
Cryptography
CS 555

Week 14:
• Digital Signatures Continued
• Multiparty Computation
• Yao’s Garbled Circuits
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

2Fall 2018

Recap: Identification Scheme

• Interactive protocol that allows one party to prove its identify
(authenticate itself) to another

• Two Parties: Prover and Verifier
• Prover has secret key sk and Verifier has public key pk

1. Prover runs P1(sk) to obtain (I,st) ---- initial message I, state st
• Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r to
Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I

3

Recap: Fiat-Shamir Transform

• Identification Schemes can be transformed into signatures
• Signsk(m)

• First compute (I,st)= P1(sk) (as prover)
• Next compute the challenge 𝒓𝒓 = 𝑯𝑯(𝑰𝑰,𝒎𝒎) (as verifier)
• Compute the response s = P2(sk,st,r)
• Output signature (r,s)

• Vrfypk(m,(r,s))
• Compute I := V(pk,r,s)
• Check that H(I,m)=r

Theorem 12.10: If the identification scheme is secure and H is a
random oracle then the above signature scheme is secure.

6

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑝𝑝 and sends initial
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑝𝑝

7

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑝𝑝 and sends initial
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑝𝑝
𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑟𝑟𝑟𝑟+𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 ∗ 𝑔𝑔−𝑟𝑟𝑟𝑟 = 𝑔𝑔𝑝𝑝

8

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

• Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑝𝑝 and sends initial message I to
verifier

• Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to prover
• Prover runs P1(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 mod 𝑞𝑞 and sends s to Verifier
• Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑝𝑝

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group
generator) then Schnorr identification scheme is secure.

9

Schnorr Signatures via Fiat-Shamir

• Public Key: h=gx in cyclic group 𝑔𝑔 of order q.
• Secret Key: x
• 𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑠𝑠𝑝𝑝 𝑚𝑚

1. Select random 𝑘𝑘 ∈ ℤ
q

and set 𝐼𝐼 = 𝑔𝑔𝑝𝑝.
2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑟𝑟𝑆𝑆𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

10

Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑠𝑠𝑝𝑝 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑝𝑝.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑟𝑟𝑆𝑆𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is
hard (relative to group generator) then Schnorr Signatures are secure in
the random oracle model.

11

Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑠𝑠𝑝𝑝 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑝𝑝.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑟𝑟𝑆𝑆𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Advantages:
• Short Signatures σ = 𝑟𝑟 + 𝑠𝑠 = 2 log2 𝑞𝑞 bits
• Fast and Efficient
• Patent Expired: February 2008

12

Depends only on
order of the subgroup

q!

DLOG 128 bit security:
log2 𝑞𝑞 ≈ 256

• Independent of size of
original group

(rth residue subgroup).

• Independent of #bits to
represent group
element
(Elliptic Curve Pairs)

Digital Signature Algorithm (DSA)

DSA: 𝒈𝒈 is subgroup of ℤ𝑝𝑝∗ of order q
ECDSA: 𝒈𝒈 is order q subgroup of elliptic curve

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑝𝑝 ∈ ℤ𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑟𝑟𝑟𝑟 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

13

Digital Signature Algorithm (DSA)

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑝𝑝 = 𝑔𝑔𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑟𝑟𝑟𝑟 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

= 𝐹𝐹 𝑔𝑔𝐻𝐻 𝑚𝑚 𝑝𝑝 𝑟𝑟𝑟𝑟+𝐻𝐻(𝑚𝑚) −1𝑔𝑔𝑟𝑟𝑟𝑟𝑝𝑝 𝑟𝑟𝑟𝑟+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔(𝐻𝐻 𝑚𝑚 +𝑟𝑟𝑟𝑟)𝑝𝑝 𝑟𝑟𝑟𝑟+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔𝑝𝑝 ≔ 𝑟𝑟

14

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑝𝑝 = 𝑔𝑔𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑟𝑟𝑟𝑟 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption for F(.)?
• Theory: DSA Still lack compelling proof of security from standard crypto assumptions
• Practice: DSA has been used/studied for decades without attacks

15

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑝𝑝 = 𝑔𝑔𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑟𝑟𝑟𝑟 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Remark: If signer signs two messages with same random 𝑘𝑘 ∈ ℤ
q

then attacker can find
secret key sk!
• Theory: Negligible Probability this happens
• Practice: Will happen if a weak PRG is used
• Sony PlayStation (PS3) hack in 2010.

16

Certificate Authority

• Trusted Authority (CA)
• 𝑚𝑚𝐶𝐶𝐶𝐶→𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=“Amazon’s public key is 𝑝𝑝𝑘𝑘𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (date,expiration,###)”
• 𝑐𝑐𝑉𝑉𝑟𝑟𝑐𝑐𝐶𝐶𝐶𝐶→𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝑚𝑚

• Delegate Authority to other CA1
• Root CA signs m= “CA1 public key is 𝑝𝑝𝑘𝑘𝐶𝐶𝐶𝐶1 (date,expiration,###) can issue

certificates”
• Verifier can check entire certification chain

• Revocation List Signed Daily
• Decentralized Web of Trust (PGP)

17

Secure Multiparty Computation

18Cryptography: What if we don’t have a trusted third party?

z
H(x,y,z)

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Secure Multiparty Computation (Crushes)

19

Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z).
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey”

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Secure Multiparty Computation (Crushes)

20

Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z).
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey”

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Key Point: The output H(x,y,z) may
leak info about inputs. Thus, we

cannot prevent Mickey from
learning anything about x,y but

Mickey should not learn anything
else besides H(x,y,z)!

Though Question: How can we formalize this
property?

Adversary Models

• Semi-Honest (“honest, but curious”)
• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs

21

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑆𝑆 𝑚𝑚∈ℕ and
𝑌𝑌𝑆𝑆 𝑚𝑚∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝑚𝑚𝐴𝐴𝐷𝐷,𝑚𝑚 = 𝑃𝑃𝑟𝑟𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑟𝑟𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1 ≤ 𝑆𝑆𝑉𝑉𝑔𝑔𝑛𝑛(𝑆𝑆)

22

Notation: 𝑋𝑋𝑆𝑆 𝑚𝑚∈ℕ ≡𝐶𝐶 𝑌𝑌𝑆𝑆 𝑚𝑚∈ℕ means that the
ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

• Let 𝐵𝐵𝑚𝑚 = 𝑐𝑐𝑟𝑟𝑡𝑡𝑆𝑆𝑠𝑠𝐵𝐵(𝑆𝑆, 𝑟𝑟,𝑉𝑉) (resp. 𝐴𝐴𝑚𝑚 = 𝑐𝑐𝑟𝑟𝑡𝑡𝑆𝑆𝑠𝑠𝐶𝐶(𝑆𝑆, 𝑟𝑟,𝑉𝑉)) be the protocol
transcript from Bob’s perspective (resp. Alice’s perspective) when his input is
y and Alice’s input is x (assuming that Alice follows the protocol).

• Security: Assuming that Alice and Bob are both semi-honest (follow the
protocol) then there exist PPT simulators 𝑆𝑆𝐶𝐶 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑆𝑆 𝑚𝑚∈ℕ ≡𝐶𝐶 𝑆𝑆𝐶𝐶 𝑆𝑆, 𝑟𝑟, 𝑉𝑉𝐶𝐶 𝑟𝑟,𝑉𝑉 𝑚𝑚∈ℕ
𝐵𝐵𝑆𝑆 𝑚𝑚∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑆𝑆,𝑉𝑉, 𝑉𝑉𝐵𝐵 𝑟𝑟,𝑉𝑉 𝑚𝑚∈ℕ

• Remark: Simulator 𝑆𝑆𝐶𝐶 is only shown Alice’s input y and Alice’s output 𝑉𝑉𝐶𝐶 𝑟𝑟,𝑉𝑉
(similarly, 𝑆𝑆𝐵𝐵 is only shown Bob’s input x and Bob’s output 𝑉𝑉𝐵𝐵 𝑟𝑟, 𝑉𝑉)

23

Building Block: Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one, and Bob learns nothing about other message

• Oblivious Transfer with a Trusted Third Party

24

1 out of 2 OT

m0

m1

b

mb

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which CDH problem is hard

25

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑔𝑔−𝑝𝑝

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑔𝑔𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑔𝑔𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑔𝑔𝑝𝑝𝑟𝑟𝑏𝑏

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which CDH is Hard

26

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑔𝑔−𝑝𝑝
= 𝑐𝑐 𝑧𝑧𝑏𝑏 −1

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑔𝑔𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑔𝑔𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑔𝑔𝑝𝑝𝑟𝑟𝑏𝑏

Alice must check that
𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which Discrete Log Problem is Hard

27

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑔𝑔−𝑝𝑝
= 𝑐𝑐 𝑧𝑧𝑏𝑏 −1

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑔𝑔𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑔𝑔𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑔𝑔𝑝𝑝𝑟𝑟𝑏𝑏

Alice must check that
𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1

Alice does not learn b because
• 𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1 and
• 𝑧𝑧0 = 𝑐𝑐 𝑧𝑧1 −1 and
• 𝑧𝑧1, 𝑧𝑧0 are distributed uniformly at random

subject to these condition.

This is an information theoretic guarantee!

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which Discrete Log Problem is Hard

28

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑔𝑔𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑔𝑔−𝑝𝑝
= 𝑐𝑐 𝑧𝑧𝑏𝑏 −1

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑔𝑔𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑔𝑔𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑔𝑔𝑝𝑝𝑟𝑟𝑏𝑏

Alice must check that
𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1

Bob cannot decrypt C1-b
Unless he queries random oracle at
• 𝑐𝑐𝑟𝑟1−𝑏𝑏𝑔𝑔−𝑝𝑝𝑟𝑟1−𝑏𝑏
• Given this value we can obtain 𝑐𝑐𝑟𝑟1−𝑏𝑏
• Thus, we can break CDH assumption
given random 𝒄𝒄 = 𝒈𝒈𝒎𝒎 and 𝒈𝒈𝒓𝒓𝟏𝟏−𝒃𝒃 it is hard to
find 𝒄𝒄𝒓𝒓𝟏𝟏−𝒃𝒃= 𝒈𝒈𝒎𝒎𝒓𝒓𝟏𝟏−𝒃𝒃

slide 29

Vitaly Shmatikov

CS 380S

Yao’s Protocol

slide 30
1

000

Yao’s Protocol
• Compute any function securely

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

Intuition

a b

c

AND

Intuition

a b

c

AND

a

a

b

b

a b

ba

a

b

slide 34

1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

slide 35

2: Encrypt Truth Table

• Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

slide 36

3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 37

4: Send Keys For Alice’s Inputs

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 38

5: Use OT on Keys for Bob’s Input

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 39

6: Evaluate Garbled Gate

• Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row
Bob can decrypt.
He learns K0z

slide 40

• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators 𝑆𝑆𝐶𝐶 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑆𝑆 𝑚𝑚∈ℕ ≡𝐶𝐶 𝑆𝑆𝐶𝐶 𝑆𝑆, 𝑟𝑟, 𝑉𝑉𝐶𝐶 𝑟𝑟,𝑉𝑉 𝑚𝑚∈ℕ
𝐵𝐵𝑆𝑆 𝑚𝑚∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑆𝑆,𝑉𝑉,𝑉𝑉𝐵𝐵 𝑟𝑟,𝑉𝑉 𝑚𝑚∈ℕ

• Remark: Simulator 𝑆𝑆𝐶𝐶 is only shown Alice’s output 𝑉𝑉𝐶𝐶 𝑟𝑟,𝑉𝑉 (similarly,
𝑆𝑆𝐵𝐵 is only shown Bob’s output 𝑉𝑉𝐵𝐵 𝑟𝑟,𝑉𝑉)

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.

41

slide 42

Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

• Number of rounds does not depend on the number of inputs
or the size of the circuit!

Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their input: cA=com(x,rA)
and cB=com(y,rB).

• Alice and Bob can use zero-knowledge proofs to convince other party that they are
behaving honestly.

• Example: After sending a message A Alice proves that the message she just sent is
the same message an honest party would have sent with input x s.t. cA=com(x,rA)

• Here we assume that Alice and Bob have both committed to correct inputs (Bob
might use y which does not represent his real vote etc… but this is not a problem we
can address with cryptography)

43

Fully Malicious Security

• Assume Alice and Bob have both committed to their input: cA=com(x,rA) and
cB=com(y,rB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc… but this is not a problem we can address with
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets Cf = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that Cf = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x0,x1
1. Alice and Bob run OT with y0,y1 where yi=EncK(xi)
2. Bob uses a zero-knowledge proof to convince Alice that he received the correct yi (e.g.

matching his previous commitment cB)
3. Alice sends K to Bob who decrypts yi to obtain xi

44

	Cryptography�CS 555
	Recap: Identification Scheme
	Recap: Fiat-Shamir Transform
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Schnorr Signatures via Fiat-Shamir
	Schnorr Signatures
	Schnorr Signatures
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Certificate Authority
	Secure Multiparty Computation
	Secure Multiparty Computation (Crushes)
	Secure Multiparty Computation (Crushes)
	Adversary Models
	Computational Indistinguishability
	Security (Semi-Honest Model)
	Building Block: Oblivious Transfer (OT)
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Yao’s Protocol
	Yao’s Protocol
	Slide Number 31
	Intuition
	Intuition
	1: Pick Random Keys For Each Wire
	2: Encrypt Truth Table
	3: Send Garbled Truth Table
	4: Send Keys For Alice’s Inputs
	5: Use OT on Keys for Bob’s Input
	6: Evaluate Garbled Gate
	7: Evaluate Entire Circuit
	Security (Semi-Honest Model)
	Brief Discussion of Yao’s Protocol
	Fully Malicious Security?
	Fully Malicious Security

