Homework 2 Released

* Due: Tuesday, October 2" at 3PM (beginning of class)
* Please Typeset Your Solutions (LaTeX, Word etc...)

* You may collaborate, but must write up your own solutions in your
own words

Recap

* Message Authentication Codes
e Integrity vs Confidentiality
e Example: Mac, (m) = F(m)
e Extension to unbounded messages and pitfalls (block re-ordering, truncation)
» CBC-MAC

* Authenticated Encryption + CCA-Security
s« Encryptand-Authenticate {SSH

e Encrypt then Authenticate!
Enciy(m) = (C, MackM(c)) where ¢ = Ency_(m)

Caveat: Tricky Padding Issues arise if

C BC— I\/I AC |m| is not a multiple of the block-

length. See textbook.
my my ms

D

|m|

We will see a simpler MAC
construction using hash functions

.
@ soon.
|

T = Macg(m)

Advantages over Previous Solution

* Both MACs are secure fori=1,...,d

* Works for unbounded length messages t; = Mac(r | 21l i |l m;)

* Canonical Verification (encode i and £ as n/4 bit strings)
* Short A.uthentlcatlon tag Output (r, tq, ..., t4)
Parallelizable 3

Recap: Authenticated Encryption
e Authenticated Encryption = CCA-Security (by definition)

e Conceptual Distinction
e CCA-Security the goal is secrecy (hide message from active adversary)
e Authenticated Encryption: the goal is integrity + secrecy

* CCA-Security does not necessarily imply Authenticate Encryption

e But most natural CCA-Secure constructions are also Authenticated Encryption
Schemes

e Some constructions are CCA-Secure, but do not provide Authenticated
Encryptions, but they are less efficient.

Secure Communication Session

* Solution Protocol? Alice transmits c; = Enc,(m;) to Bob, who decrypts and
sends Alice ¢, = Enc,(m,) etc...

e Authenticated Encryption scheme is
o Stateless
e For fixed length-messages

e We still need to worry about
e Re-ordering attacks
 Alice sends 2n-bit message to Bob as ¢, = Enc,(m,), ¢, = Enc,(m,)

e Replay Attacks

* Attacker who intercepts message c, = Enc(m;) can replay this message later in the
conversation

e Reflection Attack
 Attacker intercepts message c; = Enc,(m,) sent from Alice to Bob and replays to c, Alice only

Secure Communication Session

* Defense
e Counters (CTR, 5, CTR; »)
« Number of messages sent from Alice to Bob (CTR, g) - initially O
* Number of messages sent from Bob to Alice (CTR; ,) ---initially O
* Protects against Re-ordering and Replay attacks

e Directionality Bit
* byg=0andby,=1(e.g., since A<B)

. élice: To send m to Bob, set c=Enc,(b, ; Il CTR, ; Im), send c and increment
TR, g ' '

e Bob: Decrypts ¢, (if L then reject), obtain b || CTR ||m
* If CTR# CTR, 5 Or b# b, 5 then reject
* Otherwise, output m and increment CTR, g

Galois Counter Mode (GCM)

e AES-GCM is an Authenticated Encryption L Couero —(ier)—(Cowert j—(Ciner)—| Counterz |

>cheme) =) =
e Bonus: Authentication Encryption with ! |
Associated Data D [Panez }p
* Ensure integrity of ciphertext [Ciphertext1 | [Ciprertext2 |
 Attacker cannot even generate new/valid A A
ciphertext! Y Y
e Ensures attacker cannot tamper with mult m:rlH S m.:nH
associated packet data [i] [Cj
* Source IP [Auth Data 1] D
* Destination IP '
 Why can’t these values be encrypted? ED
e Encryption is largely parallelizable! -1

H=

Auth Tag

Cryptography
CS 555

Week 5:

e Cryptographic Hash Functions

e HMACs

 Generic Attacks

e Random Oracle Model

e Applications of Hashing

Readings: Katz and Lindell Chapter 5, Appendix A.4

Fall 2017

Week 5: Topic 1:
Cryptographic Hash Functions

Hash Functions

Long Input: X Short Output: y s.t.
lyl < [x|

Pigeonhole Principle

“You cannot fit 10 pigeons into 9 pigeonholes”

s
SN
\: s o [

é SRR

%&

Hash Collisions

By Pigeonhole Principle there must
exist x and y s.t.

H(x) = H(y)

Classical Hash Function Applications

e Hash Tables
O(1) lookup

* “Good hash function” should yield “few collisions”

* Certain terms and conditions apply

Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find any pair x, x’

S.t.
H(x) = H(x")
How to formalize this intuition?

e Attempt 1: For all PPT A,
Pr[A(1™) = (x,x") s.t H(x) = H(x")] < negl(n)

e The Problem: Let x, x' be given s.t. H(x) = H(x")
Ax,xl(]-n) = (x,x)

e We are assuming that [x| > |H(x)|. Why?
e H(x)=x is perfectly collision resistant! (but with no compression)

Keyed Hash Function Syntax

* Two Algorithms
 Gen(1"% R) (Key-generation algorithm)
e Input: Random Bits R
e Output: Seeret key s
 H>(m) (Hashing Algorithm)
* Input: key s and message m € {0,1}* (unbounded length)
e Output: hash value H5(m) € {0,1}f(™

* Fixed length hash function
e m € {0,1}¥ ™ with £'(n) > £(n)

Collision Experiment (HashColl, j(n))

X1,X5

1 if H3(x1) = H(xy)

HashCollyn(n)= {O otherwise

s = Gen(1% R)

Definition: (Gen,H) is a collision resistant hash function if
VPPT A Ju (negligible) s. t

Pr[HaShCollA’H (n)= 1] < u(n)

16

Collision Experiment (HashColl, j(n))

For simplicity we will
sometimes just say that H

Key is not key
secret (just
random)

(or H®) is a collision
resistant hash function

Definition: (Gen,H) is a collision resistant hash function i
VPPT A Ju (negligible) s.t

Pr[HaShCollA,H (n)=1] < u(n)

17

Theory vs Practice

* Most cryptographic hash functions used in practice are un-keyed
e Examples: MD5, SHA1, SHA2, SHA3

* Tricky to formally define collision resistance for keyless hash function
e There is a PPT algorithm to find collisions
e We just usually can’t find this algorithm ©

Formalizing Human Ignorance:
Collision-Resistant Hashing without the Keys

Phillip Rogaway

Department of Computer Science, University of California,
Davis, California 95616, USA, and
Department of Computer Science, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand

rogaway @cs.uedavis.edu

31 January 2007

Abstract. There is a foundational problem involving collision-resistant hash-functions: com-
Abstract. TI f lat 1 probl Iving coll tant hash-fumct:

Weaker Requirements for Cryptographic Hash

e Target-Collision Resistance

S,X
XI
1 ifHS(X’) = HS(X)
HashTgtColl =
ashTgtCollp n(n) {0 otherwise

s =Gen(1%R) /¢

e ae 1
o e o
10 T S
A5 = e
o, Y

. . . . x € {0,1}"
Question: Why is collision resistance stronger?

19

Weaker Requirements for Cryptographic Hash

* Preimage Resistance (One-Wayness)

1 ifH(x) =y

HashPreIngesA,H(n)={0 otherwise

s =Gen(1%R) /¢

| | 1S] ' y € {0,1}3(11) %
Question: Why is collision resistance stronger?

20

Merkle-Damgard Transform

* Most cryptographic hash functions accept fixed length inputs
 What if we want to hash arbitrary length strings?

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

HS (%, e, xg) = RS(RS(RS(RS (... RS(0™ I x))) Il xg—1) Il xg) Il |x])

Merkle-Damgard Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

H*(x) =
1. Break x into n bit segments x,,..,x4 (pad last block by 0’s)
2. zo = 0" (initialization)
3. Fori=1tod
1. z;=h>(zi—1 Il x})
4. Output zz,; = h®(z4 |l L) where L encodes |x| as an n-bit string

Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in h®. Thus a PPT
attacker for (Gen,H) can be transformed into PPT attacker for (Gen,h).

Suppose that
H*(x) = H*(x')
(note x and x” may have different lengths)

Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
H*(x) = H*(x")
Case 1: |x|=|x"| (proof for case two is similar)

H3(x) =zq=h%(z4_1 | xg) = H°(x") = Z& = hS(Zc,i—l | x&)

Zg—1 l xqg =?z4_1 |l x;

No = Found collision
Yes?

Zg—-1 — hS(Zd—z | xd—l) — hS(Zc’i—Z | xc’i—l) — Zc’l—l

Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
H*(x) = H*(x")
Case 1: |x|=|x"| (proof for case two is similar)

If for some i we have z;_; |l x; # z;_; |l x; then we will find a collision

But x and x’ are different!

Week 5: Topic 2:
HMACs and Generic Attacks

Keyed Hash Function Syntax

e Two Algorithms
e Gen(1™; R) (Key-generation algorithm)
e Input: Random Bits R
e OQutput: Secret key s
* H°(m) (Hashing Algorithm)
* Input: key s and message m € {0,1}"
e Output: hash value HS(m) € {0,1}*(®

MACs for Arbitrary Length Messages

Mac,(m)=
e Select random n/4 bit string r
e lett; = Macg(r | £ 1l i Il m;) fori=1,...,d
* (Note: encode i and £ as n/4 bit strings)
e Qutput (r, tq, ..., tq)

Theorem 4.8: If IT" is a secure MAC for messages of fixed length n,
above construction I1 = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

MACstaeAcbitrary Leng

Disadvantages: Lose
Disadvantage 1: Long Strong-MAC Guarantee
output (Multiple valid MACs of
il same message)

and £ as n/4%
e Qutput (r,tq, ..., t)

Theorem 4.8: If IT’ : :
above constructia Randomized Construction (no

messages. canonical verification). Disadvantage?

Hash and MAC Construction

Start with I = (Mac, Vrfy), a secure MAC for messages of fixed length, and
(Geny,H) a collision resistant hash function and define IT’

Mac, K,.5) (m) = Macy_ (H(m))

Vrfyi s (mt) =Vrfyg (H*(m),t)

Theorem 5.6: I1' is a secure MAC for arbitrary length message assuming that IT is
a secure MAC and (Geny,H) is collision resistant.

Note: If VrnyM(m, t) is canonical then VrfyZKM’w(m, t) is canonical.

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (Gen,,H) a
collision resistant hash function

Mac, K,.5) (m) = Macy_ (HS(m))
Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either

 Case 1: H(m') = H®(m,) for some previously requested message m.
 Case 2: H(m") + H®(m,) for every previously requested message m.

Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for
unseen message m’ then either

 Case 1: H°(m') = HS(m,) for some previously requested message m.
» Attacker can find hash collisions!

 Case 2: H°(m') + H°(m,) for every previously requested message m.
» Attacker forged a valid new tag on the “new message” HS(m')
e Violates security of the original fixed length MAC

32

Recap

e Definition of Collision Resistant Hash Functions (Gen,H)
e Definitional challenges
e Gen(1") outputs a public seed.

 Merkle-Damgard construction to hash arbitrary length strings
e Proof of correctness

e Hash and MAC construction
e Proof of correctness

MAC from Collision Resistant Hash

e Failed Attempt:

Macg ,(m) = H*(k |l m)

Broken if H>uses Merkle-Damgard Transform. Let m, encode length of m, || m,

Mac, ,(my | m, | mg) = h*(h*(h7(h>(R> (0™ Il k) | my) I my) || mg) Il L)
= hS(Mac, ¢ (m, I m,) Il Ly)

Why does this mean Mac, q, is broken?

34

HMAC

Mac, ,(m) = H® ((kEBopad) | HS((kEBipad) | m))

ipad?

HMAC

Macg, s\(m) = H® ((kEBopad) | HS((kEBipad) | m))

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of H°

HMAC Security

Macg, s\(m) = H® ((k@opad) | HS((kGBipad) | m))

Theorem (Informal): Assuming that H* is weakly collision resistant and
that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access
to f(m) = H3(k || m) (secret key k remains hidden).

Attacker Goal: Find distinct m,m’ such that f(m) = f(m’)

HMAC in Practice

* MD5 can no longer be viewed as collision resistant

e However, HMAC-MD5 remained unbroken after MD5 was broken

e Gave developers time to replace HMAC-MD5
 Nevertheless, don’t use HMAC-MD5!

e HMAC-SHAZ1 still seems to be okay (temporarily), despite collision

e HMAC is efficient and unbroken

e CBC-MAC was not widely deployed because it is “too slow”
* Instead practitioners often used heuristic constructions (which were breakable)

Finding Collisions

 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

Can we do
e Attack 1: Evaluate H(.) on 2?+1 distinct inputs. better?

THE PIGEONHOLE PRINCIPLE

39

 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

s 4 % LN -
\ 1
— - | "
L n L

e Attack 2: Evaluate H(.) on g = 2(¥/2)*1 4 1 distinct inputs xl,...,xq.'

Pr[No Collision] = Pr[Vi <]C'I.H(xi) #+ H(x)]

= Pr[D,] 1_[Pr|D;|D;_4, ..., Dy|
=3

D; = event that H(x;) + H(x;_11), ..., H(x1) 0

 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

sind - LN -
; ! 1

e Attack 2: Evaluate H(.) on g = 2(¥/2)*1 4 1 distinct inputs Xqseeer X

Pr(Vvi <j.H(x) # H(x)] =

Pr{AGr)#H(D] Pr[D3| D] Pr|Dg|Dg-1,..D2

Y ~ Y 7 N

g 1 2 2(£/2)+1
1 X 1 —— X|1——]|X--X1[1
¢ 2 2¢ .

 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

e Attack 2: Evaluate H(.) on g = 2%¥¢/2+1 4 1 distinct inputs X,,...,X

q°

| | 1 ’) 3 2(%’/2)+1
PI‘[Vl<].H(Xi):/—'H(Xj)]=1<1—?><1—?><1—?> (1— ¢)

5 —q(q —1)
~ €Xp 26+1

42

 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

eisf CANAL
\] 1
— | .

e Attack 2: Evaluate H(.) on g = 2(¥/2)*1 4 1 distinct inputs Xqseeer X

1 ’ 3 2(3/2)+1
Privi <j.H(x) # H(x)] =1 (1 - ?) (1 - ﬁ) (1 - ?) (1 - 2f)

—q(g—1) —42¢ o, 1
zexp(e+ ><exp<2{,+1 =e <§

43

Birthday Attack for Finding Collisions

 |deal Hashing Algorit
e Random function H f

—-q(q—1) [5P+1 1
e Suppose attacker ha: exp() < for q > 2¢+11n +1

2€+1

S

L
/
_»

e Attack 2: Evaluate H(

2(3/2)+1>

44

 |deal Hashing Algorithm

e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

e Attack 2: Evaluate H(.) on g = 2(£/2)+1 4 1 distinct inputs x,,...,X
» Store values (x;, H(x;)) in a hash table of size g

e Requires time/space O(q) = 0(\/?)
e Can we do better?

q°

45

Floyd’s Cycle Finding Algorithm
- * A cycle denotes a hash collision

e Occurs after O(2%/2) steps by
birthday paradox

* First attack phase detects cycle
e Second phase identifies collision

* Analogy: Cycle detection in linked list
e Can traverse “linked list” by computing H

Small Space Birthday Attack

e Attack 2: Select random x,, define x. = H(x,_)
* Initialize: x=x, and x'=x,
e Repeat fori=1,2,...
e x:=H(x) now X = X

o x":=H(H(x')) now X =X,
e If x=x" then break
* Reset x=x,and set x'=x
e Repeatforj=ltoi
e If H(x) = H(x’) then output x,x’
e Else x:= H(x), x" = H(x) Now x=x; AND X' = Xis;

47

Small Space Birthday Attack

e Attack 2: Select random x,, define x, = H(x,_
* Initialize: x=x, and x'=x,
e Repeat fori=1,2,... Finds collision after
0(2%/2) steps in
expectation

e x:=H(x) now X = X
o x":=H(H(x')) now X = X,
e If x=x’ then break
* Reset x=x,and set x'=x
e Repeatforj=ltoi
e If H(x) = H(x’) then output x,x’
e Else x:= H(x), x’ = H(x) Now x=x; AND x' = Xis;

48

Small Space Birthday Attack

Can be adapted to find “meaningful collisions” if we have a large message space 0(2{))

Example: S= S, US, with|S;| =|S,| = 2¢71
» S, =Set of positive recommendation letters
e S, =Set of negative recommendation letters

Goal: find z; € §1, z, € S;, such that H(z,) = H(z,)

Canhadap’fgprevious attack by assigning unique binary string b(x) € {0,1}* of length to
each x €

X, = H(b(x_y))

Targeted Collision Attacks

 Precomputation (t X s steps, 2s memory)

.

= 50

Targeted Collision Attacks

. Precomputatlon (t X s steps, 2s X £ memory)

e Goal: Find collision for target y = H(x)

m 3

51

Targeted Collision Attacks

e Precomputation (t X s steps, 2s X £ memot (takeststeps to recover x; ; from sp;)

... Not quite true...chains can intersect and
may not represent t X s distinct points

e Goal: Find col

txs>202 > good chance that &
y=x’iforsomei§t,j§s

Suppose y = xi forsomei <t,j<s
>

y= H(xi:-1) = Hi__l(sl’i)

for target y = H(x)

52

Intersecting Chains

. Precomputation (t X s steps, 2s memory)

Intersecting chains contain « st
distinct points.

M’ M%

After initial intersection the
chains merge together ®

Targeted Collision Attacks

 Precomputation (t X s steps, 2s memory)

.

m 54

Targeted Collision Attack

Targeted Collision Attack

* Precomputation (t X s steps, 2s me H;(x) = H((x))

Spy = X% . r Sps = X1
Ensures Chains Contain: Q(st) distinct points
small overlap between chains

ﬁ

= H.(~+2} £ wS — LT (vSY

Untanglmg Chains: If x;' = sz with i #
then (whp) H;(x;") # H;(x})

Targeted Collision Attacks Suppose y = %, for some i < ,] < s

9
y=Hiq (FKi_l(x'H))
e Precomputation (t X s steps, 25 X £ memot (takest steps to recover x;_, from sp)

e Goal: Find col for target y = H(x)

t X s > 2¢*2 > good chance that
y=x’l.forsomeiSt,sz

False Positive:
y;tx{foranyiS t,j<s
(expect about O(st?/2%))

>
Running Time: 0(st3/2€)

57

Targeted Collision Attacks

 Precomputation (t X s steps, 2s X £ memory)

. Sets =23" t—23

I: Find collision for target y = H(x)

26,
‘+1

Precomputatlon. 0(2%) Amortized cost to find
4

" | Space: 0(2 3 X f) 23 targeted collisions

Collision Search: 0(22{)) %‘W

Applications

» Key-Recovery Attacks on Block Cipher E: K x {0,1}" - {0,1}"
* Pre-Computation: O(|K|) .
* Crack 23 secret keys in total time O(|K|) with space s = 0(2?)
e Run prior attack with “hash function” H: {0,1}"* — {0,1}"
e H(K) = Ex(r) for some random (fixed) r € {0,1}"
e Password Cracking

e Attacker is given H'(x4),..., H (x;,) for passwords x4, ..., x;, € PWD.8 with
|PWDs| < | K| ! “ ! “

e Goal: Recover passwords x4, ..., X

e Can crack all k = |PWD.s|1/3 passwords in total time O(|PWD.s|) with space s =
O(|PWDs|?/3)
 Domain Challenge: H": |[PWDs| — {0,1}" with |PWDs| K 2"
* Define (pseudo)random mapping u:{0,1}"* > PWDs
e Run prior attack with “hash function” H: PWDs —» PWD.s as H(x) = u(H’(x))

Week 5: Topic 3:
Random Oracle Model +
Hashing Applications

(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
e Attempt 1: For all PPT A,
Pr[Ax,y(ln) = (x,y)s.t H(x) = H(y)] < negl(n)

e The Problem: Let x,y be given s.t. H(x)=H(y)
Ax,y(ln) = (%)

e We are assuming that |x| > |H(x)|. Why?
e H(x)=x is perfectly collision resistant! (but with no compression)

(Recap) Keyed Hash Function Syntax

* Two Algorithms
 Gen(1"% R) (Key-generation algorithm)
* |nput: Random Bits R
e Output: Seeret key s
 H>(m) (Hashing Algorithm)
* Input: key s and message m € {0,1}* (unbounded length)
e Output: hash value HS(m) € {0,1}*™

* Fixed length hash function
e m € {0,1}¥ ™ with £'(n) > £(n)

When Collision Resistance Isn’t Enough

e Example: Message Commitment
 Alice sends Bob: H5(r || m) (e.g., predicted winner of NCAA Tournament)
e Alice can later reveal message (e.g., after the tournament is over)

e Just send r and m (note: r has fixed length)
* Why can Alice not change her message?

* In the meantime Bob shouldn’t learn anything about m LOCK Bl;x

& LoCK ourt
FOR SAFETY

* Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)
HS(xq, ..., xd) = H'S (x4, ..., xd) |l x,

63

When Collision Resistance Isn’t Enough

* Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

HS(x;, ., xq) = H'S(xq, oy xg) Il X

* (Gen,H) definitely does not hide all information about input
(X1, -e) Xg)

e Conclusion: Collision resistance is not sufficient for message
commitment

The Tension

e Example: Message Commitment

 Alice sends Bob: H5(r || m) (e.g., predicted winners of NCAA Final Four)
e Alice can later reveal message (e.g., after the Final Four is decided)
* In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

* No attacks when instantiated with any reasonable candidate (e.g., SHA3)

e Cryptographic hash functions seem to provide “something” beyond
collision resistance, but how do we model this capability?

Random QOracle Model

 Model hash function H as a truly random function

e Algorithms can only interact with H as an oracle
* Query: x
e Response: H(x)

* If we submit the same query you see the same response
* If x has not been queried, then the value of H(x) is uniform

* Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgard)

Back to Message Commitment

 Example: Message Commitment
 Alice sends Bob: H(r || m) (e.g., predicted winners of NCAA Final Four)

e Alice can later reveal message (e.g., after the Final Four is decided)
e Just send r and m (note: r has fixed length)
 Why can Alice not change her message?

* In the meantime Bob shouldn’t learn anything about m

* Random Oracle Model: Above message commitment scheme is
secure (Alice cannot change m + Bob learns nothing about m)

* Information Theoretic Guarantee against any attacker with g
gueries to H

Random QOracle Model: Pros

* |t is easier to prove security in Random Oracle Model

e Suppose we are simulating attacker A in a reduction

e Extractability: When A queries H at x we see this query and learn x (and can
easily find H(x))
* Programmability: We can set the value of H(x) to a value of our choice
* As long as the value is correctly distribute i.e., close to uniform

e Both Extractability and Programmability are useful tools for a
security reduction!

Random QOracle Model: Pros

* |t is easier to prove security in Random Oracle Model

* Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

 Sometimes we only know how to design provably secure protocol in
random oracle model

Random QOracle Model: Cons

e Lack of formal justification

 Why should security guarantees translate when we instantiate
random oracle with a real cryptographic hash function?

* We can construct (contrived) examples of protocols which are
e Secure in random oracle model...
e But broken in the real world

Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

* Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

 Empirical Evidence for Security
“there have been no successful real-world attacks on

|H

schemes proven secure in the random oracle mode

Hash Function Application: Fingerprinting

* The hash h(x) of a file x is a unique identifier for the file
e Collision Resistance = No need to worry about another file y with H(y)=H(y)

* Application 1: Virus Fingerprinting
e Application 2: P2P File Sharing

* Application 3: Data deduplication

Tamper Resistant Storage

&

A ;

Dropbox

73

Tamper Resistant Storage

Disadvantage: Too
many hashes to store

@

Dropbox

m,,m,, My

Send file 1

A

74

Tamper Resistant Storage

Disadvantage: Need all
files to compute hash
ml’mz’m3

@

Dropbox

m,,m,, My

Send file 1

A

75

Merkle Trees

* Proof of Correctness for data block 2

hs

hy

Data block 1 Data block 2 Data block 3 Data block 4

e Verify that root matches

e Proof consists of just log(n) hashes
e Verifier only needs to permanently store
only one hash value

76

Merkle Trees

hiy

h] hz h} h4

Data block 1 Data block 2 Data block 3 Data block 4

Theorem: Let (Gen, h®) be a collision resistant hash function and let H%(m)
return the root hash in a Merkle Tree. Then H? is collision resistant.

Tamper Resistant Storage

@

Dropbox

m,,m,,ms;,m,

Send file 2

A

78

Commitment Schemes

e Alice wants to commit a message m to Bob
e And possibly reveal it later at a time of her choosing

* Properties
e Hiding: commitment reveals nothing about m to Bob
e Binding: it is infeasible for Alice to alter message

4

LOCK BuX
& LoCK ourt
FOR SAFETY

79

Commitment Hiding (Hidingy com (1))

My, My

commit(r,m,)

b)

1 ifb=">b

Hiding,com ()= {O otherwise

VPPT A Ju (negligible) s.t
1
Pr[HldlngA com(M) = 1] + u(n)

80

Commitment Binding (Binding 4 com (1))

l9,11,Mgp, My

1 if commit(r,,m,)= commit(r,,m,)

BindingA,Com(n)z{O otherwise

VPPT A 3u (negligible) s.t
Pr[Binding Acom(M) = 1] < u(n)

81

Secure Commitment Scheme

* Definition: A secure commitment scheme is hiding and binding
* Hiding
VPPT A Ju (negligible) s. t

1
Pr[Hiding,com(n) = 1] < 5 + u(n)

* Binding
VPPT A Ju (negligible) s.t

Pr[Binding 4 com(n) = 1| < u(n)

Commitment Scheme in Random Oracle
Model

e Commit(r,m):=H(m|r)
e Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure commitment
scheme.

Commitment Hiding (Hidingy com (1))

Mg, My

H(r:mb)

b)

1 ifb="b'

Hiding 5 com ()= {O otherwise

VPPT A making at most g(n) queries

3 1
Pr[Hiding com(n) = 1] < 5 + 10 84

Other Applications

e Password Hashing

e Key Derivation

Next Week

e Stream Ciphers

* Block Ciphers

e Feistel Networks

e DES, 3DES

* Read Katz and Lindell 6.1-6.2

	Homework 2 Released
	Recap
	CBC-MAC
	Recap: Authenticated Encryption
	Secure Communication Session
	Secure Communication Session
	Galois Counter Mode (GCM)
	Cryptography�CS 555
	Week 5: Topic 1: �Cryptographic Hash Functions��
	Hash Functions
	Pigeonhole Principle
	Hash Collisions
	Classical Hash Function Applications
	Collision-Resistant Hash Function
	Keyed Hash Function Syntax
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Theory vs Practice
	Weaker Requirements for Cryptographic Hash
	Weaker Requirements for Cryptographic Hash
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Week 5: Topic 2: �HMACs and Generic Attacks�
	Keyed Hash Function Syntax
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Hash and MAC Construction
	Hash and MAC Construction
	Hash and MAC Construction
	Recap
	MAC from Collision Resistant Hash
	HMAC
	HMAC
	HMAC Security
	HMAC in Practice
	Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Floyd’s Cycle Finding Algorithm
	Small Space Birthday Attack
	Small Space Birthday Attack
	Small Space Birthday Attack
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Intersecting Chains
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Applications
	�Week 5: Topic 3:�Random Oracle Model + Hashing Applications�
	(Recap) Collision-Resistant Hash Function
	(Recap) Keyed Hash Function Syntax
	When Collision Resistance Isn’t Enough
	When Collision Resistance Isn’t Enough
	The Tension
	Random Oracle Model
	Back to Message Commitment
	Random Oracle Model: Pros
	Random Oracle Model: Pros
	Random Oracle Model: Cons
	Random Oracle Model: Justification
	Hash Function Application: Fingerprinting
	Tamper Resistant Storage
	Tamper Resistant Storage
	Tamper Resistant Storage
	Merkle Trees
	Merkle Trees
	Tamper Resistant Storage
	Commitment Schemes
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Binding (Binding 𝐴,𝐶𝑜𝑚 (𝑛))
	Secure Commitment Scheme
	Commitment Scheme in Random Oracle Model
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Other Applications
	Next Week

