
Homework 1

• Due: Thursday at 3PM (beginning of class)

Q4 Typo: 𝜀𝜀𝑡𝑡 = 1.5𝑡𝑡
2𝑛𝑛

(not 𝜀𝜀𝑡𝑡 = 1.5𝑡𝑡
2𝑡𝑡

)

Please Typeset Your Solutions (LaTeX, Word etc…)

• You may collaborate, but must write up your own solutions in your
own words

1

Tidbits

• The use of the names “Alice and Bob” in crypto originates from the
seminal 1978 RSA paper of Ron Rivest, Adi Shamir and Leonard
Adleman (see https://en.wikipedia.org/wiki/Alice_and_Bob).

• Electronic Code Book Mode (ECB): named after convention physical
codebooks, which usually consists of a lookup table for
encryption/decryption (see https://en.wikipedia.org/wiki/Codebook).

2

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Codebook

Cryptography
CS 555

Week 4:
• Message Authentication Codes
• CBC-MAC
• Authenticated Encryption + CCA Security

Readings: Katz and Lindell Chapter 4.1-4.4

3Fall 2017

Recap

• Chosen Plaintext Attacks/Chosen Ciphertext Attacks
• CPA vs CCA-security

• Keyed Pseudorandom Functions and Permutations
• Achieving CPA-Security

• Blockciphers and Modes of Operation

4

CCA-Security

• CCA-Security is strictly stronger than CPA-Security
• Note: If a scheme has indistinguishable encryptions under one chosen-ciphertext attack

then it has indistinguishable multiple encryptions under chosen-ciphertext attacks.
• None of the encryption schemes we have considered so far are CCA-Secure
• Achieving CCA-Security?

• Useful to guarantee integrity of the ciphertext
• Idea: If attacker cannot generate valid new ciphertext c’ (distinct from ciphertext obtained via

eavesdropping) then ability to query decryption oracle is useless!
• CCA-Security requires non-malleability.
• Intuition: if attacker tampers with ciphertext c then c’ is either invalid or m’ is unrelated to m
• Let 𝑐𝑐 = EncK mb . Suppose attacker could generate a new valid ciphertext 𝑐𝑐′ ≠ 𝑐𝑐 such that 𝑚𝑚′ is

related to mb the but not message 𝑚𝑚1−𝑏𝑏
• How can the attacker win the CCA-Security game?
• Ask for decryption of c’ and check if 𝑚𝑚′ is related to 𝑚𝑚1 or 𝑚𝑚0

5

Week 4: Topic 1:
Message Authentication Codes

6

Current Goals

• Introduce Message Authentication Codes (MACs)
• Key tool in Construction of CCA-Secure Encryption Schemes

• Build Secure MACs

7

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

8

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you
Alice… - Bob

We need to
break up -Bob

9

Message Authentication Codes

• CPA-Secure Encryption: Focus on Secrecy
• But does not promise integrity

• Message Authentication Codes: Focus on Integrity
• But does not promise secrecy

• CCA-Secure Encryption: Requires Integrity and Secrecy

10

What Does It Mean to “Secure Information”

• Integrity (Authenticity)
• The message was actually sent by the alleged sender
• And the received message matches the original

Bob
Alice

Pay robot
devil $50

Pay robot
devil $5,000

11

Error Correcting Codes?

• Tool to detect/correct a small number of random errors in
transmission

• Examples: Parity Check, Reed-Solomon Codes, LDPC, Hamming Codes
…

• Provides no protection against a malicious adversary who can
introduce an arbitrary number of errors

• Still useful when implementing crypto in the real world (Why?)

12

Modifying Ciphertexts

Enck(m) = 𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

𝑐𝑐′ = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁𝑦𝑦 = Enck(𝑚𝑚⨁𝑦𝑦)

Deck (𝑐𝑐′) = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁𝑦𝑦 = 𝑚𝑚⨁𝑦𝑦

If attacker knows original message he can forge c’ to decrypt to any
message he wants.
Even if attacker doesn’t know message he may find it advantageous to
flip certain bits (e.g., decimal places)

13

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?

14

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?

15

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

16

Security Goal (Informal): Attacker should not be able to forge a valid tag t’ for new
message m’ that s/he wants to send.

MAC Authentication Game (Macforge𝐴𝐴,Π(𝑛𝑛))

17

mq

K = Gen(.)

tq = MacK(mq)

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Discussion

• Is the definition too strong?
• Attacker wins if he can forge any message
• Does not necessarily attacker can forge a “meaningful message”
• “Meaningful Message” is context dependent
• Conservative Approach: Prove Security against more powerful attacker
• Conservative security definition can be applied broadly

• Replay Attacks?
• t=MacK(“Pay Bob $1,000 from Alice’s bank account”)
• Alice cannot modify message to say $10,000, but…
• She may try to replay it 10 times

18

Replay Attacks

• MACs alone do not protect against replay attacks
(they are stateless)

• Common Defenses:
• Include Sequence Numbers in Messages (requires

synchronized state)
• Can be tricky over a lossy channel

• Timestamp Messages
• Double check timestamp before taking action

19

Strong MACs

• Previous game ensures attacker cannot generate a valid tag for a new
message.

• However, attacker may be able to generate a second valid tag t’ for a
message m after observing (m,t)

• Strong MAC: attacker cannot generate second valid tag, even for a
known message

20

Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛))

21

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Deterministic MACs

• Canonical Verification Algorithm

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = Mack(𝑚𝑚)
0 otherwise

• “All real-world MACs use canonical verification” – page 115

22

Strong MAC vs Regular MAC

Proposition 4.4: Let Π = Gen, Mac, Vrfy be a secure MAC that uses
canonical verification. Then Π is a strong MAC.

“All real-world MACs use canonical verification” – page 115

Should attacker have access to VrfyK(.) oracle in games?
(e.g., CPA vs CCA security for encryption)
Irrelevant if the MAC uses canonical verification!

23

Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

24

Example

t= 1 0 1 0 1 1 1 0
t’= 1 0 1 0 1 1 1 1

Returns 0 after 8 steps

Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

25

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 1 1 0

Returns 0 after 1 step

Timing Attack

• MACs used to verify code updates for Xbox 360

• Implementation allowed different rejection times (side-channel)

• Attacks exploited vulnerability to load pirated games onto hardware

• Moral: Ensure verification is time-independent

26

Improved Canonical Verification Algorithm

Input: m,t’

B=1
t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
B=0

else (dummy op)
return B

27

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 0 1 0

Returns 0 after 8 steps

Side-Channel Attacks

• Cryptographic Definition
• Attacker only observes outputs of oracles (Enc, Dec, Mac) and nothing else

• When attacker gains additional information like timing (not captured by
model) we call it a side channel attack.

Other Examples
• Differential Power Analysis
• Cache Timing Attack
• Power Monitoring
• Acoustic Cryptanalysis
• …many others

28

Recap

• Data Integrity
• Message Authentication Codes
• Side-Channel Attacks
• Build Secure MACs
• Construct CCA-Secure Encryption Scheme

Current Goal:
• Build a Secure MAC

• Key tool in Construction of CCA-Secure Encryption Schemes

29

General vs Fixed Length MAC

ℳ = 0,1 ∗

versus

ℳ = 0,1 ℓ(𝑛𝑛)

31

Strong MAC Construction (Fixed Length)

Simply uses a secure PRF F
Mack(𝑚𝑚) = FK(𝑚𝑚)

Question: How to verify the a MAC?

Canonical Verification Algorithm…

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

32

Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛))

33

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Concrete Version: 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure MAC

34

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀ 𝐴𝐴 with time(A) ≤ 𝑡𝑡 𝑛𝑛 , queries(A) ≤ 𝑞𝑞 𝑛𝑛
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜀𝜀(𝑛𝑛)

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for
messages of length n.
Proof: Start with attacker who breaks MAC security and build an attacker
who breaks PRF security (contradiction!)
Sufficient to start with attacker who breaks regular MAC security (why?)

35

Breaking MAC Security (Macforge𝐴𝐴,Π(𝑛𝑛))

36

mq

K = Gen(.)

𝒕𝒕𝒒𝒒 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝒒𝒒

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
𝒕𝒕𝟏𝟏 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝟏𝟏

𝒕𝒕𝟐𝟐 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝟐𝟐

m2 …

∃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑎𝑎𝑛𝑛𝑎𝑎 𝑔𝑔(.) (positive/non negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑔𝑔(𝑛𝑛)

A Similar Game (Macforge𝐴𝐴,�Π(𝑛𝑛))

37

mq

Truly Random Function
f ∈Funcn

tq = f(mq)

Macforge𝐴𝐴,�Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = f(m1)

t2 = f (m2)
m2 …

Claim: ∀𝐴𝐴 𝑛𝑛𝑛𝑛𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃
Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

Why? Because f(m) is
distributed uniformly

in {0,1}n so Pr[f(m)=t]=2-n

PRF Distinguisher D

• Given oracle O (either FK or truly random f)
• Run PPT Macforge adversary A
• When adversary queries with message m, respond with O(m)
• Output 1 if attacker wins (otherwise 0)

• If O = f then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

• If O=FK then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑔𝑔(𝑛𝑛)

38

PRF Distinguisher D

• If O = f then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

• If O=FK then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑔𝑔(𝑛𝑛)

Advantage:
Pr 𝐷𝐷𝐹𝐹𝐾𝐾 1𝑛𝑛 = 1 − Pr 𝐷𝐷𝑓𝑓 1𝑛𝑛 = 1 > 𝑔𝑔 𝑛𝑛 − 2−𝑛𝑛

Note that 𝑔𝑔 𝑛𝑛 − 2−𝑛𝑛 is non-negligible and D runs in PPT if A does.

39

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for
messages of length n.

40

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Concrete): If F is a 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure PRF then the above
construction is a 𝑡𝑡 𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 + 2−𝑛𝑛 -secure MAC for ℳ =
0,1 𝑛𝑛 (messages of length n).

Example: F is a 2𝑛𝑛, 2𝑛𝑛/2, 2−𝑛𝑛 -secure PRF- the above MAC construction is
2𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 2𝑛𝑛/2, 2−𝑛𝑛+1 -secure

41

Homework 1: Due Now

42

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Concrete): If F is a 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure PRF then the above
construction is a 𝑡𝑡 𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 + 2−𝑛𝑛 -secure MAC for ℳ = 0,1 𝑛𝑛

(messages of length n).
Limitation: What if we want to authenticate a longer message? ℳ = 0,1 ∗

43

MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages

First: A few failed attempts
Let m = m1,…,md where each mi is n bits and let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

What is wrong?
Block-reordering attack

MacK(md,…,𝑚𝑚1) = 𝑡𝑡𝑑𝑑 , … , 𝑡𝑡1

44

𝑚𝑚1 = “I love you”
𝑚𝑚2 = “I will never say that”
𝑚𝑚3 = “you are stupid”

MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages

Attempt 2
Let m = m1,…,md where each mi is n bits and let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Addresses block-reordering attack.
Any other concerns?

Truncation attack!
MacK(m1,…,𝑚𝑚𝑑𝑑−1) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑−1

45

Suppose 𝑚𝑚1, … ,𝑚𝑚𝑑𝑑−1,𝑚𝑚𝑑𝑑 =
“I don’t like you. I LOVE you!”

MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages

Attempt 3
Let m = m1,…,md where each mi is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎
Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Addresses truncation.
Any other concerns?

Mix and Match Attack!

46

MACs for Arbitrary Length Messages

Let m = m1,…,md where each mi is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎
Let m’ = m’1,…,m’d where each m’i is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎

Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖 and 𝑡𝑡′𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖 ′
MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

MacK(mʹ) = 𝑡𝑡′1, … , 𝑡𝑡′𝑑𝑑
Mix and Match Attack!

MacK(m1,mʹ2,m3,...) = 𝑡𝑡1, 𝑡𝑡′2, 𝑡𝑡3, …

47

48

𝑚𝑚1 = “What will I say to Eve?”
𝑚𝑚2 = “You are evil and vile.”
𝑚𝑚3 = “Please leave me alone!”
𝑚𝑚4 = “Your sworn enemy - BOB”

𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡2, , 𝑡𝑡3, 𝑡𝑡4

𝑚𝑚1′ = “Dear Alice”
𝑚𝑚2′ = “You are wonderful.”

𝑚𝑚3′ = “I can’t wait to see you!”
𝑚𝑚4′ = “XOXOXOXOXO - BOB”

𝑡𝑡′ = 𝑡𝑡1′, 𝑡𝑡2′, , 𝑡𝑡3′, 𝑡𝑡4′

𝑚𝑚1′ = “Dear Alice”
𝑚𝑚2 = “You are evil and vile.”
𝑚𝑚3 = “Please leave me alone!”
𝑚𝑚4 = “Your sworn enemy - BOB”

𝑡𝑡′′ = 𝑡𝑡1′, 𝑡𝑡2, , 𝑡𝑡3, 𝑡𝑡4

MACs for Arbitrary Length Messages

• A non-failed approach
• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages
• Let m = m1,…,md where each mi is n/4 bits and m has length ℓ < 2𝑛𝑛/4

MacK(m)=
• Select random 𝑛𝑛

4
bit nonce 𝑟𝑟

• Let 𝑡𝑡𝑖𝑖 = 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d
• (Note: encode i and ℓ as 𝑛𝑛

4
bit strings)

• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑
49

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π′ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

50

Coming Soon

• CBC-MAC and Authenticated Encryption
• Read Katz and Lindell 4.4-4.5

51

Week 3
Topics 2&3: Authenticated Encryption + CCA-Security

52

Recap

• Message Authentication Codes
• Secrecy vs Confidentiality

Today’s Goals:
• Authenticated Encryption
• Build Authenticated Encryption Scheme with CCA-Security

53

Authenticated Encryption

Encryption: Hides a message from the attacker

Message Authentication Codes: Prevents attacker from tampering
with message

54

Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛))

55

mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑐𝑐 ≠⊥
𝑐𝑐 s.t 𝑐𝑐 ∉ 𝑐𝑐1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛))

56

mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑐𝑐 ≠⊥
𝑐𝑐 s.t 𝑐𝑐 ∉ 𝑐𝑐1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Game is very
similar to MAC-

Forge game

Call Π an authenticated
encryption scheme if it is
CCA-secure and any PPT
attacker wins Encforge

with negligible probability

Building Authenticated Encryption

Attempt 1: Let Enc𝐾𝐾′ 𝑚𝑚 be a CPA-Secure encryption scheme and let
Mac𝐾𝐾′ 𝑚𝑚 be a secure MAC

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾′ 𝑚𝑚 , Mac𝐾𝐾′ 𝑚𝑚

Any problems?
Enc𝐾𝐾′ 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

Mac𝐾𝐾′ 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑚𝑚

57

Building Authenticated Encryption

Attempt 1:
𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝑘𝑘 𝑚𝑚

CPA-Attack:
• Intercept ciphertext c

𝑐𝑐 = 𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝑘𝑘 𝑚𝑚
• Ask to encrypt r

𝑐𝑐𝑟𝑟 = 𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑟𝑟 = 𝑟𝑟′,𝐹𝐹𝑘𝑘 𝑟𝑟′ ⨁𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟

𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁ 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚
58

Building Authenticated Encryption

Attempt 1: Let Enc𝐾𝐾′ 𝑚𝑚 be a CPA-Secure encryption scheme and let
Mac𝐾𝐾′ 𝑚𝑚 be a secure MAC

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾′ 𝑚𝑚 , Mac𝐾𝐾′ 𝑚𝑚

59

Attack exploited fact
that same secret key
used for MAC’/Enc’

Independent Key Principle

“different instances of cryptographic
primitives should always use
independent keys”

60

Building Authenticated Encryption

Attempt 2: (Encrypt-and-Authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 , Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

Any problems?
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚
Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚

61

Building Authenticated Encryption

Attempt 2:
𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚

CPA-Attack:
• Select 𝑚𝑚0,𝑚𝑚1
• Obtain ciphertext c

𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏 ,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏
• Ask to encrypt 𝑚𝑚0

𝑐𝑐𝑟𝑟 = 𝑟𝑟′,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟′ ⨁𝑚𝑚0,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0

𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0 =?𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏

62

Building Authenticated Encryption

Attempt 2:
𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚

CPA-Attack:
• Select 𝑚𝑚0, 𝑚𝑚1
• Obtain ciphertext c

𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏 ,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏
• Ask to encrypt 𝑚𝑚0

𝑐𝑐𝑟𝑟 = 𝑟𝑟′,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟′ ⨁𝑚𝑚0,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0

𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0 =?𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏

63

Encrypt and
Authenticate

Paradigm does
not work in

general

Building Authenticated Encryption

Attempt 2: (Encrypt-and-Authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 , Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

64

Problem: MAC security
definition doesn’t

promise to hide m!

This is what SSH does

Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let 𝐾𝐾 =

𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

- Used in SSL/TLS
- Not generically secure (Hugo Krawczyk)
- Easy to make mistakes when implementing (e.g., Lucky13 attack on TLS)

65The Order of Encryption and Authentication for Protecting Communications (or: How Secure Is SSL?)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.5488&rep=rep1&type=pdf

Authenticate-then-Encrypt: A Bad Case

Attempt 3: (Authenticate-then-encrypt)
𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

(Contrived? Plausible?) bad case:
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚

D𝑒𝑒𝑐𝑐𝐾𝐾𝐸𝐸
′ 𝑐𝑐

𝑟𝑟, 𝑗𝑗 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑐𝑐
Return 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑗𝑗

66

Error Correcting Code

Authenticate-then-Encrypt: A Bad Case

Attempt 3: (Authenticate-then-encrypt)
𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

(Contrived? Plausible?) bad case:
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚

D𝑒𝑒𝑐𝑐𝐾𝐾𝐸𝐸
′ 𝑐𝑐

𝑟𝑟, 𝑗𝑗 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑐𝑐
Return 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑗𝑗

67

Error Correcting Code
𝐸𝐸𝐸𝐸𝐸𝐸 101 = 111100001111

Ties?
𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 1100 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 0011 = 1

Authenticate-then-Encrypt: A Bad Case

Attempt 3: (Authenticate-then-encrypt)
𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

(Contrived? Plausible?) bad case:
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚

D𝑒𝑒𝑐𝑐𝐾𝐾𝐸𝐸
′ 𝑐𝑐

𝑟𝑟, 𝑗𝑗 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑐𝑐
Return 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑗𝑗

68

Error Correcting Code
𝐸𝐸𝐸𝐸𝐸𝐸 101 = 111100001111

𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 1100 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 0011 = 1

1. Attacker obtains c = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟, 𝑗𝑗 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ 𝑚𝑚 ∥ 𝑡𝑡
2. Attacker asks for decryption of c′ = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟, 𝑗𝑗 ⨁ 0 … 0 ∥ 0011

• What happens if last bit of s is a zero?
• Answer: decryption error since 𝑡𝑡′ = 𝑡𝑡⨁ 0 … 0 ∥ 1 !
• 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑐𝑐′ = 𝑟𝑟, 𝑗𝑗′ = 𝑗𝑗⨁ 0 … 0 ∥ 1

3. What happens if last bit of s is a one?
• Answer: Valid! 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑐𝑐 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑐𝑐′

Can learn tag and message bit
by bit by repeatedly querying

decryption oracle!

Building Authenticated Encryption

Attempt 4: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let 𝐾𝐾 =

𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Secure?

69

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure encryption

scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following construction is an

authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof?
Two Tasks:

Encforge𝐴𝐴,Π
CCA-Security

70

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following

construction is an authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof Intuition: Suppose that we have already shown that any PPT attacker
wins Encforge𝐴𝐴,Π with negligible probability.

Why does CCA-Security now follow from CPA-Security?
CCA-Attacker has decryption oracle, but cannot exploit it! Why?
Always sees ⊥ “invalid ciphertext” when he query with unseen ciphertext

71

Proof Sketch

1. Let ValidDecQuery be event that attacker submits new/valid ciphertext
to decryption oracle

2. Show Pr[ValidDecQuery] is negl(n) for any PPT attacker
• Hint: Follows from strong security of MAC since

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c

• This also implies unforgeability (even if we gave the attacker 𝐾𝐾𝐸𝐸!).

3. Show that attacker who does not issue valid decryption query wins CCA-
security game with probability ½ + negl(n)
• Hint: otherwise we can use A to break CPA-security
• Hint 2: simulate decryption oracle by always returning ⊥ when given new ciphertext

72

Secure Communication Session

• Solution Protocol? Alice transmits c1 = EncK(m1) to Bob, who decrypts and
sends Alice c2 = EncK(m2) etc…

• Authenticated Encryption scheme is
• Stateless
• For fixed length-messages

• We still need to worry about
• Re-ordering attacks

• Alice sends 2n-bit message to Bob as c1 = EncK(m1), c2 = EncK(m2)
• Replay Attacks

• Attacker who intercepts message c1 = EncK(m1) can replay this message later in the
conversation

• Reflection Attack
• Attacker intercepts message c1 = EncK(m1) sent from Alice to Bob and replays to c1 Alice only

73

Secure Communication Session

• Defense
• Counters (CTRA,B,CTRB,A)

• Number of messages sent from Alice to Bob (CTRA,B) --- initially 0
• Number of messages sent from Bob to Alice (CTRB,A) --- initially 0
• Protects against Re-ordering and Replay attacks

• Directionality Bit
• bA,B = 0 and bB,A = 1 (e.g., since A < B)

• Alice: To send m to Bob, set c=EncK(bA,B ∥ CTRA,B ∥m), send c and increment
CTRA,B

• Bob: Decrypts c, (if ⊥ then reject), obtain b ∥ CTR ∥m
• If CTR≠ CTRA,B or b≠ bA,B then reject
• Otherwise, output m and increment CTRA,B

74

Authenticated Security vs CCA-Security

• Authenticated Encryption CCA-Security (by definition)

• CCA-Security does not necessarily imply Authenticate Encryption
• But most natural CCA-Secure constructions are also Authenticated Encryption

Schemes
• Some constructions are CCA-Secure, but do not provide Authenticated

Encryptions, but they are less efficient.

• Conceptual Distinction
• CCA-Security the goal is secrecy (hide message from active adversary)
• Authenticated Encryption: the goal is integrity + secrecy

75

Galois Counter Mode (GCM)

• AES-GCM is an Authenticated Encryption
Scheme

• Bonus: Authentication Encryption with
Associated Data

• Ensure integrity of ciphertext
• Attacker cannot even generate new/valid

ciphertext!
• Ensures attacker cannot tamper with

associated packet data
• Source IP
• Destination IP
• Why can’t these values be encrypted?

• Encryption is largely parallelizable!

76

Next Week

• Read Katz and Lindell 5.1-5.6
• Cryptographic Hash Functions
• HMACs
• Generic Attacks on Hash Functions
• Random Oracle Model
• Applications of Hashing
• Homework 2 Assigned

77

	Homework 1
	Tidbits
	Cryptography�CS 555
	Recap
	CCA-Security
	Week 4: Topic 1: �Message Authentication Codes��
	Current Goals
	What Does It Mean to “Secure Information”
	What Does It Mean to “Secure Information”
	Message Authentication Codes
	What Does It Mean to “Secure Information”
	Error Correcting Codes?
	Modifying Ciphertexts
	Message Authentication Code Syntax
	Message Authentication Code Syntax
	Message Authentication Code Syntax
	MAC Authentication Game (Macforge 𝐴,Π (𝑛))
	Discussion
	Replay Attacks
	Strong MACs
	Strong MAC Authentication (Macsforge 𝐴,Π (𝑛))
	Deterministic MACs
	Strong MAC vs Regular MAC
	Timing Attacks (Side Channel)
	Timing Attacks (Side Channel)
	Timing Attack
	Improved Canonical Verification Algorithm
	Side-Channel Attacks
	Recap
	General vs Fixed Length MAC
	Strong MAC Construction (Fixed Length)
	Strong MAC Authentication (Macsforge 𝐴,Π (𝑛))
	Concrete Version: 𝑡 𝑛 ,𝑞 𝑛 ,𝜀(𝑛) -secure MAC
	Strong MAC Construction (Fixed Length)
	Breaking MAC Security (Macforge 𝐴,Π (𝑛))
	A Similar Game (Macforge 𝐴, Π (𝑛))
	PRF Distinguisher D
	PRF Distinguisher D
	Strong MAC Construction (Fixed Length)
	Strong MAC Construction (Fixed Length)
	Homework 1: Due Now
	Strong MAC Construction (Fixed Length)
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Slide Number 48
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Coming Soon
	Week 3
	Recap
	Authenticated Encryption
	Unforgeable Encryption Experiment (Encforge 𝐴,Π (𝑛))
	Unforgeable Encryption Experiment (Encforge 𝐴,Π (𝑛))
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Independent Key Principle
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Authenticate-then-Encrypt: A Bad Case
	Authenticate-then-Encrypt: A Bad Case
	Authenticate-then-Encrypt: A Bad Case
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Proof Sketch
	Secure Communication Session
	Secure Communication Session
	Authenticated Security vs CCA-Security
	Galois Counter Mode (GCM)
	Next Week

