
Course Business

• Homework 5 Extended
• Due Saturday @11PM on Gradescope

• Practice Final Released Next Week
Homework 4 Statistics
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Minimum Value 72.00
Maximum Value 110.00
Range 38.00
Average 94.93
Median 96.00
Standard Deviation 12.02



Cryptography
CS 555

Week 15: 
• Oblivious Transfer
• Yao’s Garbled Circuits
• Zero-Knowledge Proofs
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

2Fall 2018



Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one 

• Oblivious Transfer with a Trusted Third Party
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1 out of 2 OT

m0

m1

b

mb



Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party 
• g is a generator for a prime order group Gq in which CDH problem is hard
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m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑘𝑘 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑔𝑔−𝑘𝑘

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑔𝑔𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑔𝑔𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑔𝑔𝑘𝑘𝑟𝑟𝑏𝑏
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Vitaly Shmatikov

CS 380S

Yao’s Protocol
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1

000

Yao’s Protocol
• Compute any function securely 

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs



Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat. 



Intuition

a b

c

AND



Intuition

a b

c
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a

a
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b

a b
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1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit 

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y
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2: Encrypt Truth Table

• Alice encrypts each row of the truth table by 
encrypting the output-wire key with the corresponding 
pair of input-wire keys 

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))
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3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth 
table and sends it to Bob 

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of 
garbled table corresponds to 
which row of original table
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4: Send Keys For Alice’s Inputs 

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’ 
is Alice’s input bit, 
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))
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5: Use OT on Keys for Bob’s Input 

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is 
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))
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6: Evaluate Garbled Gate 

• Using the two keys that he learned, Bob decrypts 
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is 
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row 
Bob can decrypt.
He learns K0z
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• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she 
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs



Different Circuits 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 and 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 ?

• (Regular Protocol for 𝑓𝑓𝐴𝐴): Alice Garbles circuit 𝐶𝐶𝐴𝐴 computing 𝑓𝑓𝐴𝐴 and 
Bob evaluates garbled circuit 𝐶𝐶𝐴𝐴′ and sends Alice garbled output 𝑧𝑧𝐴𝐴′.

• Alice can ungarble the output 𝑧𝑧𝐴𝐴′ to obtain 𝑧𝑧𝐴𝐴 = 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 but does not send 
this value to Bob.

• (Swap Roles) Bob garbles circuit 𝐶𝐶𝐵𝐵 computing 𝑓𝑓𝐵𝐵. Alice evaluates 
garbled circuit 𝐶𝐶𝐵𝐵′ and sends Bob the garbled output 𝑧𝑧𝐵𝐵′.

• Bob can ungarble the output 𝑧𝑧𝐵𝐵′ to obtain 𝑧𝑧𝐵𝐵 = 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 but does not send this value to 
Alice.
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Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow 
the protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 (similarly, 
𝑆𝑆𝐵𝐵 is only shown Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 )

Theorem (informal): If the oblivious transfer protocol is secure, and the 
underlying encryption scheme is CPA-secure then Yao’s protocol is 
secure in the semi-honest adversary model.
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Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow the 
protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Simulating Bob’s View (Intuition): 
• Garble the circuit following the honest algorithm Alice would use
• Pick a random input x’ for Alice

• Send Bob garbled circuits, plus garbled keys for x’
• Allow Bob to obtain garbled keys for his input y via OT 

• Bob obtains garbled output 𝑧𝑧𝐴𝐴′ of 𝑓𝑓𝐴𝐴 𝑥𝑥′,𝑦𝑦 but cannot distinguish from garbled key 
for 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦
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Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then 
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for 
secure computation of any function in the semi-honest 
model

• Number of rounds does not depend on the number of inputs 
or the size of the circuit!



Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their input: cA=com(xlrA) 
and cB=com(ylrB).

• Alice and Bob can use zero-knowledge proofs to convince other party that they are 
behaving honestly.

• Example: After sending a message A Alice proves that the message she just sent is 
the same message an honest party would have sent with input x s.t. cA=com(xlrA) 

• Here we assume that Alice and Bob have both committed to correct inputs (Bob 
might use y which does not represent his real vote etc… but this is not a problem we 
can address with cryptography)
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Fully Malicious Security (Sketch)

• Assume Alice and Bob have both committed to their input: cA=com(xlrA) and 
cB=com(ylrB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y 
which does not represent his real vote etc… but this is not a problem we can address with 
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets Cf = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that Cf = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x0,x1
1. Alice and Bob run OT with y0,y1 where yi=EncK(xi)
2. Bob uses a zero-knowledge proof to convince Alice that he received the correct yi (e.g. 

matching his previous commitment cB)
3. Alice sends K to Bob who decrypts yi to obtain xi
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Course Feedback
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• What did you like? What could be improved?
• Your feedback is valuable! 

This statistic is not differentially 
private 



CS 555:Week 15: Zero-
Knowledge Proofs

27



Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from 

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are 
computationally indistinguishable if for all PPT distinguishers D, there is a negligible 
function negl(n), such that we have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)
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Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from 

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are 
computationally indistinguishable if for all PPT distinguishers D, there is a negligible 
function negl(n), such that we have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)
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Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ
means that the ensembles are 

computationally indistinguishable. 



P vs NP

• P problems that can be solved in polynomial time

• NP --- problems whose solutions can be verified in polynomial time
• Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR, 
• DDH

• Input: 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and Z
• Goal: Decide if Z = 𝑔𝑔𝑥𝑥1𝑥𝑥2 or Z ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 .

• NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT) 
• Witness

• A short (polynomial size) string which allows a verify to check for membership
• DDH Witness: x1,x2.
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Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g., )

• Completeness: If claim is true honest prover can always convince 
honest verifier to accept.

• Soundness: If claim is false then Verifier should reject with probability 
at least ½. (Even if the prover tries to cheat)

• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input 
from the protocol (other than that the claim is true). 

• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!
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Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact 
• V’ is given input X (the problem instance e.g., 𝑋𝑋 = 𝑔𝑔𝑥𝑥)
• P is given input X and w (a witness for the claim e.g., w=x)
• V’ and P use randomness rp and rv respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc… 

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every 
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a 
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉′(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ
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Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact 
• V’ is given input x (the problem instance e.g., 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 )
• P is given input x and w (a witness for the claim e.g., x1 and x2)
• V’ and P’ use randomness rp and rw respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc… 

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P’,x,w) is a distribution over transcripts (over the randomness rp,rw)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every 
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a 
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉′(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

35

Simulator S is not 
given witness w

Oracle V’(x,trans) will output the 
next message V’ would output 
given current transcript trans



Zero-Knowledge Proof for Discrete Log Solution

36

Bob (verifier); 
𝐴𝐴

Alice (prover);
x s.t.
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Claim: There is some integer x such that 𝐴𝐴 = 𝑔𝑔𝑥𝑥



Zero-Knowledge Proof for Discrete Log Solution

37

Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Case 1: Challenge (c=0)
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Case 2: Challenge (c=1)
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for 
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 

Case 1: for all r  𝑩𝑩 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟎𝟎 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for 
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙
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Bob (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 

Case 2: for all r  𝑪𝑪 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟏𝟏 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for 
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙
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Dishonest (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (honest);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 ) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Transcript: 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ = 𝐴𝐴, 𝐵𝐵,𝐶𝐶 , 𝑐𝑐, 𝑃𝑃,𝐴𝐴
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Dishonest (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Alice (honest);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 ) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge:  For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ ≡𝐶𝐶 Sim𝑉𝑉′(.) 𝐴𝐴
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Dishonest (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

Zero-Knowledge:  For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ ≡𝐶𝐶 Sim𝑉𝑉′(.) 𝐴𝐴

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)
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Dishonest (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 𝑃𝑃 ≠⊥)

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)
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Dishonest (verifier); 
𝐴𝐴 = 𝑔𝑔𝑥𝑥, 

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦, 
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: If 𝐴𝐴 = 𝑔𝑔𝑥𝑥 for some x then 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ ≡𝐶𝐶 Sim𝑉𝑉′(.) 𝐴𝐴
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Bob (verifier); 
𝑧𝑧

Alice (prover);
X 
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Completeness: If Alice knows x such 𝑧𝑧 = 𝑥𝑥2 mod N then Bob will always accept
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Bob (verifier); 
𝑧𝑧

Alice (prover);
X 
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝑧𝑧 ≠ 𝑥𝑥2 for some x then (honest) Bob will reject w.p. ½ (even if 
Alice cheats) 
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Bob (verifier); 
𝑧𝑧

Alice (prover);
X 
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 mod N
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Zero-Knowledge: How does the simulator work?



Zero-Knowledge Proof vs. Digital Signature

• Digital Signatures are transferrable
• E.g., Alice signs a message m with her secret key and sends the signature 𝜎𝜎 to 

Bob. Bob can then send (m,𝜎𝜎) to Jane who is convinced that Alice signed the 
message m.

• Are Zero-Knowledge Proofs transferable?
• Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g., 

z has a square root modulo N) in Zero-Knowledge.
• Let 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 be Bob’s view of the protocol.
• Suppose Bob sends 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 to Jane. 
• Should Jane be convinced of the statement (e.g., z has a square root modulo 

N)>
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Bob (verifier); 
𝑧𝑧

Alice (prover);
X 
𝑧𝑧 = 𝑥𝑥2 mod N
(random 
𝑦𝑦1, … ,𝑦𝑦𝑦𝑦)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑜𝑜2𝑧𝑧 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Simulator Power: Can program the random oracle



NIZK Security (Random Oracle Model)

• Simulator is given statement to proof (e.g., 𝑧𝑧 has a square root modulo N)
• Simulator must output a proof 𝜋𝜋′𝑧𝑧 and a random oracle H’

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋′𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H 
• Advantage: ADVD = 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻′ z, 𝜋𝜋′𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible 
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)
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Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique
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Zero-Knowledge Proof for all NP
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A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑚𝑚 0, 𝑃𝑃𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑚𝑚 1, 𝑃𝑃𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑚𝑚 1, 𝑃𝑃𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑚𝑚 0, 𝑃𝑃𝐿𝐿,𝐿𝐿

A L

L

A



Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first 

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝐴𝐴1 , … ,𝜎𝜎 𝐴𝐴𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.
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A B

C D

E G
F

H

IJ

K
L



Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and 

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong 
adjacency matrix or cannot reveal clique. Repeat until we produce a  
successful transcript. Indistinguishability of transcripts follows from 
hiding property of commitment scheme.
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Secure Multiparty Computation (Adversary 
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully 

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party
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Shor’s Algorithm

• Quantum Algorithm to Factor Integers

• Running Time 
O((log N)2(log log N)(log log log N))

• Building Quantum Circuits is challenging, but...
• RSA is broken if we build a quantum computer

• Current record: Factor 21=3x7 with Shor’s Algorithm
• Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using 

Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm


Quantum Resistant Crypto

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝐴𝐴𝑠𝑠 2𝑛𝑛)
• Solution: Double Key Lengths 

• Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not 
safe

• All public key encryption algorithms we have covered
• RSA, RSA-OAEP, El-Gamal,….

https://en.wikipedia.org/wiki/Lattice-based_cryptography

https://en.wikipedia.org/wiki/Lattice-based_cryptography


Post Quantum Cryptography

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝐴𝐴𝑠𝑠 2𝑛𝑛)
• Solution: Double Key Lengths 

• Hashed Based Signatures
• Lamport Signatures and extensions

• Lattice Based Cryptography is a promising approach for Quantum 
Resistant Public Key Crypto

• Ring-LWE
• NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 + 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 + 𝑥𝑥𝑗𝑗

and
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝑥𝑥𝑗𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• Proposed Application: Export confidential computation to cloud 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• We now have candidate constructions!

• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be 
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝑥𝑥𝑗𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 + 𝑥𝑥𝑗𝑗

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜
𝑘𝑘

= 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑦𝑦 × 𝑥𝑥𝑗𝑗
• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem


Program Obfuscation (Theoretical Cryptography)

• Program Obfuscation
• Idea: Alice obfuscates a circuit C and sends C to Bob
• Bob can run C, but cannot learn “anything else”
• Lots of applications…

• Indistinguishability Obfuscation
• Theoretically Possible

• In the sense that 𝑓𝑓 𝑛𝑛 = 2100000000𝑛𝑛100000 is technically polynomial time

• Secure Hardware Module (e.g., SGX) can be viewed as a way to 
accomplish this in practice

• Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai) 

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a


Differential Privacy



Release Aggregate Statistics?
• Question 1: How many people in this room have cancer?

• Question 2: How many students in this room have cancer?

• The difference (A1-A2) exposes my answer!



Differential Privacy: Definition
• n people
• Neighboring datasets:

• Replace x with x’

Name CS Prof? …   STD?

J Blocki +1 …      -1

[DMNS06, DKMMN06]

D

Name CS Prof? …      STD?

Bjork -1 …        ???

D’
70



Differential Privacy vs Cryptography

• 𝜀𝜀 is not negligibly small. 
• We are not claiming that, when D and D’ are neighboring datasets,

𝑨𝑨𝒄𝒄𝒈𝒈(𝑫𝑫) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒈𝒈(𝑫𝑫′)
• Otherwise, we would have 𝑨𝑨𝒄𝒄𝒈𝒈(𝑿𝑿) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒈𝒈(𝒀𝒀′) for any two data-sets X 

and Y.
• Why?

• Cryptography
• Insiders/Outsiders 
• Only those with decryption key(s) can reveal secret
• Multiparty Computation: Alice and Bob learn nothing other than f(x,y)

71



Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑜𝑜=1

𝑛𝑛

𝑥𝑥𝑜𝑜 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy.  (True Answer, Noise)

Traditional Differential Privacy Mechanism
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Resources

• $99

Free PDF: 
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf


Password Storage and Key Derivation Functions

75

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Goal: Moderately Expensive Hash Function

Fast on PC and 
Expensive on ASIC?



Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 100,000 SHA256 computations
(iterative)

Estimated Cost on ASIC: $1 per billion password guesses [BS14]



The Challenge

User Patience

Disclaimer: This slide is entirely for humorous effect. 

Time
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Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



https://password-hashing.net/

(2013-2015)

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…
There are two main versions of 
Argon2, Argon2i and Argon2d. 
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/


Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs



Question

Are existing iMHF candidates based on depth-
robust DAGs?



Answer: No



Can we build a secure iMHF?

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph

https://github.com/Practical-Graphs/Argon2-Practical-Graph
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