
Homework 2 Released

• Due: Tuesday, October 2nd at 3PM (beginning of class)

• Please Typeset Your Solutions (LaTeX, Word etc…)

• You may collaborate, but must write up your own solutions in your
own words

1

Recap

• Message Authentication Codes
• Integrity vs Confidentiality
• Example: Mack(𝑚𝑚) = FK(𝑚𝑚)
• Extension to unbounded messages and pitfalls (block re-ordering, truncation)
• CBC-MAC

• Authenticated Encryption + CCA-Security
• Encrypt and Authenticate [SSL]
• Authenticate then Encrypt [TLS] (Caution Required)
• Encrypt then Authenticate!

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

2

CBC-MAC

Advantages over Previous Solution
• Both MACs are secure
• Works for unbounded length messages
• Canonical Verification
• Short Authentication tag
• Parallelizable 3

FK(.)

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3

⨁

FK(.)

⨁

FK(.)

⨁

𝜏𝜏 = MacK 𝑚𝑚

for i=1,…,d
𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖
(encode i and ℓ as n/4 bit strings)

Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Caveat: Tricky Padding Issues arise if
|m| is not a multiple of the block-

length. See textbook.

We will see a simpler MAC
construction using hash functions

soon.

FK(.)

𝑚𝑚

Recap: Authenticated Encryption

• Authenticated Encryption  CCA-Security (by definition)

• Conceptual Distinction
• CCA-Security the goal is secrecy (hide message from active adversary)
• Authenticated Encryption: the goal is integrity + secrecy

• CCA-Security does not necessarily imply Authenticate Encryption
• But most natural CCA-Secure constructions are also Authenticated Encryption

Schemes
• Some constructions are CCA-Secure, but do not provide Authenticated

Encryptions, but they are less efficient.

4

Secure Communication Session

• Solution Protocol? Alice transmits c1 = EncK(m1) to Bob, who decrypts and
sends Alice c2 = EncK(m2) etc…

• Authenticated Encryption scheme is
• Stateless
• For fixed length-messages

• We still need to worry about
• Re-ordering attacks

• Alice sends 2n-bit message to Bob as c1 = EncK(m1), c2 = EncK(m2)
• Replay Attacks

• Attacker who intercepts message c1 = EncK(m1) can replay this message later in the
conversation

• Reflection Attack
• Attacker intercepts message c1 = EncK(m1) sent from Alice to Bob and replays to c1 Alice only

5

Secure Communication Session

• Defense
• Counters (CTRA,B,CTRB,A)

• Number of messages sent from Alice to Bob (CTRA,B) --- initially 0
• Number of messages sent from Bob to Alice (CTRB,A) --- initially 0
• Protects against Re-ordering and Replay attacks

• Directionality Bit
• bA,B = 0 and bB,A = 1 (e.g., since A < B)

• Alice: To send m to Bob, set c=EncK(bA,B ∥ CTRA,B ∥m), send c and increment
CTRA,B

• Bob: Decrypts c, (if ⊥ then reject), obtain b ∥ CTR ∥m
• If CTR≠ CTRA,B or b≠ bA,B then reject
• Otherwise, output m and increment CTRA,B

6

Galois Counter Mode (GCM)

• AES-GCM is an Authenticated Encryption
Scheme

• Bonus: Authentication Encryption with
Associated Data

• Ensure integrity of ciphertext
• Attacker cannot even generate new/valid

ciphertext!
• Ensures attacker cannot tamper with

associated packet data
• Source IP
• Destination IP
• Why can’t these values be encrypted?

• Encryption is largely parallelizable!

7

Cryptography
CS 555

Week 5:
• Cryptographic Hash Functions
• HMACs
• Generic Attacks
• Random Oracle Model
• Applications of Hashing
Readings: Katz and Lindell Chapter 5, Appendix A.4

8Fall 2017

Week 5: Topic 1:
Cryptographic Hash Functions

9

Hash Functions

H(x)=y

10

Long Input: 𝐱𝐱 Short Output: y s.t.
𝐲𝐲 ≪ 𝐱𝐱

Pigeonhole Principle

11

“You cannot fit 10 pigeons into 9 pigeonholes”

Hash Collisions

By Pigeonhole Principle there must
exist x and y s.t.

H(x) = H(y)

12

Classical Hash Function Applications

•Hash Tables
• O(1) lookup*

•“Good hash function” should yield “few collisions”

* Certain terms and conditions apply

13

Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find any pair 𝑥𝑥, 𝑥𝑥𝑥
s.t.

𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥𝑥
How to formalize this intuition?
• Attempt 1: For all PPT A,

Pr 𝐴𝐴 1𝑛𝑛 = 𝑥𝑥, 𝑥𝑥𝑥 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑥𝑥𝑥) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let 𝑥𝑥, 𝑥𝑥𝑥 be given s.t. 𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥′
𝐴𝐴𝑥𝑥,𝑥𝑥𝑥 1𝑛𝑛 = (𝑥𝑥, 𝑥𝑥𝑥)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)

14

Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛

15

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

16

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

17

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Key is not key
secret (just

random)

For simplicity we will
sometimes just say that H

(or Hs) is a collision
resistant hash function

Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm 

18

Weaker Requirements for Cryptographic Hash

• Target-Collision Resistance

19

s = Gen(1𝑛𝑛;𝑅𝑅)
𝑥𝑥 ∈ 0,1 𝑛𝑛

s,x

x’

HashTgtCollA,Π(𝑛𝑛)= � 1 if Hs x′ = Hs x
0 otherwise

Question: Why is collision resistance stronger?

Weaker Requirements for Cryptographic Hash

• Preimage Resistance (One-Wayness)

20

s = Gen(1𝑛𝑛;𝑅𝑅)
𝑦𝑦 ∈ 0,1 ℓ(𝑛𝑛)

s, 𝑦𝑦

x

HashPreImgResA,Π(n)= � 1 if Hs x = y
0 otherwise

Question: Why is collision resistance stronger?

Merkle-Damgård Transform

• Most cryptographic hash functions accept fixed length inputs

• What if we want to hash arbitrary length strings?

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑) = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 …ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑥𝑥1 ∥ 𝑥𝑥𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥

21

Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 encodes 𝑥𝑥 as an n-bit string

22

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in hs. Thus a PPT
attacker for (Gen,H) can be transformed into PPT attacker for (Gen,h).

Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

(note x and x’ may have different lengths)

23

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’| (proof for case two is similar)

24

𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′

𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 =? 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′
No  Found collision

Yes?

𝑧𝑧𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2 ∥ 𝑥𝑥𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2′ ∥ 𝑥𝑥𝑑𝑑−1′ = 𝑧𝑧𝑑𝑑−1′

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’| (proof for case two is similar)

25

If for some i we have 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥𝑖𝑖 ≠ 𝑧𝑧𝑖𝑖−1′ ∥ 𝑥𝑥𝑖𝑖′ then we will find a collision

But x and x’ are different!

Week 5: Topic 2:
HMACs and Generic Attacks

26

Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

•𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗

• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

27

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

28

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

29

Disadvantage 1: Long
output

Randomized Construction (no
canonical verification). Disadvantage?

Disadvantages: Lose
Strong-MAC Guarantee
(Multiple valid MACs of

same message)

Hash and MAC Construction

Start with Π = Mac, Vrfy , a secure MAC for messages of fixed length, and
(GenH,H) a collision resistant hash function and define Π′

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚, 𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚 , 𝑡𝑡

Theorem 5.6: Π′ is a secure MAC for arbitrary length message assuming that Π is
a secure MAC and (GenH,H) is collision resistant.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 is canonical.

30

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

31

Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎𝒎
• Violates security of the original fixed length MAC

32

Recap

• Definition of Collision Resistant Hash Functions (Gen,H)
• Definitional challenges
• Gen(1n) outputs a public seed.

• Merkle-Damgård construction to hash arbitrary length strings
• Proof of correctness

• Hash and MAC construction
• Proof of correctness

33

MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform. Let 𝑚𝑚3 encode length of 𝑚𝑚1 ∥ 𝑚𝑚2

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 ∥ 𝐿𝐿3

= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝐿𝐿3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

34

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?

35

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs

36

HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and
that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden).

Attacker Goal: Find distinct m,m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′

37

HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC-SHA1 still seems to be okay (temporarily), despite collision
• HMAC is efficient and unbroken

• CBC-MAC was not widely deployed because it is “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

38

Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

39

Can we do
better?

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr No Collision = Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj)

= Pr 𝑫𝑫𝟐𝟐 �
𝑖𝑖=3

𝑞𝑞

𝑃𝑃𝑃𝑃 𝑫𝑫𝒊𝒊�𝑫𝑫𝒊𝒊−𝟏𝟏, … ,𝑫𝑫𝟐𝟐

𝑫𝑫𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝐻𝐻 𝑥𝑥𝑖𝑖 ≠ 𝐻𝐻 𝑥𝑥𝑖𝑖−11 , … ,𝐻𝐻 𝑥𝑥1 40

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) =

1 × 1 −
1
2ℓ

Pr 𝐻𝐻 𝑥𝑥2 ≠𝐻𝐻 𝑥𝑥1

× 1 −
2
2ℓ

Pr 𝑫𝑫𝟑𝟑| 𝑫𝑫𝟐𝟐

× ⋯× 1 −
2 ℓ/2 +1

2ℓ

Pr 𝑫𝑫𝒒𝒒�𝑫𝑫𝒒𝒒−𝟏𝟏,…,𝑫𝑫𝟐𝟐

41

𝑫𝑫𝟐𝟐

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1

42

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

43

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

44

exp −𝑞𝑞 𝑞𝑞−1
2ℓ+1

< 𝜺𝜺 for 𝑞𝑞 > 2ℓ+1 ln 𝜺𝜺 + 1

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?

45

Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list
• Can traverse “linked list” by computing H

46

• A cycle denotes a hash collision
• Occurs after O 2ℓ/2 steps by

birthday paradox
• First attack phase detects cycle
• Second phase identifies collision

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

47

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

48

Finds collision after
O 2ℓ/2 steps in

expectation

Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space O 2ℓ

• Example: S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by assigning unique binary string b x ∈ 0,1 ℓ of length to
each 𝑥𝑥 ∈ 𝑆𝑆

xi = 𝐻𝐻(b xi−1)

49

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

50

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

51

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

52

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Suppose 𝒚𝒚 = 𝒙𝒙𝒊𝒊
𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔


𝒚𝒚 = 𝑯𝑯 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 = 𝑯𝑯𝒊𝒊−𝟏𝟏 𝒔𝒔𝒔𝒔𝒋𝒋

(takes t steps to recover 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 from 𝒔𝒔𝒔𝒔𝒋𝒋)

𝒕𝒕 × 𝒔𝒔 > 𝟐𝟐ℓ+𝟐𝟐 good chance that
𝒚𝒚 = 𝒙𝒙𝒊𝒊

𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔

… Not quite true…chains can intersect and
may not represent 𝒕𝒕 × 𝒔𝒔 distinct points

Intersecting Chains

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

53

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

… 𝑥𝑥2
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗𝑗

𝑠𝑠𝑠𝑠𝑗𝑗𝑗 = 𝑥𝑥1
𝑗𝑗𝑗

… 𝑥𝑥𝑡𝑡
𝑗𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗𝑗

…
𝑥𝑥𝑘𝑘
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑘𝑘

𝑗𝑗𝑗

Intersecting chains contain ≪ 𝐬𝐬𝒕𝒕
distinct points.

After initial intersection the
chains merge together 

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

54

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

55

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻1 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻1 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻1 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

56

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻1 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻1 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻1 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

Ensures Chains Contain: Ω 𝑠𝑠𝑠𝑠 distinct points
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Untangling Chains: If 𝑥𝑥𝑖𝑖1 = 𝑥𝑥𝑗𝑗2 with 𝑖𝑖 ≠ 𝑗𝑗
then (whp) 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖1 ≠ 𝐻𝐻𝑗𝑗 𝑥𝑥𝑗𝑗2

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

57

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻𝑖𝑖−1 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻1 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Suppose 𝒚𝒚 = 𝒙𝒙𝒊𝒊
𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔


𝒚𝒚 = 𝑯𝑯𝒊𝒊−𝟏𝟏 𝐹𝐹𝐾𝐾𝑖𝑖−1 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋

(takes t steps to recover 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 from 𝒔𝒔𝒔𝒔𝒋𝒋)

𝒕𝒕 × 𝒔𝒔 > 𝟐𝟐ℓ+𝟐𝟐 good chance that
𝒚𝒚 = 𝒙𝒙𝒊𝒊

𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷:
𝒚𝒚 ≠ 𝒙𝒙𝒊𝒊

𝒋𝒋 for any 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔
(expect about 𝑶𝑶 𝒔𝒔𝒕𝒕𝟐𝟐/𝟐𝟐ℓ)


Running Time: 𝑶𝑶 𝒔𝒔𝒕𝒕𝟑𝟑/𝟐𝟐ℓ

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

58

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻𝑖𝑖−1 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻1 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Set 𝑠𝑠 = 2
2ℓ
3 +1, 𝑡𝑡 = 2

ℓ
3+1

Precomputation: 𝐎𝐎 𝟐𝟐ℓ

Space: 𝐎𝐎 2
2ℓ
3 × ℓ

Collision Search: 𝑶𝑶 2
𝟐𝟐ℓ
𝟑𝟑

Amortized cost to find

2
ℓ
3 targeted collisions

Applications

• Key-Recovery Attacks on Block Cipher 𝐸𝐸:𝒦𝒦 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• Pre-Computation: 𝑂𝑂 𝒦𝒦
• Crack 2

𝑛𝑛
𝟑𝟑 secret keys in total time 𝑶𝑶 𝒦𝒦 with space s = 𝑶𝑶 2

2𝑛𝑛
𝟑𝟑

• Run prior attack with “hash function” H: 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• H 𝐾𝐾 = 𝐸𝐸𝐾𝐾 𝑟𝑟 for some random (fixed) 𝑟𝑟 ∈ 0,1 𝑛𝑛

• Password Cracking
• Attacker is given 𝐻𝐻𝐻 𝑥𝑥1 ,…, 𝐻𝐻𝐻 𝑥𝑥𝑘𝑘 for passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with
𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 𝒦𝒦

• Goal: Recover passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
• Can crack all 𝑘𝑘 = 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 1/3 passwords in total time 𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with space s =
𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 2/3

• Domain Challenge: H′: 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 0,1 𝑛𝑛 with 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 2𝑛𝑛
• Define (pseudo)random mapping 𝜇𝜇: 0,1 𝑛𝑛 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫
• Run prior attack with “hash function” H:𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 as H 𝑥𝑥 = 𝜇𝜇 H′ 𝑥𝑥

59

Week 5: Topic 3:
Random Oracle Model +

Hashing Applications

60

(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
• Attempt 1: For all PPT A,

Pr 𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = 𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let x,y be given s.t. H(x)=H(y)
𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = (𝑥𝑥,𝑦𝑦)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)

61

(Recap) Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛

62

When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 ∥ 𝑥𝑥𝑑𝑑

63

When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑

• (Gen,H) definitely does not hide all information about input
(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)

• Conclusion: Collision resistance is not sufficient for message
commitment

64

The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond

collision resistance, but how do we model this capability?

65

Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgård)

66

Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is
secure (Alice cannot change m + Bob learns nothing about m)

• Information Theoretic Guarantee against any attacker with q
queries to H

67

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a
security reduction!

68

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

• Sometimes we only know how to design provably secure protocol in
random oracle model

69

Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are
• Secure in random oracle model…
• But broken in the real world

70

Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on
schemes proven secure in the random oracle model”

71

Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication

72

Tamper Resistant Storage

73

m1

H(m1) m1’

Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)

74

m1,m2,m3

m1’

Send file 1

Disadvantage: Too
many hashes to store

Tamper Resistant Storage

75

m1,m2,m3

m1’

Send file 1

Disadvantage: Need all
files to compute hash

m1,m2,m3

H(m1,m2,m3)

Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store
only one hash value

76

Merkle Trees

77

Theorem: Let (Gen, hs) be a collision resistant hash function and let Hs(m)
return the root hash in a Merkle Tree. Then Hs is collision resistant.

Tamper Resistant Storage

78

m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4

Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

79

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

80

r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

81

r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding

82

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Commitment Scheme in Random Oracle
Model
• Commit(r,m):=H(m|r)

• Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure commitment
scheme.

83

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

84

r = Gen(.)
Bit b

m0,m1

H(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Other Applications

• Password Hashing

• Key Derivation

85

Next Week

• Stream Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
• Read Katz and Lindell 6.1-6.2

86

	Homework 2 Released
	Recap
	CBC-MAC
	Recap: Authenticated Encryption
	Secure Communication Session
	Secure Communication Session
	Galois Counter Mode (GCM)
	Cryptography�CS 555
	Week 5: Topic 1: �Cryptographic Hash Functions��
	Hash Functions
	Pigeonhole Principle
	Hash Collisions
	Classical Hash Function Applications
	Collision-Resistant Hash Function
	Keyed Hash Function Syntax
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Theory vs Practice
	Weaker Requirements for Cryptographic Hash
	Weaker Requirements for Cryptographic Hash
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Week 5: Topic 2: �HMACs and Generic Attacks�
	Keyed Hash Function Syntax
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Hash and MAC Construction
	Hash and MAC Construction
	Hash and MAC Construction
	Recap
	MAC from Collision Resistant Hash
	HMAC
	HMAC
	HMAC Security
	HMAC in Practice
	Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Floyd’s Cycle Finding Algorithm
	Small Space Birthday Attack
	Small Space Birthday Attack
	Small Space Birthday Attack
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Intersecting Chains
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Applications
	�Week 5: Topic 3:�Random Oracle Model + Hashing Applications�
	(Recap) Collision-Resistant Hash Function
	(Recap) Keyed Hash Function Syntax
	When Collision Resistance Isn’t Enough
	When Collision Resistance Isn’t Enough
	The Tension
	Random Oracle Model
	Back to Message Commitment
	Random Oracle Model: Pros
	Random Oracle Model: Pros
	Random Oracle Model: Cons
	Random Oracle Model: Justification
	Hash Function Application: Fingerprinting
	Tamper Resistant Storage
	Tamper Resistant Storage
	Tamper Resistant Storage
	Merkle Trees
	Merkle Trees
	Tamper Resistant Storage
	Commitment Schemes
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Binding (Binding 𝐴,𝐶𝑜𝑚 (𝑛))
	Secure Commitment Scheme
	Commitment Scheme in Random Oracle Model
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Other Applications
	Next Week

