
Homework 5 Statistics
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Minimum Value 59.00
Maximum Value 100.00
Range 41.00
Average 82.73
Median 83.50
Standard Deviation 12.74



Course Evaluation

• Please Complete Your Course Evaluations
• Your feedback is valuable!

• Homework 5 Solutions and Practice Final Available on Piazza
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Final Exam

• Time: Tuesday, December 11th at 8AM 
• Location: LWSN B151

• Comprehensive
• …but heavier coverage of material covered in second half of semester

• Format
• Multiple choice
• Fill in the blank (expect more of these questions)
• true/false/more information

• Practice Exam on Piazza 
• Solutions to practice exam distributed on Thursday (Do not distribute!)
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Review: Attacker Models

• Passive Eavesdropping Attacker (Eve)

• Active Attacker
• Chosen Plaintext Attack: Attacker can control/influence messages that are 

encrypted

• Chosen Ciphertext Attack: Attacker can convince honest party to (partially) 
decrypt ciphertexts of his/her choosing.

• MPC: Semi-Honest vs Malicious
• Man-In-The-Middle Attacker
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Review: Key Concepts for Symmetric Key Crypto

• Building Blocks: OWFs, OWPs, PRGs, PRFs, CRHFs, PRPs (Block Cipher)
• Constructions: PRFs from PRGs, PRPs via Feistel Network etc…

• Should understand syntax (e.g., PRF uses a key, but a PRG doesn’t) 
and security definitions (e.g., PRG vs PRF)

• MAC vs. Encryption
• Confidentiality vs Integrity
• Syntax
• Security Definition(s): Authenticated Encryption, CCA-Security, CPA-Security 

Perfect Secrecy, MAC-forgery game
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Review: Collision Resistant Hash Functions (CRHF)

• CRHFs are a unique object in cryptography
• No secret key (public seed) --- security definition (e.g., seeded) vs practice (e.g., SHA3)

• Davies-Meyer construction in Ideal Cipher Model

• Handling long inputs
• Merkle Tree
• Merkle-Damgård

• Collision/Inversion Attacks
• Birthday Attack
• Small Space Birthday Attack
• Pre-Computation Attacks (Time/Space Tradeoffs)

• Random Oracle Methodology
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Review: Key Principles

• Sufficient Key Space Principle
• Resist brute-force attacks

• Penguin Principle
• Issues with stateless/deterministic encryption schemes
• Importance of nonces

• Independent Key Principle
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Review: Asymmetric Key Crypto

• Key Assumptions:
• FACTORING
• RSA-Inversion Problem
• Discrete Logarithm Problem
• DDH vs CDH
• OWFs (for Certain Signature Schemes)

• Public Key Encryption
• Syntax
• Security Definition(s): CPA vs CCA-security
• Constructions: Plain RSA, El Gamal, RSA-OAEP

• Key Encapsulation Mechanism (and how to use them)
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Review: Signatures

• Goal: Message Integrity
• Signature Properties: 

• Public Verification 
• Transferrable: Bob receives signature from Alice and can forward to Joe
• Can identify sender
• Cannot identify intended recipient 

• Example: Alice signs message “I promise to pay you $50” and sends to Bob
• Eve can copy signature and forward to Joe who believes that Alice will pay him $50.
• Solution: Can bind signature to recipient, by indicating recipient inside the message

• E.g., “I promise to pay you (Bob) $50”

• Contrast with MAC
• Need secret key for verification
• Cannot identify sender (anyone who has secret key)
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Review: Signatures and MACs

• What are some secure constructions of signatures?
• RSA-FDH
• Schnorr-Signatures (Fiat-Shamir)
• DSA/ECDSA

• How to build a MAC?
• HMAC
• PRF: t=Fk(m)

• Handling Long Messages: Hash and sign/mac
• How to build an (in)secure signature/MAC scheme?
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Review: Multi-Party Computation

• Malicious vs Semi-Honest Security Models

• Security Definition (Simulator)
• Captures intuition that Alice learns “nothing else” about Bob’s input

• Yao’s Protocol (Garbled Circuits)
• What is security model?
• Building Blocks: Oblivious Transfer, CPA-Secure Encryption

• Use of Zero-Knowledge Proofs in MPC
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Review: Zero-Knowledge

• Decision Problem (e.g., DDH, SAT, CLIQUE)

• Properties
• Completeness

• Honest prover can always get verifier to accept a true statement
• Soundness

• A cheating prover can’t consistently get honest verifier to accept
• Zero-Knowledge

• How to build a simulator?

• Interactive vs Non-Interactive Zero-Knowledge
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Practice Problem 1: NIZK 

• Build a NIZK for the group membership problem
• Verifier: Knows h, wants to be sure that h is in <g>
• Prover: Knows x such that h=gx

• Prover picks r and sets z = 𝑔𝑔𝑥𝑥+𝑟𝑟
• Prover selects the challenge b= LSB(H(z)), and sets the response R=r+bx.
• Prover outputs the proof (z,R)

• Verifier computes b= LSB(H(z)) and checks that ℎ1−𝑏𝑏𝑧𝑧 = 𝑔𝑔𝑅𝑅

• Problem?
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Practice Problem 1: NIZK (FIX) 

• Build a NIZK for the group membership problem
• Verifier: Knows h, wants to be sure that h is in <g>
• Prover: Knows x such that h=gx

• Prover picks r1,…,rk and sets zi = 𝑔𝑔𝑥𝑥+𝑟𝑟𝑖𝑖 for each i. 
• Prover selects the challenge b1,…,bk= H(z1,…,zk) and sets the responses Ri=ri+bix.
• Prover outputs the proof (z1,R1),…,(zk,Rk)

• Verifier computes b1,…,bk= H(z) and checks that ℎ1−𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑔𝑔𝑅𝑅𝑖𝑖 for each i.

• How to build the simulator?
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Practice Problem 2: Better Soundness

• Build an (interactive) Zero-Knowledge Proof for the group membership 
problem with soundness 2−𝑘𝑘 instead of k.

• Verifier: Knows h, wants to be sure that h is in <g>
• Prover: Knows x such that h=gx

Protocol:
1. Prover picks r1,…,rk and sets zi = 𝑔𝑔𝑥𝑥+𝑟𝑟𝑖𝑖 for each i. 
2. Verifier selects the challenge b1,…,bk
3. Prover computes the responses Ri=ri+bix.
4. Verifier checks that ℎ1−𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑔𝑔𝑅𝑅𝑖𝑖 for each i.

• How to build the simulator?
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Practice Problem 2: Better Soundness in ZK

Protocol:
1. Prover picks r1,…,rk and sets zi = 𝑔𝑔𝑥𝑥+𝑟𝑟𝑖𝑖 for each i. 
2. Verifier selects the challenge b1,…,bk

3. Prover computes the responses Ri=ri+bix.
4. Verifier checks that ℎ1−𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑔𝑔𝑅𝑅𝑖𝑖 for each i.

• Trick Question! 
• Simulator should not be able to output NIZK for claim (without tampering 

with random oracle)
• Dishonest verifier can set b1,…,bk = H(z1,…,zk) to obtain NIZK proof 𝜋𝜋! 

• 𝜋𝜋 = (z1,R1), … , (zk,Rk)
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Practice Problem 2: Better Soundness in ZK

Protocol 2:
1. Verifier selects nonce b and sends y=H(b) to the prover.
2. Prover picks r1,…,rk and sets zi = 𝑔𝑔𝑥𝑥+𝑟𝑟𝑖𝑖 for each i. 
3. Verifier reveals b and sets challenges b1,…,bk=b
4. Prover computes the responses Ri=ri+bix.
5. Verifier checks that ℎ1−𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑔𝑔𝑅𝑅𝑖𝑖 for each i.
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Practice Problem 3: Garbled Circuit Reuse

• Let f(a1,a2,b1,b2)=(a1 AND b1) OR (a2 AND b2)
• Alice sends Bob a Garbled Circuit with keys 

• Keys 𝐾𝐾𝑊𝑊,0 and 𝐾𝐾𝑊𝑊,1 for each input/output wire W.  
• Suppose Alice first runs the protocol with input (0,1) and Bob’s input (1,1)
• Which keys can Bob recover during the protocol?

• 𝐾𝐾𝑎𝑎1,0, 𝐾𝐾𝑎𝑎𝑎,1, 𝐾𝐾𝑏𝑏1,1, 𝐾𝐾𝑏𝑏𝑎,1 (initial inputs), 
• 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴1,0, 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝑎,1 (AND gates), 
• 𝐾𝐾𝑂𝑂𝑅𝑅,1 (output)

• Later suppose Alice runs the protocol with new input (1,0) but does not re-
garble the circuit (Bob’s input is the same)

• What keys can Bob recover after second iteration?
• Answer: Every key except for 𝐾𝐾𝑏𝑏1,0, 𝐾𝐾𝑏𝑏𝑎,0
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Practice Problem 4: RSA Authentication

• RSA Based Authentication
• Verifier sends random nonce r mod N to Prover
• Prover authenticates with R= rd mod N 
• Verifier checks that Re=r mod N

• What would security definition look like for generic authentication 
protocol?

• Define the game

• Is this protocol secure?
• Yes (assuming RSA-Inversion assumption)
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Practice Problem 5: RSA Overuse

• RSA Based Authentication
• Verifier sends random nonce r mod N to Prover
• Prover authenticates with R= rd mod N 
• Verifier checks that Re=r mod N

• Suppose we use the same secret key e for Key Encapsulation and for 
RSA Authentication?

• KEM: outputs (y,K=H(x)) where y=xe mod N

• What could go wrong?
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Cryptography
CS 555

Week 16: 
• Zero-Knowledge Proofs, 
• Hot Topics in Cryptography
• Review for Final Exam
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

21Fall 2018



CS 555:Week 15: Zero-
Knowledge Proofs

22



Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique
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Zero-Knowledge Proof for all NP
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A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐿𝐿,𝐿𝐿

A L

L

A



Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover selects a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first 

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … ,𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.
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Soundness and Completeness

• Completeness: If the prover knows a clique he can always respond to the 
challenge.

• Soundness: If no clique exists then either
1. The prover commits to (permutation of) the original graph                                                       
Cannot respond to challenge (c=1) to reveal submatrix containing clique

2. The prover commits to a different (not-isomorphic) graph 
 Cannot respond to challenge to reveal permutation 𝜎𝜎
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Zero-Knowledge Proof Simulator

27

Dishonest (verifier); 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸), 

Simulator
Cheat bit b,
𝐺𝐺 = (𝑉𝑉,𝐸𝐸),
A= 𝜎𝜎 𝐺𝐺
(random 𝜎𝜎)

Zero-Knowledge:  For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ≡𝐶𝐶 Sim𝑉𝑉𝑽(.) 𝐴𝐴

Response 𝒓𝒓 =
�

𝑟𝑟1,1 ⋯ 𝑟𝑟1,𝑛𝑛
⋮ ⋱ ⋮

𝑟𝑟𝑛𝑛,1 ⋯ 𝑟𝑟𝑛𝑛,𝑛𝑛
𝒂𝒂𝒂𝒂𝒂𝒂 𝛔𝛔 𝑽𝑽𝒊𝒊 𝒄𝒄=𝒃𝒃

⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝑽𝑽𝒂𝒂𝒄𝒄𝑽𝑽 𝒄𝒄 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝑜𝑜𝑜𝑜 𝐴𝐴 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝑽𝑽𝒄𝒄𝑽𝑽𝑫𝑫𝑽𝑽𝑫𝑫𝒂𝒂 𝒂𝒂 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝑜𝑜𝑜𝑜 𝐴𝐴 , 𝒄𝒄, 𝒓𝒓)

𝐶𝐶𝑜𝑜𝑜𝑜 𝐴𝐴 =
H 𝐴𝐴1,1, 𝑟𝑟1,1 ⋯ H 𝐴𝐴1,𝑛𝑛, 𝑟𝑟1,𝑛𝑛

⋮ ⋱ ⋮
H 𝐴𝐴𝑛𝑛,1, 𝑟𝑟𝑛𝑛,1 ⋯ H 𝐴𝐴𝑛𝑛,𝑛𝑛, 𝑟𝑟𝑛𝑛,𝑛𝑛

if b=0



Zero-Knowledge Proof Simulator
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Dishonest (verifier); 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸), 

Simulator
Cheat bit b,
𝐺𝐺 = (𝑉𝑉,𝐸𝐸),
A= 𝜎𝜎 𝐺𝐺
(random 𝜎𝜎)

Zero-Knowledge:  For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ≡𝐶𝐶 Sim𝑉𝑉𝑽(.) 𝐴𝐴

𝒓𝒓 =

𝑟𝑟𝜎𝜎(1),𝜎𝜎(1) ⋯ 𝑟𝑟𝜎𝜎(1),𝜎𝜎(𝑘𝑘)
⋮ ⋱ ⋮

𝑟𝑟𝜎𝜎(1),𝜎𝜎(𝑘𝑘) ⋯ 𝑟𝑟𝜎𝜎(𝑘𝑘),𝜎𝜎(𝑘𝑘)
𝑽𝑽𝒊𝒊 𝒄𝒄=𝒃𝒃

⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝑽𝑽𝒂𝒂𝒄𝒄𝑽𝑽 𝒄𝒄 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝑜𝑜𝑜𝑜 𝐴𝐴 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝑽𝑽𝒄𝒄𝑽𝑽𝑫𝑫𝑽𝑽𝑫𝑫𝒂𝒂 𝒂𝒂 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝑜𝑜𝑜𝑜 𝐴𝐴 , 𝒄𝒄, 𝒓𝒓)

𝐶𝐶𝑜𝑜𝑜𝑜 𝐾𝐾𝑛𝑛 =
H 0, 𝑟𝑟1,1 ⋯ H 1, 𝑟𝑟1,𝑛𝑛

⋮ ⋱ ⋮
H 1, 𝑟𝑟𝑛𝑛,1 ⋯ H 0, 𝑟𝑟𝑛𝑛,𝑛𝑛

if b=0



Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and 

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong 
adjacency matrix or cannot reveal clique. Repeat until we produce a  
successful transcript. Indistinguishability of transcripts follows from 
hiding property of commitment scheme.
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Secure Multiparty Computation (Adversary 
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully 

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party
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CS 555:Week 15: Hot Topics
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Shor’s Algorithm

• Quantum Algorithm to Factor Integers

• Running Time 
O((log N)2(log log N)(log log log N))

• Building Quantum Circuits is challenging, but...
• RSA is broken if we build a quantum computer

• Current record: Factor 21=3x7 with Shor’s Algorithm
• Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using 

Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm


Quantum Resistant Crypto

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝑣𝑣𝑣𝑣 2𝑛𝑛)
• Solution: Double Key Lengths 

• Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not 
safe

• All public key encryption algorithms we have covered are unsafe 
• RSA, RSA-OAEP, El-Gamal,….

https://en.wikipedia.org/wiki/Lattice-based_cryptography

https://en.wikipedia.org/wiki/Lattice-based_cryptography


Post Quantum Cryptography

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝑣𝑣𝑣𝑣 2𝑛𝑛)
• Solution: Double Key Lengths 

• Hashed Based Signatures are believed to be safe
• Lamport One-Time Signatures and extensions to many-time signatures

• Lattice Based Cryptography is a promising approach for Quantum 
Resistant Public Key Crypto

• Ring-LWE
• NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

and
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• Bob has 𝑃𝑃𝐾𝐾𝐴𝐴 and can also include his own encrypted inputs 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑦𝑦𝑖𝑖
• Many Applications: 

• Export confidential computation to cloud 
• Secure Multiparty Computation,…

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• We now have candidate constructions!

• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be 
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖
𝑘𝑘

= 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑘𝑘 × 𝑥𝑥𝑗𝑗
• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem


Partially Homomorphic Encryption

• Secret Key: Large (prime) number p.
• Public Key: N = pq and 𝑥𝑥𝑖𝑖 = 𝑝𝑝𝑞𝑞𝑖𝑖 + 2𝑟𝑟𝑖𝑖 + 1 for each 𝑖𝑖 ≤ 𝑡𝑡 where 𝑟𝑟𝑖𝑖 ≪ 𝑝𝑝

• Encrypting a Bit b:
• Select Random Subset: 𝑆𝑆 ⊂ [𝑡𝑡] and random 𝑟𝑟 ≪ 𝑝𝑝
• Return 𝐸𝐸 = 𝑏𝑏 + 2𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑥𝑥𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑝𝑝∑𝑖𝑖 ∈𝑆𝑆 𝑞𝑞𝑖𝑖 + 2 𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑟𝑟𝑖𝑖 + 𝑏𝑏 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Decrypting a ciphertext:
• As long as 2 𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑟𝑟𝑖𝑖 < p
• 𝐸𝐸 𝑜𝑜𝑜𝑜𝑚𝑚 𝑝𝑝 𝑜𝑜𝑜𝑜𝑚𝑚 2 = 2 𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑟𝑟𝑖𝑖 + 𝑏𝑏 𝑜𝑜𝑜𝑜𝑚𝑚 2 = 𝑏𝑏
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Partially Homomorphic Encryption

• Encrypting a Bit b:
• Select Random Subset: 𝑆𝑆 ⊂ [𝑡𝑡] and random 𝑟𝑟 ≪ 𝑝𝑝
• Return 𝐸𝐸 = 𝑏𝑏 + 2𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑥𝑥𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑝𝑝∑𝑖𝑖 ∈𝑆𝑆 𝑞𝑞𝑖𝑖 + 2 𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑟𝑟𝑖𝑖 + 𝑏𝑏

• Adding two ciphertexts

𝐸𝐸 + 𝐸𝐸𝑽 = 𝑝𝑝 �
𝑖𝑖 ∈𝑆𝑆

𝑞𝑞𝑖𝑖 + �
𝑖𝑖∈𝑆𝑆′

𝑞𝑞𝑖𝑖 + 2 𝑟𝑟 + 𝑟𝑟𝑽 + �
𝑖𝑖∈𝑆𝑆

𝑟𝑟𝑖𝑖 + �
𝑖𝑖∈𝑆𝑆𝑽

𝑟𝑟𝑖𝑖 + 𝑏𝑏 + 𝑏𝑏𝑽

39

Noise increases a bit



Partially Homomorphic Encryption

• Encrypting a Bit b:
• Select Random Subset: 𝑆𝑆 ⊂ [𝑡𝑡] and random 𝑟𝑟 ≪ 𝑝𝑝
• Return 𝐸𝐸 = 𝑏𝑏 + 2𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑥𝑥𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑝𝑝∑𝑖𝑖 ∈𝑆𝑆 𝑞𝑞𝑖𝑖 + 2 𝑟𝑟 + ∑𝑖𝑖 ∈𝑆𝑆 𝑟𝑟𝑖𝑖 + 𝑏𝑏

• Multiply two ciphertexts

𝐸𝐸𝐸𝐸𝑽 = 𝑝𝑝 �
𝑖𝑖 ∈𝑆𝑆

𝑞𝑞𝑖𝑖 �
𝑖𝑖 ∈𝑆𝑆′

𝑞𝑞𝑖𝑖 + �
𝑖𝑖 ∈𝑆𝑆

𝑞𝑞𝑖𝑖 �
𝑖𝑖 ∈𝑆𝑆𝑽

𝑟𝑟𝑖𝑖 + ⋯ +

4 𝒓𝒓 + �
𝑽𝑽∈𝑺𝑺

𝒓𝒓𝑽𝑽 𝒓𝒓𝑽 + �
𝑽𝑽∈𝑺𝑺𝑽

𝒓𝒓𝑽𝑽 + 2𝑏𝑏 𝑟𝑟 + �
𝑖𝑖∈𝑆𝑆𝑽

𝑟𝑟𝑖𝑖 + 2𝑏𝑏𝑽 𝑟𝑟 + �
𝑖𝑖 ∈𝑆𝑆

𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑽

40Noise increases a bit more (multiplicative)



Bootstrapping (Gentry 2009)

• Transform Partially Homomorphic Encryption Scheme into Fully 
Homomorphic Encryption Scheme

• Key Idea: 
• Maintain two public keys pk1 and pk2 for partially homomorphic encryption

• Also, encrypt sk1 using pk2 and encrypt sk2 under pk1
• The ciphertexts are included in the public key

• Run homomorphic evaluation using pk1 until the noise gets to be too large
• Let c1,…,ck be intermediate ciphertext(s) (under key pk1)
• Encrypt c1,…,ck bit by bit under (under key pk2) 
• Then evaluate the decryption circuit homorphically (under key pk2) 
• Challenge: Need to make sure that decryption circuit is shallow enough to evaluate…

• Expensive, but there are tricks to reduce the running time

41



Fully Homomorphic Encryption Resources

• Implementation: https://github.com/shaih/HElib
• Tutorial: https://www.youtube.com/watch?v=jIWOR2bGC7c

42

https://github.com/shaih/HElib
https://www.youtube.com/watch?v=jIWOR2bGC7c


Program Obfuscation (Theoretical Cryptography)

• Program Obfuscation
• Idea: Alice obfuscates a circuit C and sends C to Bob
• Bob can run C, but cannot learn “anything else”
• Lots of applications…

• Indistinguishability Obfuscation
• “Best Possible Obfuscation” cannot distinguish O(C) 
from O(C’) when |C| = |C’| compute the same function 
• Theoretically Possible

• In the sense that 𝑓𝑓 𝐸𝐸 = 2100000000𝐸𝐸100000 is technically polynomial time

• Secure Hardware Module (e.g., SGX) can be viewed as a way to accomplish 
this in practice

• Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai) 

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a


Differential Privacy



Release Aggregate Statistics?
• Question 1: How many people in this room have cancer?

• Question 2: How many students in this room have cancer?

• The difference (A1-A2) exposes my answer!



Differential Privacy: Definition
• n people
• Neighboring datasets:

• Replace x with x’

Name CS Prof? …   STD?

J Blocki +1 …      -1

[DMNS06, DKMMN06]

D

Name CS Prof? …      STD?

Bjork -1 …        ???

D’
46



Differential Privacy vs Cryptography

• 𝜀𝜀 is not negligibly small. 
• We are not claiming that, when D and D’ are neighboring datasets,

𝑨𝑨𝒄𝒄𝒄𝒄(𝑫𝑫) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒄𝒄(𝑫𝑫𝑽)
• Otherwise, we would have 𝑨𝑨𝒄𝒄𝒄𝒄(𝑿𝑿) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒄𝒄(𝒀𝒀𝑽) for any two data-sets X 

and Y.
• Why?

• Cryptography
• Insiders/Outsiders 
• Only those with decryption key(s) can reveal secret
• Multiparty Computation: Alice and Bob learn nothing other than f(x,y)

47



Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy.  (True Answer, Noise)

Traditional Differential Privacy Mechanism
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Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy.  (True Answer, Noise)

Traditional Differential Privacy Mechanism
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True Answer for Dataset 
D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

True Answer for Adjacent Dataset
D𝑽 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1

Pr[A D𝑽 = 20] ∝ 𝑒𝑒− 19−0 𝜀𝜀

Pr[A D = 20] ∝ 𝑒𝑒− 𝑎0−0 𝜀𝜀

Observe:
Pr A D𝑽 = 20
Pr[A D = 20]

=
𝑒𝑒− 19−0 𝜀𝜀

𝑒𝑒− 𝑎0−0 𝜀𝜀 = 𝑒𝑒𝜀𝜀





Resources

• $99

Free PDF: 
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf


Password Storage and Key Derivation Functions

52

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Goal: Moderately Expensive Hash Function

Fast on PC and 
Expensive on ASIC?



Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 100,000 SHA256 computations
(iterative)

Estimated Cost on ASIC: $1 per billion password guesses [BS14]



The Challenge

User Patience

Disclaimer: This slide is entirely for humorous effect. 

Time
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Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



https://password-hashing.net/

(2013-2015)

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…
There are two main versions of 
Argon2, Argon2i and Argon2d. 
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/


Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs



Question

Are existing iMHF candidates based on depth-
robust DAGs?



Answer: No



Can we build a secure iMHF?

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph

https://github.com/Practical-Graphs/Argon2-Practical-Graph
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