Cryptography
 CS 555

Week 14:

- Digital Signatures Continued
- Multiparty Computation
- Yao's Garbled Circuits

Readings: Katz and Lindell Chapter 10 \& Chapter 11.1-11.2, 11.4

Recap: Identification Scheme

- Interactive protocol that allows one party to prove its identify (authenticate itself) to another
- Two Parties: Prover and Verifier
- Prover has secret key sk and Verifier has public key pk

1. Prover runs $P_{1}(s k)$ to obtain (I, st) ---- initial message I , state st

- Sends I to Verifier

2. Verifier picks random message r from distribution $\Omega_{p k}$ and sends r to Prover
3. Prover runs $P_{2}(s k, s t, r)$ to obtain s and sends s to verifier
4. Verifier checks if $\mathrm{V}(\mathrm{pk}, \mathrm{r}, \mathrm{s})=\mathrm{I}$

Recap: Fiat-Shamir Transform

- Identification Schemes can be transformed into signatures
- $\operatorname{Sign}_{\text {sk }}(\mathrm{m})$
- First compute (I, st) $=\mathrm{P}_{1}(\mathrm{sk})$ (as prover)
- Next compute the challenge $\boldsymbol{r}=\boldsymbol{H}(\boldsymbol{I}, \boldsymbol{m}) \quad$ (as verifier)
- Compute the response $s=P_{2}(s k, s t, r)$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$
- Compute I := V(pk,r,s)
- Check that $\mathrm{H}(\mathrm{I}, \mathrm{m})=\mathrm{r}$

Theorem 12.10: If the identification scheme is secure and H is a random oracle then the above signature scheme is secure.

Schnorr Identification Scheme

- Verifier knows $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$
- Prover knows x such that $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$

1. Prover runs $\mathrm{P}_{1}(\mathrm{x})$ to obtain $\left(k \in \mathbb{Z}_{\mathrm{q}}, I=g^{k}\right)$ and sends initial message I to verifier
2. Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
3. Prover runs $\mathrm{P}_{2}(\mathrm{x}, \mathrm{k}, \mathrm{r})$ to obtain $\mathrm{s}:=[r x+k \bmod q]$ and sends s to Verifier
4. Verifier checks if $g^{s} *\left(h^{-1}\right)^{r}=I=g^{k}$

Schnorr Identification Scheme

- Verifier knows $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$
- Prover knows x such that $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$

1. Prover runs $\mathrm{P}_{1}(\mathrm{x})$ to obtain $\left(k \in \mathbb{Z}_{\mathrm{q}}, I=g^{k}\right)$ and sends initial message I to verifier
2. Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
3. Prover runs $\mathrm{P}_{2}(\mathrm{x}, \mathrm{k}, \mathrm{r})$ to obtain $\mathrm{s}:=[r x+k \bmod q]$ and sends s to Verifier
4. Verifier checks if $g^{s} *\left(h^{-1}\right)^{r}=I=g^{k}$

$$
g^{s} *\left(h^{-1}\right)^{r}=g^{r x+k \bmod q} * g^{-x r}=g^{k}
$$

Schnorr Identification Scheme

- Verifier knows $h=g^{x}$
- Prover knows x such that $h=g^{x}$
- Prover runs $\mathrm{P}_{1}(\mathrm{x})$ to obtain $\left(k \in \mathbb{Z}_{\mathrm{q}}, I=g^{k}\right)$ and sends initial message I to verifier
- Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
- Prover runs $\mathrm{P} 1(\mathrm{x}, \mathrm{k}, \mathrm{r})$ to obtain $\mathrm{s}:=[r x+k \bmod q]$ and sends s to Verifier
- Verifier checks if $g^{s} *\left(h^{-1}\right)^{r}=I=g^{k}$

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group generator) then Schnorr identification scheme is secure.

Schnorr Signatures via Fiat-Shamir

- Public Key: $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ in cyclic group $\langle g\rangle$ of order q .
- Secret Key: x
- $\operatorname{Sign}_{s k}(m)$

1. Select random $k \in \mathbb{Z}_{\mathrm{q}}$ and set $I=g^{k}$.
2. $r=H(I, m)$
3. Return $\sigma=(r, s)$ where $s:=[r x+k \bmod q]$

- $\operatorname{Verify}_{p k}(m, \sigma=(r, s))$
- Compute $g^{s} *\left(h^{-1}\right)^{r}=g^{s-r x}$ and check if $\mathrm{r}=H\left(g^{s-r x}, m\right)$

Schnorr Signatures

- $\operatorname{Sign}_{s k}(m)$

1. Select random $k \in \mathbb{Z}_{\mathrm{q}}$ and set $I=g^{k}$.
2. $r=\boldsymbol{H}(\mathbf{I}, m)$
3. Return $\sigma=(r, s)$ where $\mathrm{s}:=[r x+k \bmod q]$

- $\operatorname{Verify}_{p k}(m, \sigma=(r, s))$
- Compute $g^{s} *\left(h^{-1}\right)^{r}=g^{s-r x}$ and check if $\mathrm{r}=H\left(g^{s-r x}, m\right)$

Corollary (of Thms $12.10+12.11$): If the discrete-logarithm problem is hard (relative to group generator) then Schnorr Signatures are secure in the random oracle model.

- Independent of size of original group (rth residue subgroup).
- Independent of \#bits to represent group element

(Elliptic Curve Pairs)

Advantages:

- Short Signatures $\|\sigma\|=\|r\|+\|s\|=2\left\lceil\log _{2} q\right\rceil$ bits
- Fast and Efficient
- Patent Expired: February 2008

Digital Signature Algorithm (DSA)

DSA: $\langle\boldsymbol{g}\rangle$ is subgroup of \mathbb{Z}_{p}^{*} of order q
ECDSA: $\langle\boldsymbol{g}\rangle$ is order q subgroup of elliptic curve

- Secret key is x , public key is $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ along with generator g (of order q)
- Sign $_{\text {sk }}(\mathrm{m})$
- Pick random $\left(k \in \mathbb{Z}^{q}\right)$ and set $r=F\left(g^{k}\right) \in \mathbb{Z}_{q}$
- Compute s $:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right)
$$

Digital Signature Algorithm (DSA)

- $\operatorname{Sign}_{\text {sk }}(\mathrm{m})$
- Pick $\operatorname{random}\left(k \in \mathbb{Z}_{q}\right)$ and set $r=F\left(g^{k}\right)=\left[g^{k} \bmod q\right]$
- Compute $\mathrm{s}:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r,s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
\begin{gathered}
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right) \\
=F\left(g^{H(m) k(x r+H(m))^{-1}} g^{x r k(x r+H(m))^{-1}}\right) \\
=F\left(g^{(H(m)+x r) k(x r+H(m))^{-1}}\right) \\
=F\left(g^{k}\right):=r
\end{gathered}
$$

Digital Signature Algorithm (DSA)

- Secret key is x , public key is $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ along with generator g (of order q)
- $\mathrm{Sign}_{\mathrm{sk}}(\mathrm{m})$
- Pick random $(k \in \mathbb{Z})$ and set $r=F\left(g^{k}\right)=\left[g^{k} \bmod q\right]$
- Compute s $:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right)
$$

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption for F(.)?

- Theory: DSA Still lack compelling proof of security from standard crypto assumptions
- Practice: DSA has been used/studied for decades without attacks

Digital Signature Algorithm (DSA)

- Secret key is x , public key is $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$
- $\mathrm{Sign}_{\mathrm{sk}}(\mathrm{m})$
- Pick random $(k \in \mathbb{Z})$ and set $r=F\left(g^{k}\right)=\left[g^{k} \bmod q\right]$
- Compute s $:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right)
$$

Remark: If signer signs two messages with same random $k \in \mathbb{Z}_{q}$ then attacker can find secret key sk!

- Theory: Negligible Probability this happens
- Practice: Will happen if a weak PRG is used
- Sony PlayStation (PS3) hack in 2010.

Certificate Authority

- Trusted Authority (CA)
- $m_{C A \rightarrow A m a z o n}=$ "Amazon's public key is $p k_{\text {Amazon }}$ (date,expiration,\#\#\#)"
- cert $_{C A \rightarrow A m a z o n}=\operatorname{Sign}_{S K_{C A}}(m)$
- Delegate Authority to other CA_{1}
- Root CA signs $m=$ " $C A_{1}$ public key is $p k_{C A 1}$ (date,expiration,\#\#\#) can issue certificates"
- Verifier can check entire certification chain
- Revocation List Signed Daily
- Decentralized Web of Trust (PGP)

Secure Multiparty Computation

Cryptography: What if we don't have a trusted third party?

Secure Multiparty Computation (Crushes)

Alice can infer Y from $F(x, y, z)$ and Bob can infer X from $H(x, y, z)$. But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y , and learns that $\mathrm{x} \neq$ "Mickey"

Secure Multiparturnmnutntinn (rruchnal

Key Point: The output $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ may leak info about inputs. Thus, we cannot prevent Mickey from learning anything about x, y but Mickey should not learn anything else besides $H(x, y, z)$!

Though Question: How can we formalize this property?

Adversary Models

- Semi-Honest ("honest, but curious")
- All parties follow protocol instructions, but...
- dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
- Adversarial Parties may deviate from the protocol arbitrarily
- Quit unexpectedly
- Send different messages
- It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
- Tool: Zero-Knowledge Proofs

Computational Indistinguishability

Definition: We say that an ensemble of distributions $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ are computationally indistinguishable if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$
A d v_{D, n}=\left|\operatorname{Pr}_{s \leftarrow X_{\ell}}[D(s)=1]-\operatorname{Pr}_{s \leftarrow Y_{t}}[D(s)=1]\right| \leq \operatorname{negl}(n)
$$

Notation: $\left\{X_{n}\right\}_{n \in \mathbb{N}} \equiv_{C}\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

- Let $B_{n}=\operatorname{trans}_{B}(n, x, y)$ (resp. $\left.A_{n}=\operatorname{trans}_{A}(n, x, y)\right)$ be the protocol transcript from Bob's perspective (resp. Alice's perspective) when his input is y and Alice's input is x (assuming that Alice follows the protocol).
- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_{A} and S_{B} s.t.

$$
\begin{aligned}
& \left\{A_{n}\right\}_{n \in \mathbb{N}} \equiv_{C}\left\{S_{A}\left(n, x, f_{A}(x, y)\right)\right\}_{n \in \mathbb{N}} \\
& \left\{B_{n}\right\}_{n \in \mathbb{N}} \equiv_{C}\left\{S_{B}\left(n, y, f_{B}(x, y)\right)\right\}_{n \in \mathbb{N}}
\end{aligned}
$$

- Remark: Simulator S_{A} is only shown Alice's input y and Alice's output $f_{A}(x, y)$ (similarly, S_{B} is only shown Bob's input x and Bob's output $f_{B}(x, y)$)

Building Block: Oblivious Transfer (OT)

- 1 out of 2 OT
- Alice has two messages m_{0} and m_{1}
- At the end of the protocol
- Bob gets exactly one of m_{0} and m_{1}
- Alice does not know which one, and Bob learns nothing about other message
- Oblivious Transfer with a Trusted Third Party

Bellare-Micali 1-out-of-2-OT protocol

- Oblivious Transfer without a Trusted Third Party

- g is a generator for a prime order group G_{q} in which CDH problem is hard

Bellare-Micali 1-out-of-2-OT protocol

- Oblivious Transfer without a Trusted Third Party

Bellare-Micali 1-out-of-2-OT protocol

- Oblivious Transfer withou Alice does not learn b because

Alice must check that

$$
z_{1}=c\left(z_{0}\right)^{-1}
$$

Bob can decrypt C_{b}

$$
z_{b}^{r_{b}}=g^{k r_{b}}
$$

$$
\begin{aligned}
z_{b}=g^{k}, z_{1-b} & =c g^{-k} \\
& =c\left(z_{b}\right)^{-1} \\
&
\end{aligned}
$$

Bellare-Micali 1-out-of-2-OT protocol

Alice must check that

$$
z_{1}=c\left(z_{0}\right)^{-1}
$$

Bob can decrypt C_{b}

$$
z_{b}^{r_{b}}=g^{k r_{b}}
$$

$$
\begin{aligned}
z_{b}=g^{k}, z_{1-b}= & c g^{-k} \\
= & c\left(z_{b}\right)^{-1}
\end{aligned}
$$

CS 380S

Yao's Protocol

Vitaly Shmatikov

Yao's Protocol

- Compute any function securely
- ... in the semi-honest model
- First, convert the function into a boolean circuit

1. Alice prepares "garbled" version C^{\prime} of C
2. Sends "encrypted" form x ' of her input x
3. Allows Bob to obtain "encrypted" form y " of his input y via OT
4. Bob can compute from $C^{\prime}, x^{\prime}, y^{\prime}$ the "encryption" z^{\prime} of $z=C(x, y)$
5. Bob sends z^{\prime} to Alice and she decrypts and reveals to him z

Crucial properties:

1. Bob never sees Alice's input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

Intuition

Intuition

1: Pick Random Keys For Each Wire

- Next, evaluate one gate securely
- Later, generalize to the entire circuit
- Alice picks two random keys for each wire
- One key corresponds to " 0 ", the other to " 1 "
- 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

- Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{rax}_{x}}\left(\mathrm{E}_{\mathrm{Fox}_{\mathrm{ox}}}\left(\mathrm{~K}_{2}\right)\right) \\
& E_{t_{0}\left(E_{k}\right.}\left(E_{1 / 2}\left(k_{z}\right)\right) \\
& E_{k_{1 x} \times}\left(E_{k_{0}}\left(k_{2}\right)\right) \\
& E_{k_{1 x}}\left(E_{k_{1}}\left(k_{1 z}\right)\right)
\end{aligned}
$$

3: Send Garbled Truth Table

- Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice’s Inputs

- Alice sends the key corresponding to her input bit
- Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
- Alice's input is the two keys corresponding to Bob's wire
- Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
- Bob does not learn if this key corresponds to 0 or 1
- Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
- For each wire in the circuit, Bob learns only one key
- It corresponds to 0 or 1 (Bob does not know which)
- Therefore, Bob does not learn intermediate values (why?)

- Bob tells Alice the key for the finatoutput wire and she tells him if it corresponds to 0 or 1
- Bob does not tell her intermediate wire keys (why?)

Security (Semi-Honest Model)

- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_{A} and S_{B} s.t.

$$
\begin{aligned}
& \left\{A_{n}\right\}_{n \in \mathbb{N}} \equiv_{C}\left\{S_{A}\left(n, x, f_{A}(x, y)\right)\right\}_{n \in \mathbb{N}} \\
& \left\{B_{n}\right\}_{n \in \mathbb{N}} \equiv_{C}\left\{S_{B}\left(n, y, f_{B}(x, y)\right)\right\}_{n \in \mathbb{N}}
\end{aligned}
$$

- Remark: Simulator S_{A} is only shown Alice's output $f_{A}(x, y)$ (similarly, S_{B} is only shown Bob's output $f_{B}(x, y)$)
Theorem (informal): If the oblivious transfer protocol is secure, and the underlying encryption scheme is CPA-secure then Yao's protocol is secure in the semi-honest adversary model.

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
- For many functions, circuit will be huge
- If m gates in the circuit and n inputs from Bob, then need $4 m$ encryptions and n oblivious transfers
- Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a constant-round protocol for secure computation of any function in the semi-honest model
- Number of rounds does not depend on the number of inputs or the size of the circuit!

Fully Malicious Security?

1. Alice could initially garble the wrong circuit $C(x, y)=y$.
2. Given output of $C(x, y)$ Alice can still send Bob the output $f(x, y)$.
3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: $c_{A}=\operatorname{com}\left(x, r_{A}\right)$ and $\mathrm{c}_{\mathrm{B}}=\operatorname{com}\left(\mathrm{y}, \mathrm{r}_{\mathrm{B}}\right)$.

- Alice and Bob can use zero-knowledge proofs to convince other party that they are behaving honestly.
- Example: After sending a message A Alice proves that the message she just sent is the same message an honest party would have sent with input x s.t. $c_{A}=\operatorname{com}\left(x, r_{A}\right)$
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)

Fully Malicious Security

- Assume Alice and Bob have both committed to their input: $\mathrm{c}_{\mathrm{A}}=\operatorname{com}\left(\mathrm{x}, \mathrm{r}_{\mathrm{A}}\right)$ and $\mathrm{C}_{\mathrm{B}}=\operatorname{com}\left(\mathrm{y}, \mathrm{r}_{\mathrm{B}}\right)$.
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)
- Alice has C_{B} and can unlock C_{A}
- Bob has C_{A} and can unlock C_{B}

1. Alice sets $C_{f}=$ GarbleCircuit($\left.f, r\right)$.
2. Alice sends to Bob.
3. Alice convinces Bob that $C_{f}=$ GarbleCircuit(f, r) for some r (using a zero-knowledge proof)
4. For each original oblivious transfer if Alice's inputs were originally x_{0}, x_{1}
5. Alice and Bob run OT with $\mathrm{y}_{0}, \mathrm{y}_{1}$ where $\mathrm{y}_{\mathrm{i}}=\operatorname{Enc}_{\mathrm{K}}\left(\mathrm{x}_{\mathrm{i}}\right)$
6. Bob uses a zero-knowledge proof to convince Alice that he received the correct y_{i} (e.g. matching his previous commitment C_{B})
7. Alice sends K to Bob who decrypts y_{i} to obtain x_{i}
