
Homework 2 Released

• Due: Tuesday, October 2nd at 3PM (beginning of class)

• Please Typeset Your Solutions (LaTeX, Word etc…)

• You may collaborate, but must write up your own solutions in your 
own words
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Recap

• Message Authentication Codes
• Integrity vs Confidentiality
• Example: Mack(𝑚𝑚) = FK(𝑚𝑚)
• Extension to unbounded messages and pitfalls (block re-ordering, truncation)
• CBC-MAC

• Authenticated Encryption + CCA-Security
• Encrypt and Authenticate [SSL]
• Authenticate then Encrypt [TLS] (Caution Required)
• Encrypt then Authenticate!

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚
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CBC-MAC

Advantages over Previous Solution
• Both MACs are secure
• Works for unbounded length messages
• Canonical Verification
• Short Authentication tag
• Parallelizable 3

FK(. )

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3

⨁

FK(. )

⨁

FK(. )

⨁

𝜏𝜏 = MacK 𝑚𝑚

for i=1,…,d 
𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖
(encode i and ℓ as n/4 bit strings)

Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Caveat: Tricky Padding Issues arise if 
|m| is not a multiple of the block-

length. See textbook.

We will see a simpler MAC 
construction using hash functions 

soon.

FK(. )

𝑚𝑚



Recap: Authenticated Encryption

• Authenticated Encryption  CCA-Security (by definition)

• Conceptual Distinction
• CCA-Security the goal is secrecy (hide message from active adversary)
• Authenticated Encryption: the goal is integrity + secrecy

• CCA-Security does not necessarily imply Authenticate Encryption
• But most natural CCA-Secure constructions are also Authenticated Encryption 

Schemes 
• Some constructions are CCA-Secure, but do not provide Authenticated 

Encryptions, but they are less efficient. 
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Secure Communication Session

• Solution Protocol? Alice transmits c1 = EncK(m1) to Bob, who decrypts and 
sends Alice c2 = EncK(m2) etc…

• Authenticated Encryption scheme is 
• Stateless
• For fixed length-messages

• We still need to worry about 
• Re-ordering attacks 

• Alice sends 2n-bit message to Bob as  c1 = EncK(m1), c2 = EncK(m2)
• Replay Attacks

• Attacker who intercepts message c1 = EncK(m1) can replay this message later in the 
conversation

• Reflection Attack
• Attacker intercepts message c1 = EncK(m1) sent from Alice to Bob and replays to c1 Alice only
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Secure Communication Session

• Defense
• Counters (CTRA,B,CTRB,A)

• Number of messages sent from Alice to Bob (CTRA,B)  --- initially 0
• Number of messages sent from Bob to Alice (CTRB,A)  --- initially 0
• Protects against Re-ordering and Replay attacks

• Directionality Bit
• bA,B = 0 and bB,A = 1 (e.g., since A < B) 

• Alice: To send m to Bob, set c=EncK(bA,B ∥ CTRA,B ∥m), send c and increment 
CTRA,B

• Bob: Decrypts c, (if ⊥ then reject), obtain b ∥ CTR ∥m
• If CTR≠ CTRA,B or b≠ bA,B then reject
• Otherwise, output m and increment CTRA,B
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Galois Counter Mode (GCM)

• AES-GCM is an Authenticated Encryption 
Scheme

• Bonus: Authentication Encryption with 
Associated Data

• Ensure integrity of ciphertext
• Attacker cannot even generate new/valid 

ciphertext!
• Ensures attacker cannot tamper with 

associated packet data 
• Source IP
• Destination IP
• Why can’t these values be encrypted? 

• Encryption is largely parallelizable!
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Cryptography
CS 555

Week 5: 
• Cryptographic Hash Functions
• HMACs
• Generic Attacks
• Random Oracle Model
• Applications of Hashing
Readings: Katz and Lindell Chapter 5, Appendix A.4
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Week 5: Topic 1: 
Cryptographic Hash Functions
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Hash Functions

H(x)=y
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Long Input: 𝐱𝐱 Short Output: y s.t. 
𝐲𝐲 ≪ 𝐱𝐱



Pigeonhole Principle
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“You cannot fit 10 pigeons into 9 pigeonholes”



Hash Collisions

By Pigeonhole Principle there must 
exist x and y s.t.

H(x) = H(y)
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Classical Hash Function Applications

•Hash Tables
• O(1) lookup*

•“Good hash function” should yield “few collisions”

* Certain terms and conditions apply
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Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find any pair 𝑥𝑥, 𝑥𝑥𝑥
s.t. 

𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥𝑥
How to formalize this intuition?
• Attempt 1: For all PPT A, 

Pr 𝐴𝐴 1𝑛𝑛 = 𝑥𝑥, 𝑥𝑥𝑥 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑥𝑥𝑥) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let 𝑥𝑥, 𝑥𝑥𝑥 be given s.t. 𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥′
𝐴𝐴𝑥𝑥,𝑥𝑥𝑥 1𝑛𝑛 = (𝑥𝑥, 𝑥𝑥𝑥)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)
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Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛
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Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if 
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if 
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Key is not key 
secret (just 

random)

For simplicity we will 
sometimes just say that H 

(or Hs) is a collision 
resistant hash function



Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm 
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Weaker Requirements for Cryptographic Hash

• Target-Collision Resistance
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s = Gen(1𝑛𝑛;𝑅𝑅)
𝑥𝑥 ∈ 0,1 𝑛𝑛

s,x

x’

HashTgtCollA,Π(𝑛𝑛)= � 1 if Hs x′ = Hs x
0 otherwise

Question: Why is collision resistance stronger?



Weaker Requirements for Cryptographic Hash

• Preimage Resistance (One-Wayness)
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s = Gen(1𝑛𝑛;𝑅𝑅)
𝑦𝑦 ∈ 0,1 ℓ(𝑛𝑛)

s, 𝑦𝑦

x

HashPreImgResA,Π(n)= � 1 if Hs x = y
0 otherwise

Question: Why is collision resistance stronger?



Merkle-Damgård Transform

• Most cryptographic hash functions accept fixed length inputs

• What if we want to hash arbitrary length strings?

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑) = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 …ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑥𝑥1 ∥ 𝑥𝑥𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥
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Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 encodes 𝑥𝑥 as an n-bit string
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Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in hs. Thus a PPT 
attacker for (Gen,H) can be transformed into PPT attacker for (Gen,h).

Suppose that 
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

(note x and x’ may have different lengths)
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Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that 
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’|  (proof for case two is similar)

24

𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′

𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 =? 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′
No  Found collision

Yes? 

𝑧𝑧𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2 ∥ 𝑥𝑥𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2′ ∥ 𝑥𝑥𝑑𝑑−1′ = 𝑧𝑧𝑑𝑑−1′



Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that 
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’|  (proof for case two is similar)

25

If for some i we have 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥𝑖𝑖 ≠ 𝑧𝑧𝑖𝑖−1′ ∥ 𝑥𝑥𝑖𝑖′ then we will find a collision

But x and x’ are different!



Week 5: Topic 2: 
HMACs and Generic Attacks
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Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

•𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗

• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛
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MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n, 
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length 
messages.
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MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n, 
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length 
messages.

29

Disadvantage 1: Long 
output

Randomized Construction (no 
canonical verification). Disadvantage?

Disadvantages: Lose 
Strong-MAC Guarantee
(Multiple valid MACs of 

same message)



Hash and MAC Construction

Start with Π = Mac, Vrfy , a secure MAC for messages of fixed length, and 
(GenH,H) a collision resistant hash function and define Π′

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚, 𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚 , 𝑡𝑡

Theorem 5.6: Π′ is a secure MAC for arbitrary length message assuming that Π is 
a secure MAC and (GenH,H) is collision resistant.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 is canonical.
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Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a 
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen 
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi
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Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for 
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎𝒎
• Violates security of the original fixed length MAC
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Recap

• Definition of Collision Resistant Hash Functions (Gen,H)
• Definitional challenges
• Gen(1n) outputs a public seed. 

• Merkle-Damgård construction to hash arbitrary length strings
• Proof of correctness

• Hash and MAC construction
• Proof of correctness
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MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform. Let 𝑚𝑚3 encode length of 𝑚𝑚1 ∥ 𝑚𝑚2

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 ∥ 𝐿𝐿3

= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝐿𝐿3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

34

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚



HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?

35



HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs
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HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and 
that (certain other plausible assumptions hold) this is a secure MAC. 

Weak Collision Resistance: Give attacker oracle access 
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden). 

Attacker Goal: Find distinct m,m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′

37



HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC-SHA1 still seems to be okay (temporarily), despite collision
• HMAC is efficient and unbroken

• CBC-MAC was not widely deployed because it is “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

38



Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

39

Can we do 
better?



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr No Collision = Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj)

= Pr 𝑫𝑫𝟐𝟐 �
𝑖𝑖=3

𝑞𝑞

𝑃𝑃𝑃𝑃 𝑫𝑫𝒊𝒊�𝑫𝑫𝒊𝒊−𝟏𝟏, … ,𝑫𝑫𝟐𝟐

𝑫𝑫𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝐻𝐻 𝑥𝑥𝑖𝑖 ≠ 𝐻𝐻 𝑥𝑥𝑖𝑖−11 , … ,𝐻𝐻 𝑥𝑥1 40



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) =

1 × 1 −
1
2ℓ

Pr 𝐻𝐻 𝑥𝑥2 ≠𝐻𝐻 𝑥𝑥1

× 1 −
2
2ℓ

Pr 𝑫𝑫𝟑𝟑| 𝑫𝑫𝟐𝟐

× ⋯× 1 −
2 ℓ/2 +1

2ℓ

Pr 𝑫𝑫𝒒𝒒�𝑫𝑫𝒒𝒒−𝟏𝟏,…,𝑫𝑫𝟐𝟐

41

𝑫𝑫𝟐𝟐



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1

42



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

43



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

44

exp −𝑞𝑞 𝑞𝑞−1
2ℓ+1

< 𝜺𝜺 for 𝑞𝑞 > 2ℓ+1 ln 𝜺𝜺 + 1



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?

45



Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list 
• Can traverse “linked list” by computing H

46

• A cycle denotes a hash collision
• Occurs after O 2ℓ/2 steps by 

birthday paradox
• First attack phase detects cycle
• Second phase identifies collision



Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now   x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then  output x,x’
• Else x:= H(x), x’ = H(x)                     Now x=xj AND x′ = xi+j

47



Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now   x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then  output x,x’
• Else x:= H(x), x’ = H(x)                     Now x=xj AND x′ = xi+j

48

Finds collision after 
O 2ℓ/2 steps in 

expectation



Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space O 2ℓ

• Example:  S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by assigning unique binary string b x ∈ 0,1 ℓ of length  to  
each 𝑥𝑥 ∈ 𝑆𝑆

xi = 𝐻𝐻(b xi−1 )

49



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

50

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

51

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

52

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Suppose 𝒚𝒚 = 𝒙𝒙𝒊𝒊
𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔


𝒚𝒚 = 𝑯𝑯 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 = 𝑯𝑯𝒊𝒊−𝟏𝟏 𝒔𝒔𝒔𝒔𝒋𝒋

(takes t steps to recover 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 from  𝒔𝒔𝒔𝒔𝒋𝒋)

𝒕𝒕 × 𝒔𝒔 > 𝟐𝟐ℓ+𝟐𝟐 good chance that 
𝒚𝒚 = 𝒙𝒙𝒊𝒊

𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔

… Not quite true…chains can intersect and 
may not represent 𝒕𝒕 × 𝒔𝒔 distinct points



Intersecting Chains

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

53

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

… 𝑥𝑥2
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗𝑗

𝑠𝑠𝑠𝑠𝑗𝑗𝑗 = 𝑥𝑥1
𝑗𝑗𝑗

… 𝑥𝑥𝑡𝑡
𝑗𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗𝑗

…
𝑥𝑥𝑘𝑘
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑘𝑘

𝑗𝑗𝑗

Intersecting chains contain ≪ 𝐬𝐬𝒕𝒕
distinct points. 

After initial intersection the 
chains merge together 



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

54

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

55

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻1 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻1 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻1 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

56

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻1 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻1 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻1 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

Ensures Chains Contain: Ω 𝑠𝑠𝑠𝑠 distinct points
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Untangling Chains: If 𝑥𝑥𝑖𝑖1 = 𝑥𝑥𝑗𝑗2 with 𝑖𝑖 ≠ 𝑗𝑗
then (whp) 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖1 ≠ 𝐻𝐻𝑗𝑗 𝑥𝑥𝑗𝑗2



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)
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𝑥𝑥2
𝑗𝑗 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻𝑖𝑖−1 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻1 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Suppose 𝒚𝒚 = 𝒙𝒙𝒊𝒊
𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔


𝒚𝒚 = 𝑯𝑯𝒊𝒊−𝟏𝟏 𝐹𝐹𝐾𝐾𝑖𝑖−1 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋

(takes t steps to recover 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 from  𝒔𝒔𝒔𝒔𝒋𝒋)

𝒕𝒕 × 𝒔𝒔 > 𝟐𝟐ℓ+𝟐𝟐 good chance that 
𝒚𝒚 = 𝒙𝒙𝒊𝒊

𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷:
𝒚𝒚 ≠ 𝒙𝒙𝒊𝒊

𝒋𝒋 for any 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔
(expect about 𝑶𝑶 𝒔𝒔𝒕𝒕𝟐𝟐/𝟐𝟐ℓ )


Running Time: 𝑶𝑶 𝒔𝒔𝒕𝒕𝟑𝟑/𝟐𝟐ℓ



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)
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𝑥𝑥2
𝑗𝑗 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻𝑖𝑖−1 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻1 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Set 𝑠𝑠 = 2
2ℓ
3 +1, 𝑡𝑡 = 2

ℓ
3+1

Precomputation: 𝐎𝐎 𝟐𝟐ℓ

Space: 𝐎𝐎 2
2ℓ
3 × ℓ

Collision Search: 𝑶𝑶 2
𝟐𝟐ℓ
𝟑𝟑

Amortized cost to find 

2
ℓ
3 targeted collisions



Applications

• Key-Recovery Attacks on Block Cipher 𝐸𝐸:𝒦𝒦 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• Pre-Computation: 𝑂𝑂 𝒦𝒦
• Crack 2

𝑛𝑛
𝟑𝟑 secret keys in total time 𝑶𝑶 𝒦𝒦 with space s = 𝑶𝑶 2

2𝑛𝑛
𝟑𝟑

• Run prior attack with “hash function” H: 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• H 𝐾𝐾 = 𝐸𝐸𝐾𝐾 𝑟𝑟 for some random (fixed) 𝑟𝑟 ∈ 0,1 𝑛𝑛

• Password Cracking
• Attacker is given 𝐻𝐻𝐻 𝑥𝑥1 ,…, 𝐻𝐻𝐻 𝑥𝑥𝑘𝑘 for passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with 
𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 𝒦𝒦

• Goal: Recover passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
• Can crack all 𝑘𝑘 = 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 1/3 passwords in total time 𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with space s =
𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 2/3

• Domain Challenge: H′: 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 0,1 𝑛𝑛 with 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 2𝑛𝑛
• Define (pseudo)random mapping 𝜇𝜇: 0,1 𝑛𝑛 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫
• Run prior attack with “hash function” H:𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 as H 𝑥𝑥 = 𝜇𝜇 H′ 𝑥𝑥
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Week 5: Topic 3:
Random Oracle Model +  

Hashing Applications

60



(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
• Attempt 1: For all PPT A, 

Pr 𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = 𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let x,y be given s.t. H(x)=H(y)
𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = (𝑥𝑥,𝑦𝑦)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)
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(Recap) Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛
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When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message   (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 ∥ 𝑥𝑥𝑑𝑑
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When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑

• (Gen,H) definitely does not hide all information about input 
(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)

• Conclusion: Collision resistance is not sufficient for message 
commitment
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The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message  (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond 

collision resistance, but how do we model this capability?
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Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3) 
of fixed length (no Merkle-Damgård)
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Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message   (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is 
secure (Alice cannot change m + Bob learns nothing about m)

• Information Theoretic Guarantee against any attacker with q 
queries to H 

67



Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can 

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a 
security reduction!
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Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often 
much more efficient (compared to provably secure construction is 
“standard model”

• Sometimes we only know how to design provably secure protocol in 
random oracle model
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Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate 

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are 
• Secure in random oracle model…
• But broken in the real world
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Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better 
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function 
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on 
schemes proven secure in the random oracle model”
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Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication
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Tamper Resistant Storage

73

m1

H(m1) m1’



Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)
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m1,m2,m3

m1’

Send file 1

Disadvantage: Too 
many hashes to store



Tamper Resistant Storage
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m1,m2,m3

m1’

Send file 1

Disadvantage: Need all 
files to compute hash 

m1,m2,m3

H(m1,m2,m3)



Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store 
only one hash value
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Merkle Trees

77

Theorem: Let (Gen, hs) be a collision resistant hash function and let Hs(m)
return the root hash in a Merkle Tree. Then Hs is collision resistant.



Tamper Resistant Storage
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m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4



Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message
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Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 

80

r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding
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∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Commitment Scheme in Random Oracle 
Model
• Commit(r,m):=H(m|r)

• Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure  commitment 
scheme. 

83



Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 

84

r = Gen(.)
Bit b

m0,m1

H(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Other Applications

• Password Hashing

• Key Derivation 
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Next Week

• Stream Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
• Read Katz and Lindell 6.1-6.2
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