
Course Business

• Homework 5 Extended
• Due Saturday @11PM on Gradescope

• Practice Final Released Next Week
Homework 4 Statistics

1

Minimum Value 72.00
Maximum Value 110.00
Range 38.00
Average 94.93
Median 96.00
Standard Deviation 12.02

Cryptography
CS 555

Week 15:
• Oblivious Transfer
• Yao’s Garbled Circuits
• Zero-Knowledge Proofs
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

2Fall 2018

Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one

• Oblivious Transfer with a Trusted Third Party

3

1 out of 2 OT

m0

m1

b

mb

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which CDH problem is hard

4

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑘𝑘 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑔𝑔−𝑘𝑘

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑔𝑔𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑔𝑔𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑔𝑔𝑘𝑘𝑟𝑟𝑏𝑏

slide 8

Vitaly Shmatikov

CS 380S

Yao’s Protocol

slide 9
1

000

Yao’s Protocol
• Compute any function securely

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

Intuition

a b

c

AND

Intuition

a b

c

AND

a

a

b

b

a b

ba

a

b

slide 13

1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

slide 14

2: Encrypt Truth Table

• Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

slide 15

3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 16

4: Send Keys For Alice’s Inputs

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 17

5: Use OT on Keys for Bob’s Input

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 18

6: Evaluate Garbled Gate

• Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row
Bob can decrypt.
He learns K0z

slide 19

• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Different Circuits 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 and 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 ?

• (Regular Protocol for 𝑓𝑓𝐴𝐴): Alice Garbles circuit 𝐶𝐶𝐴𝐴 computing 𝑓𝑓𝐴𝐴 and
Bob evaluates garbled circuit 𝐶𝐶𝐴𝐴′ and sends Alice garbled output 𝑧𝑧𝐴𝐴′.

• Alice can ungarble the output 𝑧𝑧𝐴𝐴′ to obtain 𝑧𝑧𝐴𝐴 = 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 but does not send
this value to Bob.

• (Swap Roles) Bob garbles circuit 𝐶𝐶𝐵𝐵 computing 𝑓𝑓𝐵𝐵. Alice evaluates
garbled circuit 𝐶𝐶𝐵𝐵′ and sends Bob the garbled output 𝑧𝑧𝐵𝐵′.

• Bob can ungarble the output 𝑧𝑧𝐵𝐵′ to obtain 𝑧𝑧𝐵𝐵 = 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 but does not send this value to
Alice.

20

Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 (similarly,
𝑆𝑆𝐵𝐵 is only shown Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦)

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.

21

Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow the
protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Simulating Bob’s View (Intuition):
• Garble the circuit following the honest algorithm Alice would use
• Pick a random input x’ for Alice

• Send Bob garbled circuits, plus garbled keys for x’
• Allow Bob to obtain garbled keys for his input y via OT

• Bob obtains garbled output 𝑧𝑧𝐴𝐴′ of 𝑓𝑓𝐴𝐴 𝑥𝑥′,𝑦𝑦 but cannot distinguish from garbled key
for 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦

22

slide 23

Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

• Number of rounds does not depend on the number of inputs
or the size of the circuit!

Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their input: cA=com(xlrA)
and cB=com(ylrB).

• Alice and Bob can use zero-knowledge proofs to convince other party that they are
behaving honestly.

• Example: After sending a message A Alice proves that the message she just sent is
the same message an honest party would have sent with input x s.t. cA=com(xlrA)

• Here we assume that Alice and Bob have both committed to correct inputs (Bob
might use y which does not represent his real vote etc… but this is not a problem we
can address with cryptography)

24

Fully Malicious Security (Sketch)

• Assume Alice and Bob have both committed to their input: cA=com(xlrA) and
cB=com(ylrB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc… but this is not a problem we can address with
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets Cf = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that Cf = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x0,x1
1. Alice and Bob run OT with y0,y1 where yi=EncK(xi)
2. Bob uses a zero-knowledge proof to convince Alice that he received the correct yi (e.g.

matching his previous commitment cB)
3. Alice sends K to Bob who decrypts yi to obtain xi

25

Course Feedback

26

• What did you like? What could be improved?
• Your feedback is valuable!

This statistic is not differentially
private

CS 555:Week 15: Zero-
Knowledge Proofs

27

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)

28

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)

29

Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ
means that the ensembles are

computationally indistinguishable.

P vs NP

• P problems that can be solved in polynomial time

• NP --- problems whose solutions can be verified in polynomial time
• Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
• DDH

• Input: 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and Z
• Goal: Decide if Z = 𝑔𝑔𝑥𝑥1𝑥𝑥2 or Z ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 .

• NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
• Witness

• A short (polynomial size) string which allows a verify to check for membership
• DDH Witness: x1,x2.

30

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g.,)

• Completeness: If claim is true honest prover can always convince
honest verifier to accept.

• Soundness: If claim is false then Verifier should reject with probability
at least ½. (Even if the prover tries to cheat)

• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input
from the protocol (other than that the claim is true).

• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!

33

Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
• V’ is given input X (the problem instance e.g., 𝑋𝑋 = 𝑔𝑔𝑥𝑥)
• P is given input X and w (a witness for the claim e.g., w=x)
• V’ and P use randomness rp and rv respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc…

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉′(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

34

Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
• V’ is given input x (the problem instance e.g., 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏)
• P is given input x and w (a witness for the claim e.g., x1 and x2)
• V’ and P’ use randomness rp and rw respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc…

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P’,x,w) is a distribution over transcripts (over the randomness rp,rw)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉′(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

35

Simulator S is not
given witness w

Oracle V’(x,trans) will output the
next message V’ would output
given current transcript trans

Zero-Knowledge Proof for Discrete Log Solution

36

Bob (verifier);
𝐴𝐴

Alice (prover);
x s.t.
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Claim: There is some integer x such that 𝐴𝐴 = 𝑔𝑔𝑥𝑥

Zero-Knowledge Proof for Discrete Log Solution

37

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Zero-Knowledge Proof for Discrete Log Solution

38

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Case 1: Challenge (c=0)

Zero-Knowledge Proof for Discrete Log Solution

39

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Case 2: Challenge (c=1)

Zero-Knowledge Proof for Discrete Log Solution

40

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Zero-Knowledge Proof for Discrete Log Solution

41

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

42

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Case 1: for all r 𝑩𝑩 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟎𝟎 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

43

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝐴𝐴 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Case 2: for all r 𝑪𝑪 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟏𝟏 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

44

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (honest);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Transcript: 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ = 𝐴𝐴, 𝐵𝐵,𝐶𝐶 , 𝑐𝑐, 𝑃𝑃,𝐴𝐴

Zero-Knowledge Proof for Discrete Log Solution

45

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (honest);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ ≡𝐶𝐶 Sim𝑉𝑉′(.) 𝐴𝐴

Zero-Knowledge Proof for Discrete Log Solution

46

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ ≡𝐶𝐶 Sim𝑉𝑉′(.) 𝐴𝐴

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge Proof for Discrete Log Solution

47

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 𝑃𝑃 ≠⊥)

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge Proof for Discrete Log Solution

48

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽′(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: If 𝐴𝐴 = 𝑔𝑔𝑥𝑥 for some x then 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽′ ≡𝐶𝐶 Sim𝑉𝑉′(.) 𝐴𝐴

Zero-Knowledge Proof for Square Root mod N

49

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Completeness: If Alice knows x such 𝑧𝑧 = 𝑥𝑥2 mod N then Bob will always accept

Zero-Knowledge Proof for Square Root mod N

50

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝑧𝑧 ≠ 𝑥𝑥2 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Zero-Knowledge Proof for Square Root mod N

51

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 mod N
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Zero-Knowledge: How does the simulator work?

Zero-Knowledge Proof vs. Digital Signature

• Digital Signatures are transferrable
• E.g., Alice signs a message m with her secret key and sends the signature 𝜎𝜎 to

Bob. Bob can then send (m,𝜎𝜎) to Jane who is convinced that Alice signed the
message m.

• Are Zero-Knowledge Proofs transferable?
• Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g.,

z has a square root modulo N) in Zero-Knowledge.
• Let 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 be Bob’s view of the protocol.
• Suppose Bob sends 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 to Jane.
• Should Jane be convinced of the statement (e.g., z has a square root modulo

N)>

52

Non-Interactive Zero-Knowledge Proof (NIZK)

53

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random
𝑦𝑦1, … ,𝑦𝑦𝑦𝑦)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑜𝑜2𝑧𝑧 𝑚𝑚𝑜𝑜𝐴𝐴 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Simulator Power: Can program the random oracle

NIZK Security (Random Oracle Model)

• Simulator is given statement to proof (e.g., 𝑧𝑧 has a square root modulo N)
• Simulator must output a proof 𝜋𝜋′𝑧𝑧 and a random oracle H’

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋′𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H
• Advantage: ADVD = 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻′ z, 𝜋𝜋′𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)

54

Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

55

Zero-Knowledge Proof for all NP

56

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑚𝑚 0, 𝑃𝑃𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑚𝑚 1, 𝑃𝑃𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑚𝑚 1, 𝑃𝑃𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑚𝑚 0, 𝑃𝑃𝐿𝐿,𝐿𝐿

A L

L

A

Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝐴𝐴1 , … ,𝜎𝜎 𝐴𝐴𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.

57

A B

C D

E G
F

H

IJ

K
L

Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal clique. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

58

Secure Multiparty Computation (Adversary
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party

59

CS 555:Week 15: Hot Topics

60

Shor’s Algorithm

• Quantum Algorithm to Factor Integers

• Running Time
O((log N)2(log log N)(log log log N))

• Building Quantum Circuits is challenging, but...
• RSA is broken if we build a quantum computer

• Current record: Factor 21=3x7 with Shor’s Algorithm
• Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using

Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm

Quantum Resistant Crypto

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks

significantly (2𝑛𝑛 𝐴𝐴𝑠𝑠 2𝑛𝑛)
• Solution: Double Key Lengths

• Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not
safe

• All public key encryption algorithms we have covered
• RSA, RSA-OAEP, El-Gamal,….

https://en.wikipedia.org/wiki/Lattice-based_cryptography

https://en.wikipedia.org/wiki/Lattice-based_cryptography

Post Quantum Cryptography

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks

significantly (2𝑛𝑛 𝐴𝐴𝑠𝑠 2𝑛𝑛)
• Solution: Double Key Lengths

• Hashed Based Signatures
• Lamport Signatures and extensions

• Lattice Based Cryptography is a promising approach for Quantum
Resistant Public Key Crypto

• Ring-LWE
• NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 + 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 + 𝑥𝑥𝑗𝑗

and
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝑥𝑥𝑗𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• Proposed Application: Export confidential computation to cloud

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a

Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• We now have candidate constructions!

• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a

Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝑥𝑥𝑗𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜 + 𝑥𝑥𝑗𝑗

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑜𝑜
𝑘𝑘

= 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑦𝑦 × 𝑥𝑥𝑗𝑗
• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem

Program Obfuscation (Theoretical Cryptography)

• Program Obfuscation
• Idea: Alice obfuscates a circuit C and sends C to Bob
• Bob can run C, but cannot learn “anything else”
• Lots of applications…

• Indistinguishability Obfuscation
• Theoretically Possible

• In the sense that 𝑓𝑓 𝑛𝑛 = 2100000000𝑛𝑛100000 is technically polynomial time

• Secure Hardware Module (e.g., SGX) can be viewed as a way to
accomplish this in practice

• Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a

Differential Privacy

Release Aggregate Statistics?
• Question 1: How many people in this room have cancer?

• Question 2: How many students in this room have cancer?

• The difference (A1-A2) exposes my answer!

Differential Privacy: Definition
• n people
• Neighboring datasets:

• Replace x with x’

Name CS Prof? … STD?

J Blocki +1 … -1

[DMNS06, DKMMN06]

D

Name CS Prof? … STD?

Bjork -1 … ???

D’
70

Differential Privacy vs Cryptography

• 𝜀𝜀 is not negligibly small.
• We are not claiming that, when D and D’ are neighboring datasets,

𝑨𝑨𝒄𝒄𝒈𝒈(𝑫𝑫) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒈𝒈(𝑫𝑫′)
• Otherwise, we would have 𝑨𝑨𝒄𝒄𝒈𝒈(𝑿𝑿) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒈𝒈(𝒀𝒀′) for any two data-sets X

and Y.
• Why?

• Cryptography
• Insiders/Outsiders
• Only those with decryption key(s) can reveal secret
• Multiparty Computation: Alice and Bob learn nothing other than f(x,y)

71

Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑜𝑜=1

𝑛𝑛

𝑥𝑥𝑜𝑜 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy. (True Answer, Noise)

Traditional Differential Privacy Mechanism

72

Resources

• $99

Free PDF:
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf

Password Storage and Key Derivation Functions

75

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f6

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 100,000 SHA256 computations
(iterative)

Estimated Cost on ASIC: $1 per billion password guesses [BS14]

The Challenge

User Patience

Disclaimer: This slide is entirely for humorous effect.

Time

St
an

da
rd

 P
at

ie
nc

e
U

ni
ts

U
SD

 $

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input

https://password-hashing.net/

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…
There are two main versions of
Argon2, Argon2i and Argon2d.
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/

Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs

Question

Are existing iMHF candidates based on depth-
robust DAGs?

Answer: No

Can we build a secure iMHF?

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph

https://github.com/Practical-Graphs/Argon2-Practical-Graph

	Course Business
	Cryptography�CS 555
	Oblivious Transfer (OT)
	Bellare-Micali 1-out-of-2-OT protocol
	Yao’s Protocol
	Yao’s Protocol
	Slide Number 10
	Intuition
	Intuition
	1: Pick Random Keys For Each Wire
	2: Encrypt Truth Table
	3: Send Garbled Truth Table
	4: Send Keys For Alice’s Inputs
	5: Use OT on Keys for Bob’s Input
	6: Evaluate Garbled Gate
	7: Evaluate Entire Circuit
	Different Circuits 𝑓 𝐴 𝑥,𝑦 and 𝑓 𝐵 𝑥,𝑦 ?
	Security (Semi-Honest Model)
	Security (Semi-Honest Model)
	Brief Discussion of Yao’s Protocol
	Fully Malicious Security?
	Fully Malicious Security (Sketch)
	Course Feedback
	CS 555:Week 15: Zero-Knowledge Proofs
	Computational Indistinguishability
	Computational Indistinguishability
	P vs NP
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof vs. Digital Signature
	Non-Interactive Zero-Knowledge Proof (NIZK)
	NIZK Security (Random Oracle Model)
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Secure Multiparty Computation (Adversary Models)
	CS 555:Week 15: Hot Topics
	Shor’s Algorithm
	Quantum Resistant Crypto
	Post Quantum Cryptography
	Fully Homomorphic Encryption (FHE)
	Fully Homomorphic Encryption (FHE)
	Partially Homomorphic Encryption
	Program Obfuscation (Theoretical Cryptography)
	Differential Privacy
	Release Aggregate Statistics?
	Differential Privacy: Definition
	Differential Privacy vs Cryptography
	Traditional Differential Privacy Mechanism
	Slide Number 73
	Resources
	 Password Storage and Key Derivation Functions
	Offline Attacks: A Common Problem
	Offline Attacks: A Common Problem
	Goal: Moderately Expensive Hash Function
	Attempt 1: Hash Iteration
	The Challenge
	Memory Hard Function (MHF)
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Depth-Robustness: The Key Property
	Question
	Answer: No
	Can we build a secure iMHF?

