_{n+1}^{\prime}\right)$ and $E\left(R_{n+1}\right)$ differ on 1 bit
- $\rightarrow R_{n+2}$ and R_{n+2}^{\prime} differ on two bits
- $\rightarrow L_{n+2}=R^{\prime}{ }_{n+1}$ and $L_{n+2}^{\prime}=R_{n+1}^{\prime}$ differ in one bit

A DES Round

Avalanche Effect Example

- R_{n+2} and R_{n+2}^{\prime} differ on two bits
- $L_{n+2}=R_{n+1}$ and $L_{n+2}{ }^{\prime}=R_{n+1}^{\prime}$ differ in one bit
$\rightarrow R_{n+3}$ and $R^{\prime}{ }_{n+3}$ differ on four bits since we have different inputs to two of the S-boxes
$\rightarrow L_{n+3}=R^{\prime}{ }_{n+2}$ and $L_{n+2}{ }^{\prime}=R_{n+2}^{\prime}$ now differ on two bits
- Seven rounds we expect all 32 bits in right half to be "affected" by input change

A DES Round

DES has sixteen rounds

Attack on One-Round DES

- Given input output pair (x, y)
- $\mathrm{y}=\left(\mathrm{L}_{1}, \mathrm{R}_{1}\right)$
- $\mathrm{X}=\left(\mathrm{L}_{0}, \mathrm{R}_{0}\right)$
- Note: $\mathrm{R}_{0}=\mathrm{L}_{1}$
- Note: $\mathrm{R}_{1}=\mathrm{L}_{0} \oplus f_{1}\left(\mathrm{R}_{0}\right)$ where f_{1} is the Mangling Function with key k_{1}

Conclusion:

$$
f_{1}\left(\mathrm{R}_{0}\right)=\mathrm{L}_{0} \oplus \mathrm{R}_{1}
$$

Attack on One-Round DES

Attack on Two-Round DES

- Output $\mathrm{y}=\left(\mathrm{L}_{2}, \mathrm{R}_{2}\right)$
- Note: $\mathrm{R}_{1}=\mathrm{L}_{0} \oplus f_{1}\left(\mathrm{R}_{0}\right)$
- Also, $\mathrm{R}_{1}=\mathrm{L}_{2}$
- Thus, $f_{1}\left(\mathrm{R}_{0}\right)=\mathrm{L}_{2} \oplus \mathrm{~L}_{0}$
- So we can still attack the first round key $k 1$ as before as R_{0} and $L_{2} \oplus L_{0}$ are known
- Note: $\mathrm{R}_{2}=\mathrm{L}_{1} \oplus f_{2}\left(\mathrm{R}_{1}\right)$
- Also, $L_{1}=R_{0}$ and $R_{1}=L_{2}$
- Thus, $f_{2}\left(\mathrm{~L}_{2}\right)=\mathrm{R}_{2} \oplus \mathrm{R}_{0}$
- So we can attack the second round key $k 2$ as before as L_{2} and $R_{2} \oplus R_{0}$ are known

Attack on Three-Round DES

$$
\begin{aligned}
f_{1}\left(\mathbf{R}_{\mathbf{0}}\right) \oplus f_{3}\left(\mathbf{R}_{\mathbf{2}}\right) & =\left(\mathrm{L}_{0} \oplus \mathrm{~L}_{2}\right) \oplus\left(\mathrm{L}_{2} \oplus \mathrm{R}_{3}\right) \\
& =\mathrm{L}_{0} \oplus \mathrm{R}_{3}
\end{aligned}
$$

We know all of the values L_{0}, R_{0}, R_{3} and $L_{3}=R_{2}$.

Leads to attack in time $\approx 2^{n / 2}$
(See details in textbook)

Remember that DES is 16 rounds

DES Security

- Best Known attack is brute-force 2^{56}
- Except under unrealistic conditions (e.g., 2^{43} known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
- Output is a few terabytes
- Subsequently keys are cracked in 2^{38} DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked
- Even in 1970 there were objections to the short key length for DES

Double DES

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

- Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$
F_{k}^{\prime}(x)=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

Goal: Given $\left(x, \mathrm{c}=F_{k}^{\prime}(x)\right)$ try to find secret key k in time and space $0\left(n 2^{n}\right)$.

- Solution?
- Key Observation

$$
F_{k_{1}}(x)=F_{k_{2}}^{-1}(\mathrm{c})
$$

- Compute $F_{K}^{-1}(\mathrm{c})$ and $F_{K}(x)$ for each potential n -bit key K and store $\left(K, F_{K}^{-1}(\mathrm{c})\right)$ and $\left(\boldsymbol{K}, F_{K}(\mathrm{x})\right)$
- Sort each list of pairs (by $F_{K}^{-1}(\mathrm{c})$ or $F_{K}(\mathrm{x})$) to find K_{1} and K_{2}.

Triple DES Variant 1

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}, k_{3}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack Requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$

Triple DES Variant 1

Allows backward compatibility with DES by setting $k_{1}=k_{2}=k_{3}$

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}, k_{3}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack Requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$

Triple DES Variant 2

Just two keys!

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}\right)$ of length $2 n$ can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{1}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack still requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$
- Key length is still just 112 bits (NIST recommends $128+$ bits)

Triple DES Variant 1

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Standardized in 1999
- Still widely used, but it is relatively slow (three block cipher operations)
- Current gold standard: AES

Hash Functions from Block Ciphers

- Davies-Meyer Construction from block cipher F_{K}

$$
H(K, x)=F_{K}(x)
$$

Theorem: If $F:\{0,1\}^{\lambda} \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (Concrete: Need roughly $q \approx 2^{\lambda / 2}$ queries to find collision)

- Ideal Cipher Model: For each key K model F_{K} as a truly random permutation which may only be accessed in black box manner.
- (Equivalent to Random Oracle Model)

Next Class

- Read Katz and Lindell 6.2.5-6.3
- AES \& Differential Cryptanalysis

CS 555:Week 6: Topic 2 Stream Ciphers

PRG Security as a Game

Stream Cipher vs PRG

- PRG pseudorandom bits output all at once
- Stream Cipher
- Pseudorandom bits can be output as a stream
- RC4, RC5 (Ron's Code)

$$
\begin{aligned}
& \mathrm{st}_{0}:=\operatorname{Init}(\mathrm{s}) \\
& \text { For } \mathrm{i}=1 \text { to } \ell \text { : } \\
& \qquad\left(\mathrm{y}_{\mathrm{i}}, \mathrm{st}_{\mathrm{i}}\right):=\text { GetBits }\left(\mathrm{st}_{\mathrm{i}-1}\right)
\end{aligned}
$$

Output: $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\ell}$

Linear Feedback Shift Register

Linear Feedback Shift Register

- State at time t: $s_{n-1}^{t}, \ldots, s_{1}^{t}, s_{0}^{t}$ (n registers)
- Feedback Coefficients: $\mathrm{S} \subseteq\{0, \ldots, n\}$

Linear Feedback Shift Register

- State at time t: $s_{n-1}^{t}, \ldots, s_{1}^{t}, s_{0}^{t}$ (n registers)
- Feedback Coefficients: $S \subseteq\{0, \ldots, n-1\}$
- State at time $\mathbf{t + 1}: \oplus_{i \in S} s_{i}^{t}, s_{n-1}^{t}, \ldots, s_{1}^{t}$,

$$
s_{n-1}^{t+1}=\oplus_{i \in S} s_{i}^{t}, \quad \text { and } \quad s_{i}^{t+1}=s_{i+1}^{t} \text { for } \mathrm{i}<\mathrm{n}-1
$$

Linear Feedback Shift Register

- Observation 1: First n bits of output reveal initial state

$$
y_{1}, \ldots, y_{n}=s_{0}^{0}, s_{1}^{0}, \ldots, s_{n-1}^{0}
$$

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0}
\end{gathered}
$$

Linear Feedback Shift Register

- Observation 1: First n bits of output reveal initial state

$$
y_{1}, \ldots, y_{n}=s_{0}^{0}, s_{1}^{0}, \ldots, s_{n-1}^{0}
$$

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0} \bmod 2
\end{gathered}
$$

Linear Feedback Shift Register

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0} \bmod 2 \\
\vdots \\
y_{2 n}=y_{2 n-1} x_{n-1}+\cdots+y_{n} x_{0} \bmod 2
\end{gathered}
$$

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Feedback:

$$
\begin{gathered}
s_{n-1}^{t+1}=\bigoplus_{t \in S} S_{t^{\prime}}^{t} \\
S_{n-1}^{t+1}=g\left(s_{0}^{t}, S_{1}^{t}, \ldots, S_{n-1}^{t}\right)
\end{gathered}
$$

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination:

$$
y_{t+1}=f\left(s_{0}^{t}, s_{1}^{t}, \ldots, s_{n-1}^{t}\right)
$$

- Important: f must be balanced!

$$
\operatorname{Pr}[f(x)=1] \approx \frac{1}{2}
$$

Trivium (2008)

- Won the eSTREAM competition
- Currently, no known attacks are better than brute force
- Couples Output from three nonlinear Feedback Shift Registers
- First 4*288 "output bits" are discared

Combination Generator

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination:

$$
y_{t+1}=f\left(s_{0}^{t}, s_{1}^{t}, \ldots, s_{n-1}^{t}\right)
$$

- Important: f must be balanced!

$$
\operatorname{Pr}[f(x)=1] \approx \frac{1}{2}
$$

Feedback Shift Registers

- Good performance in hardware
- Performance is less ideal for software

The RC4 Stream Cipher

- A proprietary cipher owned by RSA, designed by Ron Rivest in 1987.
- Became public in 1994.
- Simple and effective design.
- Variable key size (typical 40 to 256 bits),
- Output unbounded number of bytes.
- Widely used (web SSL/TLS, wireless WEP).
- Extensively studied, not a completely secure PRNG, when used correctly, AOKAOHA attacks exist
- Newer Versions: RC5 and RC6
- Rijndael selected by NIST as AES in 2000

The RC4 Cipher

- The cipher internal state consists of
- a 256-byte array S, which contains a permutation of 0 to 255
- total number of possible states is $256!\approx 2^{1700}$
- two indexes: i, j
$i=j=0$
Loop
$i=(i+1)(\bmod 256)$
$j=(j+S[i])(\bmod 256)$
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]
End Loop

Distinguishing Attack

- Let S_{0} denote initial state
- Suppose that $S_{0}[2]=0$ and $S_{0}[1]=\mathrm{X} \neq 0$

Distinguishing Attack

- Let S_{0} denote initial state
- Suppose that $S_{0}[2]=0$ and $S_{0}[1]=\mathrm{X} \neq 0$

Distinguishing Attack

	1	2	3	\ldots	\mathbf{X}	\cdots	255	$\mathbf{i = 1 , \mathbf { j } = \mathbf { X }}$
S_{0}	$\boldsymbol{X} \neq \mathbf{0}$	0	$S_{0}[3]$		$\boldsymbol{S}_{\mathbf{0}}[\mathbf{X}]$		$S_{0}[255]$	
S_{1}	$\boldsymbol{S}_{\mathbf{0}}[\mathbf{X}]$	0	$S_{0}[3]$		$\boldsymbol{X} \neq \mathbf{0}$		$S_{0}[255]$	$\mathbf{i}=\mathbf{2}, \mathbf{j}=\mathbf{X}$

```
i = j = 0
```

i = j = 0
Loop
Loop
i = (i + 1) (mod 256)
i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]
output S[S[i] + S[j] (mod 256)]
End Loop

```
End Loop
```


Distinguishing Attack

	1	2	3	...	X	...	255	
S_{0}	$\boldsymbol{X} \neq 0$	0	$S_{0}[3]$		$S_{0}[\mathrm{X}]$		S_{0} [255]	
S_{1}	$S_{0}[\mathrm{X}]$	0	S_{0} [3]		$\boldsymbol{X} \neq 0$		S_{0} [255]	$\mathrm{i}=2, \mathrm{j}=\mathrm{X}$
S_{2}	$S_{0}[\mathrm{X}]$	$\boldsymbol{X} \neq 0$	$S_{0}[3]$		0			

```
i = j = 0
Loop
            i = (i + 1) (mod 256)
            j = (j + S[i]) (mod 256)
            swap(S[i], S[j])
Output:
y2= ST [S2[2]+S [x]]
    = S [ [0+X]
    =0
output S[S[i] + S[j] (mod 256)]
End Loop
```


Distinguishing Attack

Let $\mathrm{p}=\operatorname{Pr}\left[S_{0}[2]=0\right.$ and $\left.S_{0}[1] \neq 2\right]$

$$
p=\frac{1}{256}\left(1-\frac{1}{255}\right)
$$

- Probability second output byte is 0

$$
\begin{aligned}
\operatorname{Pr}\left[y_{2}=0 \mid S_{0}[2]=0 \text { and } S_{0}[1] \neq 2\right] p & +\operatorname{Pr}\left[y_{2}=0 \mid S_{0}[2] \neq 0 \text { or } S_{0}[1] \neq 2\right](1-p) \\
=p+ & (1-p) \frac{1}{256} \\
=\frac{1}{256}\left(1-\frac{1}{255}\right)+ & \left(1-\frac{1}{256}+\frac{1}{256} \frac{1}{255}\right) \frac{1}{256} \\
& \approx \frac{2}{256}
\end{aligned}
$$

Other Attacks

- Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization vector
- Description of RC4 doesn't involve initialization vector...
- But WEP imposes an initialization vector
- K=IV || K'
- Since IV is transmitted attacker may have first few bytes of K!
- Giving the attacker partial knowledge of K often allows recovery of the entire key K^{\prime} over time!

