Course Business

e Homework 5 Extended
* Due Saturday @11PM on Gradescope

* Practice Final Released Next Week
Homework 4 Statistics

Minimum Value
Maximum Value
Range

Average

Median

Standard Deviation

72.00
110.00
38.00
94.93
96.00
12.02



Cryptography
CS 555

Week 15:

e Oblivious Transfer

* Yao’s Garbled Circuits

e Zero-Knowledge Proofs

Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Fall 2018



Oblivious Transfer (OT)

e 1 outof20OT

* Alice has two messages myand m,

e At the end of the protocol
e Bob gets exactly one of myand m,
 Alice does not know which one

e Oblivious Transfer with a Trusted Third Party

v

A

1 outof 2 OT

v




Bellare-Micali 1-out-of-2-OT protocol

e Oblivious Transfer without a Trusted Third Party

C

Zy, Zq

CO — [grO,H(Z;()) EB mo]
Ci = g™ H(z") ®m]

Bob can decrypt C,
'y _ krp



CS 380S

Yao’s Protocol

Vitaly Shmatikov

slide 8



Yao’s Protocol

e Compute any function securely
e ...inthe semi-honest model

e First, convert the function into a boolean circuit

Alice’s inputs Bob’s inputs

Truth table: Truth table:

HI—‘OOX

I—\OI—\O<

I—‘OOON
HI—‘OOX

y X y

R ok o«
PRk |lol N
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Alice’s inputs Bob’s inputs

| AND R R |
| | | I

Alice prepares “garbled” version C’ of C

Sends “encrypted” form x’ of her input x
Allows Bob to obtain “encrypted” form y’ of his input y via OT
Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)

Bob sends z’ to Alice and she decrypts and reveals to him z

Bob never sees Alice’s input X in unencrypted form.
Bob can obtain encryption of y without Alice learning .
Neither party learns intermediate values.

Remains secure even if parties try to cheat.



Intuition




Intuition

3




1: Pick Random Keys For Each Wire

* Next, evaluate one gate securely
e Later, generalize to the entire circuit

* Alice picks two random keys for each wire
* One key corresponds to “0”, the other to “1”
e 6 keys in total for a gate with 2 input wires

ka’ k1z z

AND

Alice 1y Bob
Koxr Ki, /
Koy K




2: Encrypt Truth Table

* Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

ka’ klz
Alice Bob
kOx’ klx
Ko, K
ny ;y Z EkOX(EkOy(ka))
12+ Encrypted truth table: EkOX(Ekly(koz))
Original truth table: ‘1) (1) 8 - Ele(Ekoy(koz))
11111

Eklx(Ekly(klz))



3: Send Garbled Truth Table

e Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

Does not know which row of
garbled table corresponds to
which row of original table

Vel

Alice Bob

E o B, (Koo) Eklx(EkOy(EOz))
Fr0x(Biay (K02)) Garbled truth table: ko kly( 02))
Eklx(Ekoy(ka)) Ele(Ekly(klz))
Eklx(Ekly(klz)) EkOX(Ekoy(koz))




4: Send Keys For Alice’s Inputs

* Alice sends the key corresponding to her input bit
e Keys are random, so Bob does not learn what this bit is

K K 7 Learns K, where b’
0z ™1z is Alice’s input bit,
but not b’ (why?)

| A
Alice Bob
Ko Ka If Alice’s bit is 1, she
Koy» K1y simply sends k. to Bob;
If O, she sendslléOX
By, (Bioy (Koo))
Garbled truth table: Exg(Exy, (Koz))
Eklx(Ekly(klz))

Ekox(Ekoy(kOZ))



5: Use OT on Keys for Bob’s Input

e Alice and Bob run oblivious transfer protocol
e Alice’s input is the two keys corresponding to Bob’s wire
e Bob’s input into OT is simply his 1-bit input on that wire

Z Knows K, where b’ is
ka’ klz Alice’s _inpt_Jt bit apd Kby _
where b is his own input bit
Alice xIy Bob<
I(Ox’ k1x //7 i
k. < Run oblivious transfer
Oyr Py Alice’s input: K, K,
EMXEEKO EEOB Bob’s input: his bItE)
Garbled truth table: kg \Fk 0z
Eki (Eki ) Bob Iearns Kpy
X What does Alice learn?

EkOX(Ekoy(kOZ))



6: Evaluate Garbled Gate

* Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

* Bob does not learn if this key correspondsto O or 1
e Why is this important?

Knows K, where b’ is
Alice’s input bit and K,
where b is his own input bit

BobV

Suppose b'=0, b=1

kO , kl B Piplis This is the only row
y y Garbled truth table. Bob can decrypt.

= iy (K1 )  Helearns K,
Eron By (Kor))




/: Evaluate Entire Circuit

* |In this way, Bob evaluates entire garbled circuit
e For each wire in the circuit, Bob learns only one key

e |t corresponds to O or 1 (Bob does not know which)
* Therefore, Bob does not learn intermediate values (why?)

[\
Alice’s inputs AN Bob’s inputs

H‘ AND R

e Bob tells Alice the keyTort

e fimaloutput wire and she

tells him if it corresponds toO or 1
 Bob does not tell her intermediate wire keys (why?)



Different Circuits f4(x,y) and fg(x,y)?

e (Regular Protocol for f,): Alice Garbles circuit C4 computing f, and
Bob evaluates garbled circuit C4, and sends Alice garbled output z,’.

e Alice can ungarble the output z, to obtain z, = f,(x,y) but does not send
this value to Bob.

* (Swap Roles) Bob garbles circuit C5z computing fz. Alice evaluates
garbled circuit Cg' and sends Bob the garbled output zg'.

* Bob can ungarble the output z; to obtain zz = fz(x, y) but does not send this value to
Alice.



Security (Semi-Honest Model)

e Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators S, and Sp s.t.

{An}nEN =c {SA(TL, X, fA(xi y) )}nEN
{Bninen =c {SB(nr v, [ (x, Y))}neN

e Remark: Simulator S, is only shown Alice’s output f,(x, y) (similarly,
S is only shown Bob’s output fz(x,y))

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.



Security (Semi-Honest Model)

e Security: Assuming that Alice and Bob are both semi-honest (follow the
protocol) then there exist PPT simulators S, and Sp s.t.

{An}nEN =c {SA(n' X, fA(x' y) )}nEN
{Bn}nEN =C {SB(n' V) fB (x, y))}nEN

e Simulating Bob’s View (Intuition):
e Garble the circuit following the honest algorithm Alice would use
e Pick a random input x’ for Alice

* Send Bob garbled circuits, plus garbled keys for x’
e Allow Bob to obtain garbled keys for his input y via OT

e Bob obtains garbled output z,’ of f4(x', y) but cannot distinguish from garbled key
for fa(x, y)



Brief Discussion of Yao’s Protocol

* Function must be converted into a circuit
e For many functions, circuit will be huge

 If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

e Oblivious transfers for all inputs can be done in parallel

* Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

* Number of rounds does not depend on the number of inputs
or the size of the circuit!




Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: c,=com(xIr,)
and cy=com(ylryg).
e Alice and Bob can use zero-knowledge proofs to convince other party that they are
behaving honestly.

 Example: After sending a message A Alice proves that the message she just sent is
the same message an honest party would have sent with input x s.t. c,=com(xIr,)

 Here we assume that Alice and Bob have both committed to correct inputs (Bob
might use y which does not represent his real vote etc... but this is not a problem we
can address with cryptography)



Fully Malicious Security (Sketch)

e Assume Alice and Bob have both committed to their input: c,=com(xIr,) and
cg=com(ylryg).

* Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc... but this is not a problem we can address with

cryptography)
* Alice has cg and can unlock c,
* Bob has c,and can unlock cg

1. Alice sets C; = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that C; = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x,,x;
1. Alice and Bob run OT with y,,y, where y.=Enc,(x;)

2. Bob uses a zero-knowledge proof to convince Alice that he received the correct y, (e.g.
matching his previous commitment c;)

3. Alice sends K to Bob who decrypts y; to obtain x;



Course Feedback

e What did you like? What could be improved? s s tiste e ner ot
e Your feedback is valuable! Al

Dear Jeremiah Blocki,

Below is the current response rate in course(s) that you supervise or for which you arez

Course C N Number NMumber  Survey Survey
Num - Sec ourse Name Expected Received Open Close
CS55500 - LEA Cryptography 27 0 Nov26 | Dec3

1:40 AM 11:59 PM

Student access to complete evaluations will be closed at 11:59pm on December 9.

Visit hitp:/'www.purdue.edw/idp/icourseevaluations/CE_Faculty.html at any time to view response
rates.

Flease reply to this message if you have any questions.
Sincerely,

Chantal Levesque-Bristol

Director, Center for Instructional Excellence

26



CS 555:Week 15: Zero-
Knowledge Proofs



Computational Indistinguishability

 Consider two distributions X, and Y, (e.g., over strings of length £).

e Let D be a distinguisher that attempts to guess whether a string s came from
distribution X, or Y,.

The advantage of a distinguisher D is
Advp e = |Prs x [D(s) = 1] = Prscy,[D(s) = 1]|

Definition: We say that an ensemble of distributions {Xn%neN and {Y_ },,ey are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

Advp , < negl(n)




Computa

. d Notation: {X }.en =c V. nen
onsider two ¢ means that the ensembles are
e Let D be a disti

SN computationally indistinguishable.

).

came from

The advantage of a distinguisher D is
Advpp = |Prs_x [D(s) = 1] = Prycy [D(s) = 1]|

Definition: We say that an ensemble of distributions {Xn%nEN and {Y_ },,en are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

Advp , < negl(n)
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Pvs NP

e P problems that can be solved in polynomial time

NP --- problems whose solutions can be verified in polynomial time
e Examples: SHORT-PATH, COMPOQOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,

« DDH
e Input: 4 = g*1,B=g*2andZ
e Goal: Decide if Z = g*1*2 or Z # g*1*2,
 NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)

e Withess

e Ashort (polynomial size) string which allows a verify to check for membership
* DDH Witness: x,,X,.



/ero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g., )

 Completeness: If claim is true honest prover can always convince
honest verifier to accept.

e Soundness: If claim is false then Verifier should reject with probability
at least %. (Even if the prover tries to cheat)

e Zero-Knowledge: Verifier doesn’t learn anything about prover’s input
from the protocol (other than that the claim is true).

* Formalizing this last statement is tricky
e Zero-Knowledge: should hold even if the attacker is dishonest!



/ero-Knowledge Proof

Trans(l“,V’,P,x,w,rp,rv) transcript produced when V’ and P interact

* V'is given input X (the problem instance e.g., X = g*)

e Pisgiveninput X and w (a witness for the claim e.g., w=x)

* V" and P use randomness r, and r, respectively

e Security parameter is n e.g., for encryption schemes, commitment schemes etc...

X,, =Trans(1",V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate X, without a

withess w. Formally,
X, nen =c {SV'(') (x, 1n)}neN



/ero-Knowledge Proof

Trans(1“,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
e V’is given input x (the problem instance e.g., A = g*1, B = g*2 and z, )
e P the claim e.g.,

A Simulator Sis hot Szl Oracle V’(x,trans) will output the

" given witness w SRURRLRES? ot message V' would output
given current transcript trans

X

n over transcript

(Blackbox Zero-Knowledge): There is a/PPT simulator S such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate X, without a

witness w. Formally,
{Xn}nEN =C {SV’() X 1n)}nEN
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/ero-Knowledge Proof for Discrete Log Solution

B=gY C=g*

@~

{ \
-/
J

challenge c € {0,1}

. —0
Responser = { Y i c

y+x ifc=1
Bob (verifier); : Alice (prover);
A 1 ifc=0and B =g" and AB =C X s.t.
Decisiond =4 1 ifc=1and C=g" and AB =C A= g*
0 otherwise =~ 9
B = g7,
(random vy)

Claim: There is some integer x such that A = g* 36



/ero-Knowledge Proof for Discrete Log Solution

B=gY C=g*

challenge c € {0,1}

|y ifc=0
Responser—{y+x ifc=1

Bob (verifier);
A = g*, 1 ifc=0and B =g" and AB=C X
Decisiond =4 1 ifc=1and C=g" and AB =C A= g*
0 otherwise g
B = g7,
(random y)

37

Correctness: If Alice and Bob are honest then Bob will always accept



Zero-Knowledge Proof for Dis

B=g%,C=g""

challenge c € {0,1}

My ifc=0
Responser—{y+x ifc=1

<

Bob (verifier);

Alice (prover);

A= g*, 1 ifc=0andB=g" and AB =C X
Decisiond =1 1 ifc=1andC=g" and AB=C A= g*
0 otherwise — 9
> B — gy'
(random vy)

Correctness: If Alice and Bob are honest then Bob will always accept 3



Zero-Knowledge Proof for Discrete Log Solution

B =gy’k'= gx'l'y

challenge c € {0,1}

-

Case 2: Challenge (c=1)

(¥ _ifc=0
Response r = <~y+x ifc=1
Bob (verifier); ) Alice (prover);
A=gx, 1 ifc=0and B =g" and AB =C X
Decisiond =1 1 ifc=1and|C=g" and AB=C A= qg*
0 otherwise g
P> B = gy'
(random y)

Correctness: If Alice and Bob are honest then Bob will always accept 39



/ero-Knowledge Proof for Discrete Log Solution

B — gy’C — gx+y

challenge c € {0,1}

_(y ifc=0
Responser = {y+x ifc=1
Bob (verifier);
A = g*, 1 ifc=0and B =g" and AB=C X
Decisiond =4 1 ifc=1and C=g" and AB =C — X
. A=g",
0 otherwise
B = g7,

s Yand0n1v)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 40



Assume that AB=C, now
Zero-Knowledge Proof taii:— pd iitile = ied o)

some X,y then A = g*

B=gY C=g*

challenge c € {0,1}

_(y ifc=0
Responser—{y+x ifc=1
Bob (verifier); ) Alice (prover);
A= g*, 1 ifc=0and B=g" and AB=C X
Decisiond =1 1 ifc=1andC=g" and AB=C A=gx
0 otherwise !
5> B = gy'

_ . &random y)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) “



Casel:forallr B+ g" Assume that AB=C, now

1 [l61f B = g” and C = g**7Y for

— Pr|reject| = Pr|c = 0] = > W some x,y then 4 = g*

B=g%C=g*"

challenge c € {0,1}

|y ifc=0
Response r = {y 1y if c =1
Bob (verifier); ) Alice (prover);
A = g~ 1 iffc=0and B = g" land AB = C X
Decisiond =1 1 ifc=1andC=g" and AB=C A=gx
0 otherwise ’
> B — gy'

_ _ %random y)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 22



Case 2:forallr C + g" Assume that AB=C, now

1 [l61f B = g” and C = g**7Y for

— Pr|reject]| = Pr|c = 1] = > W some x,y then 4 = g*

B=g%C=g*"

challenge c € {0,1}

Response r = {y)jl- X lfl.;c 201
Bob (verifier); ) Alice (prover);
A= g~ {1 ifc=0andB = g" and AB=C o
Decisiond =1 1 ifc=1andC=g" and AB=C A= g*
0 otherwise — 9
> B — gy'

_ _ %random y)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 43



/ero-Knowledge Proof for Discrete Log Solution

B = gy,C — gx+y

challenge c =V'(A, (B,(C)) € {0,1}

Responser = {y)jl- X lfl; c==0 1
Dishonest (verifier);
A= gx, Decisiond =V'(A,(B,C),c,1) X
- A = gx’
B =g’,
(random vy)

Transcript: Viewy, = (4, (B,C),c,1,d)

44



/ero-Knowledge Proof for Discrete Log Solution

B = gy’C — gx+y

challenge c =V'(A, (B,(C)) € {0,1}

y ifc=0

Responser={y+x ifc=1

Dishonest (verifier);

Ae gt Decision d = V'(4, (B, €),c,) Y
A=g~,
B =g,
(randomvy)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t Viewy, =, Sim"’ ) (4)

45



/ero-Knowledge Proof for Discrete Log Solution
(B=g7,C=AB ifb=0

B =—,C = g’ otherwise
L A

challenge c =V'(A, (B,(C)) € {0,1}

_ 1y if c=b
Response I” {J_ otherwise

i N Simulator
Dishonest (verifier); .
A= g%, Decisiond =V'(A,(B,C),c, 1) i Cheat bit b,
A= g7,
B = g7,
(randomy)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t Viewy, =, Sim"’ ) (4)

46



/ero-Knowledge Proof for Discrete Log Solution

(B=gY,C=AB ifb=0

B =—,C = g’ otherwise
L A

challenge c =V'(A,(B,(C)) € {0,1}

_ 1y if c=b
Response T {J_ otherwise

Dishonest (verifier);
A = g*, Decisiond =V'(A,(B,C),c,T1)

Simulator

Cheat bit b,
A= g7,

(random vy)

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 7 #.1)

47



/ero-Knowledge Proof for Discrete Log Solution
(B=g7,C=AB ifb=0

B =—,C = g’ otherwise
L A

challenge c =V'(A,(B,(C)) € {0,1}

if c=b

— )y
Response T {J_ otherwise

. NG Simulator
Dishonest (verifier); Ch bith
A= g*, Decisiond = V'(4, (B, C),c,1) eat pit b,
> A — gx’
B = g7,
(random vy)

Zero-Knowledge: If A = g* for some x then Viewy, =, Sim"'®)(4)

48



/ero-Knowledge Proof for Square Root mod N

M = zy? mod N

challenge c € {0,1}

|y ifc=0
Responser = {yx ifc=1
Bob (verifier);

Alice (prover);

Z 1 if c=0and M = zr? X
Decisiond =< 1 ifc=1and M = r* mod N Z =x%*modN
0 otherwise

(random vy)

Completeness: If Alice knows x such z = x? mod N then Bob will always accept

49



/ero-Knowledge Proof for Square Root mod N

M = zy? mod N

challenge c € {0,1}

|y ifc=0
Responser = {yx ifc=1
Bob (verifier);

Z 1 if c=0and M = zr?
Decisiond = 4 1 if c=1and M = r?> mod N
0 otherwise

Alice (prover);
X

z = x* mod N
(random vy)

Soundness: If z # x? for some x then (honest) Bob will reject w.p. % (even if

Alice cheats)

50



/ero-Knowledge Proof for Square Root mod N

M = zy? mod N

@ -

{ J
=/
,)

challenge c € {0,1}

|y ifc=0
Responser = {yx ifc=1
Bob (verifier);

Alice (prover);

Z 1 ifc=0and M = zr> mod N X
Decisiond =4 1 ifc=1and M = r> mod N 7= x2 modN
0 otherwise

(random vy)

Zero-Knowledge: How does the simulator work?

51



/ero-Knowledge Proof vs. Digital Signature

 Digital Signatures are transferrable

e E.g., Alice signs a message m with her secret key and sends the signature o to
Bob. Bob can then send (m, o) to Jane who is convinced that Alice signed the
message m.

e Are Zero-Knowledge Proofs transferable?

e Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g.,
z has a square root modulo N) in Zero-Knowledge.

e Let Viewy be Bob’s view of the protocol.
e Suppose Bob sends Viewy to Jane.

e Should Jane be convinced of the statement (e.g., z has a square root modulo
N)>



Non-Interactive Zero-Knowledge Proof (NIZK)

@~

o’

L4

N

M,,..M, where M, = y?>z mod N /

challenges c = (c,, ..., ;) = HM,,..M)) b

kﬁ

Alice (prover);
Z 1 ifc,;=0and M;=r?zmodN X

Decisiond = ndi whered; = 1 ifc,;=1and M; =r*modN 7 = x2 mod N

i 0 otherwise

. ifc;=0
Responses r,,...,r, where 1, = {;”x {; o
i L

Bob (verifier); )

. (random

y e, YK
Simulator Power: Can program the random oracle Vi VK)

53



NIZK Security (Random Oracle Model)

e Simulator is given statement to proof (e.g., z has a square root modulo N)

 Simulator must output a proof ', and a random oracle H’

 Distinguisher D
» World 1 (Simulated): Given z, ', and oracle access to H’

e World 2 (Honest): Given z, T, (honest proof) and oracle access to H
e Advantage: ADV, = |Pr[D"(z, ) = 1] — Pr[D"'(z, ') = 1]|

e Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

* NIZK proof 1, is transferrable (contrast with interactive ZK proof)



/ero-Knowledge Proof for all NP

e CLIQUE
e Input: Graph G=(V,E) and integer k>0
e Question: Does G have a clique of size k?

e CLIQUE is NP-Complete
e Any problem in NP reduces to CLIQUE
e A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that form a clique



/ero-Knowledge Proof for all NP

L
Com(O () A) ' Com(l'rA,L)>

Com(l TLA) . COm(b, TI?,GL)

-



/ero-Knowledge Proof for all NP

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that for a clique

Prover commits to a permutation o over V

1

2. Prover commits to the adjacency matrix A4 (s) of o(G)
3. Verifier sends challenge c (either 1 or 0)
4

If c=0 then prover reveals o and adjacency matrix 4,¢)
1. Verifier confirms that adjacency matrix is correct for o (G)

5. If c=1 then prover reveals the submatrix formed by first
rows/columns of A, ) corresponding to o(vy), ..., (V)
1. Verifier confirms that the submatrix forms a clique.



/ero-Knowledge Proof for all NP

 Completeness: Honest prover can always make honest verifier accept

* Soundness: If prover commits to adjacency matrix 4,4 of 0(G) and
can reveal a clique in submatrix of A, ) then G itself contains a k-
cliqgue. Proof invokes binding property of commitment scheme.

e Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal cligue. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.



Secure Multiparty Computation (Adversary
Models)

 Semi-Honest (“honest, but curious”)
e All parties follow protocol instructions, but...
e dishonest parties may be curious to violate privacy of others when possible

e Fully Malicious Model

e Adversarial Parties may deviate from the protocol arbitrarily
e Quit unexpectedly
e Send different messages

It is much harder to achieve security in the fully malicious model

e Convert Secure Semi-Honest Protocol into Secure Protocol in Fully
Malicious Mode?
e Tool: Zero-Knowledge Proofs
* Prove: My behavior in the protocol is consistent with honest party



CS 555:Week 15: Hot Topics



Shor’s Algorithm

e Quantum Algorithm to Factor Integers

* Running Time
O((log N)*(log log N)(log log log N))
e Building Quantum Circuits is challenging, but...

e RSA is broken if we build a quantum computer
e Current record: Factor 21=3x7 with Shor’s Algorithm

e Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using
Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s algorithm



https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm

Quantum Resistant Crypto

 Symmetric key primitives are believed to be safe

o ...but Grover’s Algorithm does speed up brute-force attacks
significantly (2™ vs v2M)
e Solution: Double Key Lengths

* Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not
safe

e All public key encryption algorithms we have covered
e RSA, RSA-OAEP, EI-Gamal,....

https://en.wikipedia.org/wiki/Lattice-based cryptography
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Post Quantum Cryptography

 Symmetric key primitives are believed to be safe

e ...but Grover’s Algorithm does speed up brute-force attacks
significantly (2™ vs v/2™)
e Solution: Double Key Lengths

 Hashed Based Signatures
e Lamport Signatures and extensions

* Lattice Based Cryptography is a promising approach for Quantum
Resistant Public Key Crypto
* Ring-LWE
* NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
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Fully Homomorphic Encryption (FHE)

* Idea: Alice sends Bob Encpg , (x1), ..., Encpg , (x,)
Encpk ,(x;) + EncpKA(xj) = EncpKA(xi -+ xj)
and
Encpg ,(x;) X EncPKA(xj) = EncpKA(xl- X xj)
* Bob cannot decrypt messages, but given a circuit C can compute
EncpKA(C(xl, ey Xy ))
* Proposed Application: Export confidential computation to cloud

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)
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Fully Homomorphic Encryption (FHE)

* Idea: Alice sends Bob Encpg , (x1), ..., Encpg , (xy)

* Bob cannot decrypt messages, but given a circuit C can compute
EnCPKA(C(le oy Xn ))

 We now have candidate constructions!
e Encryption/Decryption are polynomial time
e ...but expensive in practice.
e Proved to be CPA-Secure under plausible assumptions

e Remark 1: Partially Homomorphic Encryption schemes cannot be
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)
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Partially Homomorphic Encryption

* Plain RSA is multiplicatively homomorphic
Encpg , (x;) X EncpKA(xj) = EncpKA(xl- X xj)

e But not additively homomorphic

 Pallier Cryptosystem
Encpgk , (i) X Encpg, (x]) = Encpg, (xi T xf)

(EnCPKA(xi)) — EnCpKA(k X x])

 Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier cryptosystem
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Program Obfuscation (Theoretical Cryptography)

* Program Obfuscation
 |dea: Alice obfuscates a circuit C and sends C to Bob
* Bob can run C, but cannot learn “anything else”
e Lots of applications...

* Indistinguishability Obfuscation

* Theoretically Possible :
* In the sense that f(n) = 21000000005,100000 jq tachnically polynomial time

e Secure Hardware Module (e.g., SGX) can be viewed as a way to
accomplish this in practice

e Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai)
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Release Aggregate Statistics?

e Question 1: How many people in this room have cancer?
e Question 2: How many students in this room have cancer?

e The difference (A1-A2) exposes my answer!




Differential Privacy: Definition

e N peop|e Name CS Prof? ... STD?
* Neighboring datasets: Name — CSProf?.. STD?
e Replace X with X’

Bjork -1 27?7

[DMNSO06, DKMMNO6]

(¢, 0)-differential privacy: V(D, D"), VS
Pr[ALG(D) € S] < e‘Pr[ALG(D") € S] + 9




Differential Privacy vs Cryptography

* ¢is not negligibly small.

* We are not claiming that, when D and D’ are neighboring datasets,
Alg(D) =¢ Alg(D’)

e Otherwise, we would have Alg(X) =, Alg(Y") for any two data-sets X
and Y.

e Why?

e Cryptography
* Insiders/Outsiders
* Only those with decryption key(s) can reveal secret
e Multiparty Computation: Alice and Bob learn nothing other than f(x,y)



Traditional Differential Privacy Mechanism

Theorem: Let D = (x4, ...,xnr? e {0,1}"

1
A(xq, ..., Xx,) = Z x; + Lap (E)'

i=1
satisfies (&, 0)-differential privacy. (True Answer, Noise)




Google

Scholar

differential privacy

About 3,000,000 results (0.06 sec)

Articles
Case law

My library

Any time

Since 2016
Since 2015
Since 2012
Custom range...

Differential privacy: A survey of results

C Dwork - International Conference on Theory and Applications of ..., 2008 - Springer
Abstract Over the past five years a new approach to privacy-preserving data analysis has
born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the
related literature in the statistics, databases, theory, and cryptography communities, in that ...
Cited by 2557 Related articles All 32 versions Web of Science: 365 Cite Save More

Mechanism design via differential privacy

F McSherry, K Talwar - ... of Computer Science, 2007. FOCS'07. ..., 2007 - ieeexplore.ieee.org
Abstract We study the role that privacy-preserving algorithms, which prevent the leakage of
specific information about participants, can play in the design of mechanisms for strategic
agents, which must encourage players to honestly report information. Specifically, we ...

Cited by 708 Related articles All 25 versions Cite Save

Microsoft:

Research



Resources

Free PDF:
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf

Password Storage and Key Derivation Functions

jblocki 89d978034a3f6 85e23cfe0021f58
4e3db87aa72630
a9a2345c062

SHA1(12345685d9780342316)=85e23cfe
0021f584e3db87aa72630a9a2345c062

75



Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions
of user accounts.
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Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions

TECH

Yahoo Triples Estimate of Breached Accounts to 3 Billion

Company disclosed late last year that 2013 hack exposed private information of over 1 billion users

By Robert McMillan and Ryan Knutson

AS]- Updated Oct. 3, 2017 9:23 p.m. ET CiTR|x= |
4 .
M. >

A massive data breach at Yahoo in 2013 was far more extensive than previously disclosed,

Life is affecting all of its 3 billion user accounts, new parent company Verizon Communications

Inc. said on Tuesday.

The figure, which Verizon said was based on new information, is three times the 1 billion

1 when it first disclosed the breach in December 2016.

e g T
counts Yahoo sald were aifected when it first disclosed the breach 1n
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Goal: Moderately Expensive Hash Function

~ast on PC and
nensive on ASIC?

t.p

PlayStation™




Attempt 1: Hash Iteration

e BCRYPT

> @ <

ASHLEY

Mabis=N'  YAHOQO! <

Dropbox

e PBKDF2 100,000 SHA256 computations

LaStPassm/(iterative)

Estimated Cost on ASIC: S1 per billion password guesses [BS14]



The Challenge

USD S

Standard Patience Units

User Patience

Time

Disclaimer: This slide is entirely for humorous effect.




Memory Hard Function (MHF)

. Intwtlon computatlon costs dominated by memory cost.:,““'

e Data Independent Memory Hard Function (iMHF)
e Memory access pattern should not depend on input
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nasning
competition

(2013-2015)

https://password-hashing.net/
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qaghimgl | We recommend that
Compet\_t\om you use Argon2...

(2013-2015)

https://password-hashing.net/



https://password-hashing.net/

0aSSWOro

qaghimgl | We recor?end that
Competmom you use Argon2...

There are two main versions of

(2013-2015) Argon2, Argon2i and Argon2d.

Argon2i is the safest against side-
channel attacks

https://password-hashing.net/
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Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs




Question

Are existing iIMHF candidates based on depth
robust DAGs?

tterstockcom ¢ 20742253



Answer: Nn

m2i and Balloon Hashing

On the Depth-Robustness and Cumulative Pebbling Cost of

Argon2i Jeremiah Blocki
Purdue University

Jeremiah Blocki® Samson Zhou'

August 4, 2017 For the Alwen-Blocki attack to fail againsi prac-
tical memory parameters, Argon2i-B must be in-
stantiated with more than 10 passes on memory.
The current IRTF proposal calls even just 6 passes

Abstract as the recommended “paranoid™ setting,

Argon2i is & deta-independent memory hard funetion that won the pessword hashing compe- More generally, the parameter selection process
tition. The pessword heshing algorithm has alresdy been incorporated into seversl open source in the proposal is flawed in that it tends to-
crypto libraries such as libsodium. In this paper we analvee the cumulative memory cost of wards producing parameters for which the attack
computing Argon?i. On the positive side we provide a lower bound for Argon?i. On the negative is snccessful (even ler realistic constraints on

gide we exhibit an improved stteck against Argon?i which demonstrates that our lower bound is
nearly tight. In particular, we show that

(1) An Argon2i DAG is (e, (n?c®) ] )-reducible.

parallelism),
wted acyelic graph (DAG) & on n = @+ v) nodes representing

wnalyzing IMHFs. First we deflne and motivate a new complexity

(2} The cumulative pebbling cost for Arpon2i is at mest O (n'™®). This improves upon the (i.e. elactricity) required to compute a function. We argue that,
previous haest upper hound of [HJ-E} |A]:‘|1T|. rortant as the more traditional AT-complexity. Next we describe
ran IMHF based on an arbitrary DAG &. 'We upperbound both
(3) Arpon2i DAG is {r.. 0 {IJE'.-rrE']l})-dwth robust. By contrest, analysis of [ABP17a] only nee evalusted in terms of  certain combinatorial property of G.
: everal general classes of DAGs which include those underlying
established that Argon2i was [r il [ﬂ! -“ﬂ']]]l:l-l:lll.']:lt.h robust. fidates in the literature. In particular, we obtain the following
! metars & and r (and thread-count) such that R =« 7.
(4) The cumulative pebbling complexity of Argon2i is at least {I (n'-™). This improves on [FLW13) has AT and enargy complexitios Ofn'7).
the previous best bound of £1 [re”m] [ABP17a| and demonstrates that Argon2i has higher FLW13] has complexities is O(n'*7).

cnmulative memory cost than competing proposals such as Catena or Balloon Hashing. functions of [CCES1E] both have complexities in Gn' 7).

T o + The Argon2i function of [BDK15| (winner of the Password Hashing Competition [PHC)) has com-
plexitios Ofn" login)).



Can we build a secure iIMHF?
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Practical Graphs for Optimal Side-Channel Resistant
Memory-Hard Functions

Joél Alwen”
I5T Austria
jabwengiist.acat

ABSTRACT

A memaory-hard function (MHF) f; with parameter n can be com-
puted in sequential tme and space n. Smultanecwsly, 2 high emaor-
tized parallel area-time complecity (24T s mourred per evaluation.
In practice, MHFs are wsed to lmmit the mte at which an wdversary
{using o custom computabonal device] can evaloate a secunty sensi-
tore function that still cccasionally needs to be evaluated by honest
users {using an off-the-shelf general purpose devace). The most
prevalent examples of such sensitive fimcticms are K=y Denvation
Functrons (KW=} and password hashing algonthms where mte
lrmits help mitigate off-line dictionary attacks. A= the honest users”
mnpats to these fonctions are often {low -entropy ) passerords special
attention is goren to a class of side-channel resistant MHFs called

iMHF

Jeremiah Blocki
Purdue University
jblocki@purdue. edu

Ben Harsha®
Purdue University
bharsha@purdue edu
Expenmental benchmarks on a standand aff-the-shelf CPU show
that the new modifications do not adversely affect the mpressve

throughput of Argon2i {despite seemungly enjoyving sigmificanthy
higher 2 &T).

CCS CONCEPTS

= Security and privacy — Hash functions and message au-
thirntication codes;

EEYWORDS
hash funchons; key stretching: depth-robust graphs; memory hard
functions

@ TRITTRSATAT T Tk

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph
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