
Homework 2

• Due: Tuesday, October 2nd at 3PM (beginning of class)

• Please Typeset Your Solutions (LaTeX, Word etc…)

• You may collaborate, but must write up your own solutions in your 
own words

1



Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 ≔ 𝑥𝑥𝑑𝑑+1encodes 𝑥𝑥 as an n-bit string
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Cryptography
CS 555

Week 6: 
• Random Oracle Model
• Applications of Hashing
• Stream Ciphers (time permitting)
• Block Ciphers
• Feistel Networks
• DES, 3DES
Readings: Katz and Lindell Chapter 6-6.2.4

3Fall 2017



Recap

• Hash Functions
• Definition
• Merkle-Damgard

• HMAC construction
• Generic Attacks on Hash Function

• Birthday Attack
• Small Space Birthday Attacks (cycle detection)

• Pre-Computation Attacks: Time/Space Tradeoffs
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Week 6: Topic 1:
Random Oracle Model +  

Hashing Applications
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(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
• Attempt 1: For all PPT A, 

Pr 𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = 𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let x,y be given s.t. H(x)=H(y)
𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = (𝑥𝑥,𝑦𝑦)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)
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(Recap) Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛
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Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if 
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message   (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑
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When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑

• (Gen,H) definitely does not hide all information about input 
(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)

• Conclusion: Collision resistance is not sufficient for message 
commitment
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The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message  (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond 

collision resistance, but how do we model this capability?
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Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3) 
of fixed length (no Merkle-Damgård)
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Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑚𝑚 ∥ 𝑟𝑟 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message   (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is 
secure (Alice cannot change m + Bob learns nothing about m)

• Information Theoretic Guarantee against any attacker with q 
queries to H 
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Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can 

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a 
security reduction!
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Random Oracle Claim

Theorem: Any algorithm A that makes q to a random oracle 
𝐻𝐻: 0,1 ∗ → 0,1 𝑛𝑛 will find a collision with probability at most

𝑞𝑞
2

2−𝑛𝑛

Proof: For distinct strings x,y we have 
𝑃𝑃𝑃𝑃 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) = 2−𝑛𝑛.

Let 𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 denote A’s queries to random oracle. By the union bound
𝑃𝑃𝑃𝑃 ∃𝑖𝑖 < 𝑗𝑗 ≤ 𝑞𝑞 s. t. 𝐻𝐻 𝑥𝑥𝑖𝑖 = 𝐻𝐻(𝑥𝑥𝑗𝑗) ≤

𝑞𝑞
2

2−𝑛𝑛.
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Key Derivation

• Transform (low-entropy) password into high-entropy secret key K
KDF pwd = H pwd

Suppose that pwd ∈ 1, … ,𝑛𝑛 and attacker can make at most 𝑞𝑞 𝑛𝑛 = 𝑛𝑛
queries to random oracle H.

If attacker does not query H pwd then the secret key K = H pwd can 
be viewed as a uniformly random 𝜆𝜆-bit string!

 Probability of violating MAC security with K is at most 𝑞𝑞 𝑛𝑛
𝑛𝑛

+ negl(𝜆𝜆)
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Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often 
much more efficient (compared to provably secure construction is 
“standard model”

• Sometimes we only know how to design provably secure protocol in 
random oracle model
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Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate 

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are 
• Secure in random oracle model…
• But broken in the real world
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Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better 
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function 
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on 
schemes proven secure in the random oracle model”
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Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication
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Tamper Resistant Storage

21

m1

H(m1) m1’



Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)
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m1,m2,m3

m1’

Send file 1

Disadvantage: Too 
many hashes to store



Tamper Resistant Storage
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m1,m2,m3

m1’

Send file 1

Disadvantage: Need all 
files to compute hash 

m1,m2,m3

H(m1,m2,m3)



Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store 
only one hash value
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Merkle Trees
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Theorem: Let (Gen, hs) be a collision resistant hash function and let Hs(m)
return the root hash in a Merkle Tree. Then Hs is collision resistant.



Tamper Resistant Storage
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m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4



Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message
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Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding
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∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Commitment Scheme in Random Oracle 
Model
• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(r, m) ≔ H 𝑟𝑟 ∥ 𝑚𝑚

• 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(c) ≔ (r, m)
Theorem: In the random oracle model this is a secure  commitment 
scheme. 

Binding: 
commit(r0,m0)= commit(r1,m1) ↔ H(r0 ∥ m0)=H(r1 ∥ m1)
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Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(.)
Bit b

m0,m1

H 𝑟𝑟 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(.)
Bit b

m0,m1

H 𝑟𝑟 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

If attacker never makes query 
of the form H 𝑟𝑟 ∥ 𝑥𝑥 then bit b 

is information theoretically 
hidden



Other Applications

• Password Hashing

• Key Derivation 

• Later
• Key Encapsulation Mechanism
• RSA-FDH etc...
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CS 555: Week 6: Topic 6
Block Ciphers
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An Existential Crisis?

• We have used primitives like PRGs, PRFs to build secure MACs, CCA-
Secure Encryption, Authenticated Encryption etc…

• Do such primitives exist in practice?

• How do we build them?
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Recap

• Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:
• Practical Constructions of Symmetric Key Primitives

Today’s Goals: Block Ciphers
• Sbox
• Confusion Diffusion Paradigm
• Feistel Networks
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Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is 
invertible and “looks random” without the secret key k. 

• Similar to a PRF, but 
• Computing Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥 is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a 
negligible function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
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Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a 
negligible function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well 

as the randomness of D. 
• the second probability is taken over uniform choice of f ∈Permnas well as 

the randomness of D. 
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse
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How many permutations? 

• |Permn|=?

• Answer: 2n!

• How many bits to store f ∈Permn?

• Answer:

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1
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How many bits to store permutations? 

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

Example: Storing f ∈Perm50 requires over 6.8 petabytes (1015)
Example 2: Storing f ∈Perm100 requires about 12 yottabytes (1024)
Example 3: Storing f ∈Perm8 requires about 211 bytes
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Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

• Secret key: k = f1,…,f16 (about 3 KB)
• Input: x=x1,…,x16 (16 bytes)

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
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Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!
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Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of 
their bits 

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
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Confusion-Diffusion Paradigm

• Our previous construction was not pseudorandom, but apply the 
permutations do accomplish something 

• They introduce confusion into F
• Attacker cannot invert (after seeing a few outputs)

• Approach: 
• Confuse: Apply random permutations f1,…, to each block of input to obtain 
𝑦𝑦1,…,

• Diffuse: Mix the bytes 𝑦𝑦1,…, to obtain byes 𝑧𝑧1,…,
• Confuse: Apply random permutations f1,…, with inputs 𝑧𝑧1,…,
• Repeat as necessary
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Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!
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Confusion-Diffusion Paradigm

Example: 
• Select 8 random permutations on 8-bits f1,…,f16 ∈ Perm8

• Select 8 extra random permutations on 8-bits g1,…,g8 ∈ Perm8

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8

2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8

3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8
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Example Mixing Function

Mix y1 ∥ ⋯ ∥ y8 =
1. For i=1 to 8
2. zi:=y1[i] ∥ ⋯ ∥ y8[i]
3. End For
4. Output: g1 z1 ∥ g2 z2 ∥ ⋯ ∥ g8 z8
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y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8



Are We Done?

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

Suppose f1 x1 = 00110101 = y1 and f1 x'1 = 00110101 = y′1

Fk xʹ1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y′1 ∥ ⋯ ∥ y8:=f1 xʹ1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ z'8:=Mix y′1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 zʹ8
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y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Highly unlikely that a truly random 
permutation would behave this way!



Substitution Permutation Networks

• S-box a public “substitution function” (e.g.S ∈ Perm8).

• S is not part of a secret key, but can be used with one 
f(x) = S x⨁𝑘𝑘

• Input to round: x, k (k  is subkey for current round)
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: permute the bits of x to obtain the round output
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Note: there are only n! 
possible bit mixing 
permutations of [n] as 
opposed to 2n! 
Permutations of {0,1}n



Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed 
function defined by a Substitution 
Permutation Network. Then for any 
keys/number of rounds Fk is a 
permutation.

• Why? Composing permutations f,g
results in another permutation 
h(x)=g(f(x)).
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Remarks

• Want to achieve “avalanche effect” (one bit change should “affect” 
every output bit)

• Should a S-box be a random byte permutation?

• Better to ensure that S(x) differs from x on at least 2-bits (for all x)
• Helps to maximize “avalanche effect”

• Mixing Permutation should ensure that output bits of any given S-box 
are used as input to multiple S-boxes in the next round
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Remarks

• How many rounds?

• Informal Argument: If we ensure that S(x) differs from S(x’) on at least 2-
bits (for all x,x’ differing on at least 1 bit) then every input bit affects

• 2 bits of round 1 output
• 4 bits of round 2 output
• 8 bits of round 3 output
• ….
• 128 bits of round 4 output

• Need at least 7 rounds (minimum) to ensure that every input bit affects 
every output bit
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Attacking Lower Round SPNs

• Trivial Case: One full round with no final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: P permute the bits of y to obtain the round 
output

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse 
• P-1(Fk(x))  = S1 x1⨁𝑘𝑘1 ∥ S2 x2⨁𝑘𝑘2 ∥ ⋯ ∥ S8 x8⨁𝑘𝑘8
• xi ⨂𝑘𝑘i =Si

-1 S1 x1⨁𝑘𝑘1
• Attacker knows xi and can thus obtain ki
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Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨂𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Immediately yields attack in 264 time (k1,k2 are each 64 bit keys) which 

narrows down key-space to 264 but we can do much better!
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Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8
• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Guessing 8 specific bits of k2 (which bits depends on P) we can obtain one value yi =

Si xi ⨂𝑘𝑘i
• Attacker knows xi and can thus obtain ki by inverting Si and using XOR
• Narrows down key-space to 264 , but in time 8x28
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Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given several input/output pairs (xj,Fk(xj))
• Can quickly recover k1 and k2
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Attacking Lower Round SPNs

• Harder Case: Two round SPN

• Exercise 
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Feistel Networks

• Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the 
result is still a permutation
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• Ri-1 = Li

• Li-1:=Ri⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri-1)

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16-
round Feistel Network. 
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CS 555: Week 6: Topic 4 
DES, 3DES
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Feistel Networks

•Alternative to Substitution Permutation Networks

•Advantage: underlying functions need not be 
invertible, but the result is still a permutation
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• Li+1 = Ri

• Ri+1≔Li⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri)

Proposition: the function is invertible.
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Data Encryption Standard

• Developed in 1970s by IBM (with help from NSA)

• Adopted in 1977 as Federal Information Processing Standard (US)

• Data Encryption Standard (DES): 16-round Feistel Network. 

• Key Length: 56 bits
• Vulnerable to brute-force attacks in modern times
• 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s
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DES Round
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Generating the Round Keys

• Initial Key: 64 bits
• Effective Key Length: 56 bits
• Round Key Length: 48 bits (each)

• 16 round keys derived from initial key
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DES Mangle Function

• Expand E: 32-bit input  48-bit 
output (duplicates 16 bits)

• S-boxes: S1,…,S8
• Input: 6-bits
• Output: 4 bits
• Not a permutation!

• 4-to-1 function
• Exactly four inputs mapped to each 

possible output
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Mangle Function

68

32 bit input

48-bit sub key48 bit output of expand

XOR block before
Applying S-Boxes

Each S-box 
outputs 4 bits



S-Box Representation as Table

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

69
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S-Box Representation

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

70x =101101 S(x) = T[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)
Each column is permutation



Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of 
their bits 

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
• Requirement: DES Avalanche Effect!
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DES Avalanche Effect

• Permutation the end of the mangle function helps to 
mix bits

• Special S-box property #1

Let x and x’ differ on one bit then Si(x) differs from Si(x’) 
on two bits.
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Avalanche Effect Example

• Consider two 64 bit inputs
• (Ln,Rn) and (Ln’,R’n=Rn)
• Ln and Ln’ differ on one bit

• This is worst case example
• Ln+1 = Ln+1’=Rn
• But now R’n+1 and Rn+1 differ on one 

bit 
• Even if we are unlucky E(R’n+1) and 

E(Rn+1) differ on 1 bit
•  Rn+2 and R’n+2 differ on two bits
•  Ln+2 = R’n+1 and Ln+2’ = R’n+1 differ 

in one bit
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Avalanche Effect Example
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = Rn+1 and Ln+2’ = R’n+1 differ in 

one bit

Rn+3 and R’n+3 differ on four bits since 
we have different inputs to two of the 
S-boxes
Ln+3 = R’n+2 and Ln+2’ = R’n+2 now differ 

on two bits
• Seven rounds we expect all 32 bits in 

right half to be “affected” by input 
change

…
DES has sixteen rounds
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Attack on One-Round DES

• Given input output pair (x,y)
• y=(L1,R1)
• X=(L0,R0)

• Note: R0=L1

• Note: R1=L0 ⨁𝑓𝑓1 R0 where 𝑓𝑓1 is the Mangling Function with key k1

Conclusion:
𝑓𝑓1 R0 =L0⨁R1
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Attack on One-Round DES
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R0

L0⨁R1

Four possible inputs

Trivial to Recover



Attack on Two-Round DES

• Output y =(L2,R2)
• Note: R1=L0⨁𝑓𝑓1 R0

• Also,R1= L2
• Thus, 𝑓𝑓1 R0 =L2⨁L0

• So we can still attack the first round key k1 as before as R0 and L2⨁L0
are known

• Note:R2=L1⨁𝑓𝑓2 R1
• Also,L1=R0 and R1= L2

• Thus, 𝑓𝑓2 L2 =R2⨁R0

• So we can attack the second round key k2 as before as L2 and R2⨁R0
are known
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L0 R0

K1

F⨁

L1 R1

K2

F⨁

R2L2

𝑓𝑓1 R0 =L2⨁L0

𝑓𝑓2 R0 =L2⨁L0



Attack on Three-Round DES

𝑓𝑓1 R0 ⨁𝑓𝑓3 R2 = L0⨁L2 ⨁ L2⨁R3

= L0⨁R3

We know all of the values L0,R0, R3 and L3 = R2.

Leads to attack in time ≈2n/2

(See details in textbook)

Remember that DES is 16 rounds
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DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes) 

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
79



Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?
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Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: Given (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥 ) try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 .

• Solution? 
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝑘𝑘2
−1 c

• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential n-bit key K and store 𝑲𝑲, 𝐹𝐹𝐾𝐾−1 c and 
𝑲𝑲, 𝐹𝐹𝐾𝐾 x

• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x ) to find K1 and K2.
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Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛
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Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛
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Allows backward compatibility 
with DES by setting k1=k2=k3



Triple DES Variant 2

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1, 𝑘𝑘2 of length 2n can be defined 
by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘1 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack still requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

• Key length is still just 112 bits (NIST recommends 128+ bits)
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Just two keys!



Triple DES Variant 1

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher 
operations)

• Current gold standard: AES
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Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher 
then Davies-Meyer construction is a collision-resistant hash function 
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random 
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)
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Next Class

• Read Katz and Lindell 6.2.5-6.3
• AES & Differential Cryptanalysis
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Stream Ciphers
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∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

PRG Security as a Game

89

Random bit b
If b=1
r ← 0,1 𝑛𝑛

R = G(r)
Else 
𝑅𝑅 ← 0,1 ℓ 𝑛𝑛

b’

𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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Stream Cipher vs PRG

• PRG pseudorandom bits output all at once

• Stream Cipher
• Pseudorandom bits can be output as a stream
• RC4, RC5 (Ron’s Code)

st0 := Init(s)
For i=1 to ℓ:  

(yi,sti):=GetBits(sti-1)
Output: y1,…,yℓ
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Linear Feedback Shift Register
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Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers) 
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛
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Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers) 
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛 − 1
• State at time t+1:⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 ,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, and 𝑠𝑠𝑖𝑖𝑡𝑡+1 = 𝑠𝑠𝑖𝑖+1𝑡𝑡 for i < n − 1

Output at time t+1: 𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

93



Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0
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Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2
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Linear Feedback Shift Register

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

𝑦𝑦2𝑛𝑛 = 𝑦𝑦2𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦𝑛𝑛𝑥𝑥0 mod 2
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Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Feedback:
𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= 𝑔𝑔 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡
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Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2
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Trivium (2008)

• Won the eSTREAM competition
• Currently, no known attacks are better than brute force
• Couples Output from three nonlinear Feedback Shift Registers
• First 4*288 “output bits” are discared
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Combination Generator

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2
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Feedback Shift Registers

• Good performance in hardware

• Performance is less ideal for software
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The RC4 Stream Cipher
• A proprietary cipher owned by RSA, designed by Ron Rivest in 

1987. 
• Became public in 1994.
• Simple and effective design. 
• Variable key size (typical 40 to 256 bits), 
• Output unbounded number of bytes. 
• Widely used (web SSL/TLS, wireless WEP). 
• Extensively studied, not a completely secure PRNG, when 

used correctly, no known attacks exist
• Newer Versions: RC5 and RC6
• Rijndael selected by NIST as AES in 2000
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The RC4 Cipher
• The cipher internal state consists of 

• a 256-byte array S, which contains a permutation of 0 to 
255

• total number of possible states is 256! ≈ 21700

• two indexes: i, j
i = j = 0 
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)] 

End Loop

CS555
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Distinguishing Attack
• Let 𝑆𝑆0 denote initial state 
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0 
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)] 

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑆𝑆0[1]≠ 0 0 𝑆𝑆0[3] 𝑆𝑆0[X] 𝑆𝑆0[255]
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Distinguishing Attack
• Let 𝑆𝑆0 denote initial state 
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0 
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)] 

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑿𝑿 ≠ 𝟎𝟎 0 𝑆𝑆0[3] 𝑺𝑺𝟎𝟎[X] 𝑆𝑆0[255] i=1, j =X
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Distinguishing Attack
• Let 𝑆𝑆0 denote initial state 
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0 
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)] 

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑿𝑿 ≠ 𝟎𝟎 0 𝑆𝑆0[3] 𝑺𝑺𝟎𝟎[X] 𝑆𝑆0[255]

𝑆𝑆1 𝑺𝑺𝟎𝟎[X] 0 𝑆𝑆0[3] 𝑿𝑿 ≠ 𝟎𝟎 𝑆𝑆0[255] i=2, j =X

Output y1= 𝑆𝑆1[S[i]+S[j]]

i=1, j =X
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Distinguishing Attack
• Let 𝑆𝑆0 denote initial state 
• Suppose that 𝑆𝑆0[2]=0 and 𝑆𝑆0[1]= X ≠ 0

i = j = 0 
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j] (mod 256)] 

End Loop

CS555

1 2 3 … X … 255

𝑆𝑆0 𝑿𝑿 ≠ 𝟎𝟎 0 𝑆𝑆0[3] 𝑺𝑺𝟎𝟎[X] 𝑆𝑆0[255]

𝑆𝑆1 𝑆𝑆0[X] 0 𝑆𝑆0[3] 𝑿𝑿 ≠ 𝟎𝟎 𝑆𝑆0[255]

𝑆𝑆2 𝑆𝑆0[X] 𝑿𝑿 ≠ 𝟎𝟎 𝑆𝑆0[3] 0

i=2, j =X

Output: 
y2= S2[S2[2]+S2[X]]

= S2[0+X]
=0
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Distinguishing Attack
Let p = Pr 𝑆𝑆0[2]=0 and 𝑆𝑆0[1] ≠ 2

𝑝𝑝 =
1

256
1 −

1
255

• Probability second output byte is 0

Pr 𝑦𝑦2 = 0 | 𝑆𝑆0[2]=0 and 𝑆𝑆0[1] ≠ 2 𝑝𝑝 + Pr 𝑦𝑦2 = 0 | 𝑆𝑆0[2] ≠ 0 or 𝑆𝑆0[1] ≠ 2 (1 − 𝑝𝑝)
= 𝑝𝑝 + 1 − 𝑝𝑝

1
256

=
1

256 1 −
1

255 + 1 −
1

256 +
1

256
1

255
1

256

≈
2

256

CS555
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Other Attacks
• Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization 

vector

• Description of RC4 doesn’t involve initialization vector…
• But WEP imposes an initialization vector
• K=IV || K’
• Since IV is transmitted attacker may have first few bytes of K!

• Giving the attacker partial knowledge of K often allows recovery of the entire key K’ 
over time!
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