
Homework 2

• Due: Tuesday, October 2nd at 3PM (beginning of class)

• Please Typeset Your Solutions (LaTeX, Word etc…)

• You may collaborate, but must write up your own solutions in your
own words

1

Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 ≔ 𝑥𝑥𝑑𝑑+1encodes 𝑥𝑥 as an n-bit string

2

Cryptography
CS 555

Week 6:
• Random Oracle Model
• Applications of Hashing
• Stream Ciphers (time permitting)
• Block Ciphers
• Feistel Networks
• DES, 3DES
Readings: Katz and Lindell Chapter 6-6.2.4

3Fall 2017

Recap

• Hash Functions
• Definition
• Merkle-Damgard

• HMAC construction
• Generic Attacks on Hash Function

• Birthday Attack
• Small Space Birthday Attacks (cycle detection)

• Pre-Computation Attacks: Time/Space Tradeoffs

4

Week 6: Topic 1:
Random Oracle Model +

Hashing Applications

5

(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
• Attempt 1: For all PPT A,

Pr 𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = 𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let x,y be given s.t. H(x)=H(y)
𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = (𝑥𝑥,𝑦𝑦)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)

6

(Recap) Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛

7

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

8

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑

9

When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑

• (Gen,H) definitely does not hide all information about input
(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)

• Conclusion: Collision resistance is not sufficient for message
commitment

10

The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond

collision resistance, but how do we model this capability?

11

Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgård)

12

Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑚𝑚 ∥ 𝑟𝑟 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is
secure (Alice cannot change m + Bob learns nothing about m)

• Information Theoretic Guarantee against any attacker with q
queries to H

13

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a
security reduction!

14

Random Oracle Claim

Theorem: Any algorithm A that makes q to a random oracle
𝐻𝐻: 0,1 ∗ → 0,1 𝑛𝑛 will find a collision with probability at most

𝑞𝑞
2

2−𝑛𝑛

Proof: For distinct strings x,y we have
𝑃𝑃𝑃𝑃 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) = 2−𝑛𝑛.

Let 𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 denote A’s queries to random oracle. By the union bound
𝑃𝑃𝑃𝑃 ∃𝑖𝑖 < 𝑗𝑗 ≤ 𝑞𝑞 s. t. 𝐻𝐻 𝑥𝑥𝑖𝑖 = 𝐻𝐻(𝑥𝑥𝑗𝑗) ≤

𝑞𝑞
2

2−𝑛𝑛.

15

Key Derivation

• Transform (low-entropy) password into high-entropy secret key K
KDF pwd = H pwd

Suppose that pwd ∈ 1, … ,𝑛𝑛 and attacker can make at most 𝑞𝑞 𝑛𝑛 = 𝑛𝑛
queries to random oracle H.

If attacker does not query H pwd then the secret key K = H pwd can
be viewed as a uniformly random 𝜆𝜆-bit string!

 Probability of violating MAC security with K is at most 𝑞𝑞 𝑛𝑛
𝑛𝑛

+ negl(𝜆𝜆)

16

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

• Sometimes we only know how to design provably secure protocol in
random oracle model

17

Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are
• Secure in random oracle model…
• But broken in the real world

18

Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on
schemes proven secure in the random oracle model”

19

Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication

20

Tamper Resistant Storage

21

m1

H(m1) m1’

Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)

22

m1,m2,m3

m1’

Send file 1

Disadvantage: Too
many hashes to store

Tamper Resistant Storage

23

m1,m2,m3

m1’

Send file 1

Disadvantage: Need all
files to compute hash

m1,m2,m3

H(m1,m2,m3)

Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store
only one hash value

24

Merkle Trees

25

Theorem: Let (Gen, hs) be a collision resistant hash function and let Hs(m)
return the root hash in a Merkle Tree. Then Hs is collision resistant.

Tamper Resistant Storage

26

m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4

Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

27

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

28

r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

29

r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding

30

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Commitment Scheme in Random Oracle
Model
• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(r, m) ≔ H 𝑟𝑟 ∥ 𝑚𝑚

• 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(c) ≔ (r, m)
Theorem: In the random oracle model this is a secure commitment
scheme.

Binding:
commit(r0,m0)= commit(r1,m1) ↔ H(r0 ∥ m0)=H(r1 ∥ m1)

31

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

32

r = Gen(.)
Bit b

m0,m1

H 𝑟𝑟 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

33

r = Gen(.)
Bit b

m0,m1

H 𝑟𝑟 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

If attacker never makes query
of the form H 𝑟𝑟 ∥ 𝑥𝑥 then bit b

is information theoretically
hidden

Other Applications

• Password Hashing

• Key Derivation

• Later
• Key Encapsulation Mechanism
• RSA-FDH etc...

34

CS 555: Week 6: Topic 6
Block Ciphers

35

An Existential Crisis?

• We have used primitives like PRGs, PRFs to build secure MACs, CCA-
Secure Encryption, Authenticated Encryption etc…

• Do such primitives exist in practice?

• How do we build them?

36

Recap

• Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:
• Practical Constructions of Symmetric Key Primitives

Today’s Goals: Block Ciphers
• Sbox
• Confusion Diffusion Paradigm
• Feistel Networks

37

Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is
invertible and “looks random” without the secret key k.

• Similar to a PRF, but
• Computing Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥 is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

38

Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Permnas well as

the randomness of D.
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse

39

How many permutations?

• |Permn|=?

• Answer: 2n!

• How many bits to store f ∈Permn?

• Answer:

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

40

How many bits to store permutations?

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

Example: Storing f ∈Perm50 requires over 6.8 petabytes (1015)
Example 2: Storing f ∈Perm100 requires about 12 yottabytes (1024)
Example 3: Storing f ∈Perm8 requires about 211 bytes

41

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

• Secret key: k = f1,…,f16 (about 3 KB)
• Input: x=x1,…,x16 (16 bytes)

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?

42

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!

43

Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of
their bits

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!

44

Confusion-Diffusion Paradigm

• Our previous construction was not pseudorandom, but apply the
permutations do accomplish something

• They introduce confusion into F
• Attacker cannot invert (after seeing a few outputs)

• Approach:
• Confuse: Apply random permutations f1,…, to each block of input to obtain
𝑦𝑦1,…,

• Diffuse: Mix the bytes 𝑦𝑦1,…, to obtain byes 𝑧𝑧1,…,
• Confuse: Apply random permutations f1,…, with inputs 𝑧𝑧1,…,
• Repeat as necessary

45

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!

46

Confusion-Diffusion Paradigm

Example:
• Select 8 random permutations on 8-bits f1,…,f16 ∈ Perm8

• Select 8 extra random permutations on 8-bits g1,…,g8 ∈ Perm8

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8

2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8

3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

47

Example Mixing Function

Mix y1 ∥ ⋯ ∥ y8 =
1. For i=1 to 8
2. zi:=y1[i] ∥ ⋯ ∥ y8[i]
3. End For
4. Output: g1 z1 ∥ g2 z2 ∥ ⋯ ∥ g8 z8

48

y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Are We Done?

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

Suppose f1 x1 = 00110101 = y1 and f1 x'1 = 00110101 = y′1

Fk xʹ1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y′1 ∥ ⋯ ∥ y8:=f1 xʹ1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ z'8:=Mix y′1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 zʹ8

49

y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Highly unlikely that a truly random
permutation would behave this way!

Substitution Permutation Networks

• S-box a public “substitution function” (e.g.S ∈ Perm8).

• S is not part of a secret key, but can be used with one
f(x) = S x⨁𝑘𝑘

• Input to round: x, k (k is subkey for current round)
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: permute the bits of x to obtain the round output

50

Note: there are only n!
possible bit mixing
permutations of [n] as
opposed to 2n!
Permutations of {0,1}n

Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed
function defined by a Substitution
Permutation Network. Then for any
keys/number of rounds Fk is a
permutation.

• Why? Composing permutations f,g
results in another permutation
h(x)=g(f(x)).

51

Remarks

• Want to achieve “avalanche effect” (one bit change should “affect”
every output bit)

• Should a S-box be a random byte permutation?

• Better to ensure that S(x) differs from x on at least 2-bits (for all x)
• Helps to maximize “avalanche effect”

• Mixing Permutation should ensure that output bits of any given S-box
are used as input to multiple S-boxes in the next round

52

Remarks

• How many rounds?

• Informal Argument: If we ensure that S(x) differs from S(x’) on at least 2-
bits (for all x,x’ differing on at least 1 bit) then every input bit affects

• 2 bits of round 1 output
• 4 bits of round 2 output
• 8 bits of round 3 output
• ….
• 128 bits of round 4 output

• Need at least 7 rounds (minimum) to ensure that every input bit affects
every output bit

53

Attacking Lower Round SPNs

• Trivial Case: One full round with no final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: P permute the bits of y to obtain the round
output

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse
• P-1(Fk(x)) = S1 x1⨁𝑘𝑘1 ∥ S2 x2⨁𝑘𝑘2 ∥ ⋯ ∥ S8 x8⨁𝑘𝑘8
• xi ⨂𝑘𝑘i =Si

-1 S1 x1⨁𝑘𝑘1
• Attacker knows xi and can thus obtain ki

54

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨂𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Immediately yields attack in 264 time (k1,k2 are each 64 bit keys) which

narrows down key-space to 264 but we can do much better!

55

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8
• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Guessing 8 specific bits of k2 (which bits depends on P) we can obtain one value yi =

Si xi ⨂𝑘𝑘i
• Attacker knows xi and can thus obtain ki by inverting Si and using XOR
• Narrows down key-space to 264 , but in time 8x28

56

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given several input/output pairs (xj,Fk(xj))
• Can quickly recover k1 and k2

57

Attacking Lower Round SPNs

• Harder Case: Two round SPN

• Exercise 

58

Feistel Networks

• Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the
result is still a permutation

59

• Ri-1 = Li

• Li-1:=Ri⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri-1)

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16-
round Feistel Network.

60

CS 555: Week 6: Topic 4
DES, 3DES

61

Feistel Networks

•Alternative to Substitution Permutation Networks

•Advantage: underlying functions need not be
invertible, but the result is still a permutation

62

• Li+1 = Ri

• Ri+1≔Li⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri)

Proposition: the function is invertible.

63

Data Encryption Standard

• Developed in 1970s by IBM (with help from NSA)

• Adopted in 1977 as Federal Information Processing Standard (US)

• Data Encryption Standard (DES): 16-round Feistel Network.

• Key Length: 56 bits
• Vulnerable to brute-force attacks in modern times
• 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s

64

DES Round

65

Generating the Round Keys

• Initial Key: 64 bits
• Effective Key Length: 56 bits
• Round Key Length: 48 bits (each)

• 16 round keys derived from initial key

66

DES Mangle Function

• Expand E: 32-bit input  48-bit
output (duplicates 16 bits)

• S-boxes: S1,…,S8
• Input: 6-bits
• Output: 4 bits
• Not a permutation!

• 4-to-1 function
• Exactly four inputs mapped to each

possible output

67

Mangle Function

68

32 bit input

48-bit sub key48 bit output of expand

XOR block before
Applying S-Boxes

Each S-box
outputs 4 bits

S-Box Representation as Table

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

69
x =101101 S(x) = Table[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)

S-Box Representation

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

70x =101101 S(x) = T[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)
Each column is permutation

Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of
their bits

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
• Requirement: DES Avalanche Effect!

71

DES Avalanche Effect

• Permutation the end of the mangle function helps to
mix bits

• Special S-box property #1

Let x and x’ differ on one bit then Si(x) differs from Si(x’)
on two bits.

72

Avalanche Effect Example

• Consider two 64 bit inputs
• (Ln,Rn) and (Ln’,R’n=Rn)
• Ln and Ln’ differ on one bit

• This is worst case example
• Ln+1 = Ln+1’=Rn
• But now R’n+1 and Rn+1 differ on one

bit
• Even if we are unlucky E(R’n+1) and

E(Rn+1) differ on 1 bit
•  Rn+2 and R’n+2 differ on two bits
•  Ln+2 = R’n+1 and Ln+2’ = R’n+1 differ

in one bit

73

Avalanche Effect Example
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = Rn+1 and Ln+2’ = R’n+1 differ in

one bit

Rn+3 and R’n+3 differ on four bits since
we have different inputs to two of the
S-boxes
Ln+3 = R’n+2 and Ln+2’ = R’n+2 now differ

on two bits
• Seven rounds we expect all 32 bits in

right half to be “affected” by input
change

…
DES has sixteen rounds

74

Attack on One-Round DES

• Given input output pair (x,y)
• y=(L1,R1)
• X=(L0,R0)

• Note: R0=L1

• Note: R1=L0 ⨁𝑓𝑓1 R0 where 𝑓𝑓1 is the Mangling Function with key k1

Conclusion:
𝑓𝑓1 R0 =L0⨁R1

75

Attack on One-Round DES

76

R0

L0⨁R1

Four possible inputs

Trivial to Recover

Attack on Two-Round DES

• Output y =(L2,R2)
• Note: R1=L0⨁𝑓𝑓1 R0

• Also,R1= L2
• Thus, 𝑓𝑓1 R0 =L2⨁L0

• So we can still attack the first round key k1 as before as R0 and L2⨁L0
are known

• Note:R2=L1⨁𝑓𝑓2 R1
• Also,L1=R0 and R1= L2

• Thus, 𝑓𝑓2 L2 =R2⨁R0

• So we can attack the second round key k2 as before as L2 and R2⨁R0
are known

77

L0 R0

K1

F⨁

L1 R1

K2

F⨁

R2L2

𝑓𝑓1 R0 =L2⨁L0

𝑓𝑓2 R0 =L2⨁L0

Attack on Three-Round DES

𝑓𝑓1 R0 ⨁𝑓𝑓3 R2 = L0⨁L2 ⨁ L2⨁R3

= L0⨁R3

We know all of the values L0,R0, R3 and L3 = R2.

Leads to attack in time ≈2n/2

(See details in textbook)

Remember that DES is 16 rounds

78

DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes)

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
79

Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?

80

Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: Given (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥) try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 .

• Solution?
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝑘𝑘2
−1 c

• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential n-bit key K and store 𝑲𝑲, 𝐹𝐹𝐾𝐾−1 c and
𝑲𝑲, 𝐹𝐹𝐾𝐾 x

• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x) to find K1 and K2.

81

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

82

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

83

Allows backward compatibility
with DES by setting k1=k2=k3

Triple DES Variant 2

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1, 𝑘𝑘2 of length 2n can be defined
by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘1 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack still requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

• Key length is still just 112 bits (NIST recommends 128+ bits)

84

Just two keys!

Triple DES Variant 1

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher
operations)

• Current gold standard: AES

85

Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher
then Davies-Meyer construction is a collision-resistant hash function
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)

86

Next Class

• Read Katz and Lindell 6.2.5-6.3
• AES & Differential Cryptanalysis

87

CS 555:Week 6: Topic 2
Stream Ciphers

88

∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

PRG Security as a Game

89

Random bit b
If b=1
r ← 0,1 𝑛𝑛

R = G(r)
Else
𝑅𝑅 ← 0,1 ℓ 𝑛𝑛

b’

𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

R

Stream Cipher vs PRG

• PRG pseudorandom bits output all at once

• Stream Cipher
• Pseudorandom bits can be output as a stream
• RC4, RC5 (Ron’s Code)

st0 := Init(s)
For i=1 to ℓ:

(yi,sti):=GetBits(sti-1)
Output: y1,…,yℓ

90

Linear Feedback Shift Register

91

Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers)
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛

92

Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers)
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛 − 1
• State at time t+1:⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 ,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, and 𝑠𝑠𝑖𝑖𝑡𝑡+1 = 𝑠𝑠𝑖𝑖+1𝑡𝑡 for i < n − 1

Output at time t+1: 𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

93

Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0

94

Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

95

Linear Feedback Shift Register

• Observation 2: Next n bits allow us to solve for n unknowns

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

𝑦𝑦2𝑛𝑛 = 𝑦𝑦2𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦𝑛𝑛𝑥𝑥0 mod 2

96

…

Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Feedback:
𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= 𝑔𝑔 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

97

Non linear function

Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2

98

Non linear function

Trivium (2008)

• Won the eSTREAM competition
• Currently, no known attacks are better than brute force
• Couples Output from three nonlinear Feedback Shift Registers
• First 4*288 “output bits” are discared

99

Tr
iv

iu
m

(2
00

8)

100

Tr
iv

iu
m

(2
00

8)

101

Tr
iv

iu
m

(2
00

8)

102

Combination Generator

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2

103

Non linear function

Feedback Shift Registers

• Good performance in hardware

• Performance is less ideal for software

104

CS555 105

The RC4 Stream Cipher
• A proprietary cipher owned by RSA, designed by Ron Rivest in

1987.
• Became public in 1994.
• Simple and effective design.
• Variable key size (typical 40 to 256 bits),
• Output unbounded number of bytes.
• Widely used (web SSL/TLS, wireless WEP).
• Extensively studied, not a completely secure PRNG, when

used correctly, no known attacks exist
• Newer Versions: RC5 and RC6
• Rijndael selected by NIST as AES in 2000

106

The RC4 Cipher
• The cipher internal state consists of

• a 256-byte array S, which contains a permutation of 0 to
255

• total number of possible states is 256! ≈ 21700

• two indexes: i, j
i = j = 0
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]

End Loop

CS555

107

Distinguishing Attack
• Let 𝑆𝑆0 denote initial state
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑆𝑆0[1]≠ 0 0 𝑆𝑆0[3] 𝑆𝑆0[X] 𝑆𝑆0[255]

108

Distinguishing Attack
• Let 𝑆𝑆0 denote initial state
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑿𝑿 ≠ 𝟎𝟎 0 𝑆𝑆0[3] 𝑺𝑺𝟎𝟎[X] 𝑆𝑆0[255] i=1, j =X

109

Distinguishing Attack
• Let 𝑆𝑆0 denote initial state
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑿𝑿 ≠ 𝟎𝟎 0 𝑆𝑆0[3] 𝑺𝑺𝟎𝟎[X] 𝑆𝑆0[255]

𝑆𝑆1 𝑺𝑺𝟎𝟎[X] 0 𝑆𝑆0[3] 𝑿𝑿 ≠ 𝟎𝟎 𝑆𝑆0[255] i=2, j =X

Output y1= 𝑆𝑆1[S[i]+S[j]]

i=1, j =X

110

Distinguishing Attack
• Let 𝑆𝑆0 denote initial state
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)]

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑿𝑿 ≠ 𝟎𝟎 0 𝑆𝑆0[3] 𝑺𝑺𝟎𝟎[X] 𝑆𝑆0[255]

𝑆𝑆1 𝑆𝑆0[X] 0 𝑆𝑆0[3] 𝑿𝑿 ≠ 𝟎𝟎 𝑆𝑆0[255]

𝑆𝑆2 𝑆𝑆0[X] 𝑿𝑿 ≠ 𝟎𝟎 𝑆𝑆0[3] 0

i=2, j =X

Output:
y2= S2[S2[2]+S2[X]]

= S2[0+X]
=0

111

Distinguishing Attack
Let p = Pr 𝑆𝑆0[2]=0 and 𝑆𝑆0[1] ≠ 2

𝑝𝑝 =
1

256
1 −

1
255

• Probability second output byte is 0

Pr 𝑦𝑦2 = 0 | 𝑆𝑆0[2]=0 and 𝑆𝑆0[1] ≠ 2 𝑝𝑝 + Pr 𝑦𝑦2 = 0 | 𝑆𝑆0[2] ≠ 0 or 𝑆𝑆0[1] ≠ 2 (1 − 𝑝𝑝)
= 𝑝𝑝 + 1 − 𝑝𝑝

1
256

=
1

256 1 −
1

255 + 1 −
1

256 +
1

256
1

255
1

256

≈
2

256

CS555

112

Other Attacks
• Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization

vector

• Description of RC4 doesn’t involve initialization vector…
• But WEP imposes an initialization vector
• K=IV || K’
• Since IV is transmitted attacker may have first few bytes of K!

• Giving the attacker partial knowledge of K often allows recovery of the entire key K’
over time!

CS555

	Homework 2
	Merkle-Damgård Transform
	Cryptography�CS 555
	Recap
	�Week 6: Topic 1:�Random Oracle Model + Hashing Applications�
	(Recap) Collision-Resistant Hash Function
	(Recap) Keyed Hash Function Syntax
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	When Collision Resistance Isn’t Enough
	When Collision Resistance Isn’t Enough
	The Tension
	Random Oracle Model
	Back to Message Commitment
	Random Oracle Model: Pros
	Random Oracle Claim
	Key Derivation
	Random Oracle Model: Pros
	Random Oracle Model: Cons
	Random Oracle Model: Justification
	Hash Function Application: Fingerprinting
	Tamper Resistant Storage
	Tamper Resistant Storage
	Tamper Resistant Storage
	Merkle Trees
	Merkle Trees
	Tamper Resistant Storage
	Commitment Schemes
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Binding (Binding 𝐴,𝐶𝑜𝑚 (𝑛))
	Secure Commitment Scheme
	Commitment Scheme in Random Oracle Model
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Other Applications
	CS 555: Week 6: Topic 6�Block Ciphers
	An Existential Crisis?
	Recap
	Pseudorandom Permutation
	Pseudorandom Permutation
	How many permutations?
	How many bits to store permutations?
	Attempt 1: Pseudorandom Permutation
	Attempt 1: Pseudorandom Permutation
	Pseudorandom Permutation Requirements
	Confusion-Diffusion Paradigm
	Attempt 1: Pseudorandom Permutation
	Confusion-Diffusion Paradigm
	Example Mixing Function
	Are We Done?
	Substitution Permutation Networks
	Substitution Permutation Networks
	Remarks
	Remarks
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Feistel Networks
	Slide Number 60
	CS 555: Week 6: Topic 4 �DES, 3DES�
	Feistel Networks
	Slide Number 63
	Data Encryption Standard
	DES Round
	Generating the Round Keys
	DES Mangle Function
	Mangle Function
	S-Box Representation as Table
	S-Box Representation
	Pseudorandom Permutation Requirements
	DES Avalanche Effect
	Avalanche Effect Example
	Avalanche Effect Example
	Attack on One-Round DES
	Attack on One-Round DES
	Attack on Two-Round DES
	Attack on Three-Round DES
	DES Security
	Double DES
	Meet in the Middle Attack
	Triple DES Variant 1
	Triple DES Variant 1
	Triple DES Variant 2
	Triple DES Variant 1
	Hash Functions from Block Ciphers
	Next Class
	�CS 555:Week 6: Topic 2�Stream Ciphers
	PRG Security as a Game
	Stream Cipher vs PRG
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Removing Linearity
	Removing Linearity
	Trivium (2008)
	Trivium (2008)
	Trivium (2008)
	Trivium (2008)
	Combination Generator
	Feedback Shift Registers
	The RC4 Stream Cipher
	The RC4 Cipher
	Distinguishing Attack
	Distinguishing Attack
	Distinguishing Attack
	Distinguishing Attack
	Distinguishing Attack
	Other Attacks

