Cryptography CS 555

Week 14:

- Digital Signatures Continued
- Multiparty Computation
- Yao's Garbled Circuits

Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Recap: Identification Scheme

- Interactive protocol that allows one party to prove its identify (authenticate itself) to another
- Two Parties: Prover and Verifier
 - Prover has secret key sk and Verifier has public key pk
- 1. Prover runs P₁(sk) to obtain (I,st) ---- initial message I, state st
 - Sends I to Verifier
- 2. Verifier picks random message r from distribution Ω_{pk} and sends r to Prover
- 3. Prover runs $P_2(sk,st,r)$ to obtain s and sends s to verifier
- 4. Verifier checks if V(pk,r,s)=I

Recap: Fiat-Shamir Transform

- Identification Schemes can be transformed into signatures
- Sign_{sk}(m)
 - First compute (I,st)= P₁(sk) (as prover)
 - Next compute the challenge r = H(I, m) (as verifier)
 - Compute the response s = P₂(sk,st,r)
 - Output signature (r,s)
- Vrfy_{pk}(m,(r,s))
 - Compute I := V(pk,r,s)
 - Check that H(I,m)=r

Theorem 12.10: If the identification scheme is secure and H is a random oracle then the above signature scheme is secure.

Schnorr Identification Scheme

- Verifier knows h=g^x
- Prover knows x such that h=g^x
- 1. Prover runs $P_1(x)$ to obtain $(k \in \mathbb{Z}_q, I = g^k)$ and sends initial message I to verifier
- 2. Verifier picks random $r \in \mathbb{Z}_q$ (q is order of the group) and sends r to prover
- 3. Prover runs $P_2(x,k,r)$ to obtain $s \coloneqq [rx + k \mod q]$ and sends s to Verifier
- 4. Verifier checks if $g^s * (h^{-1})^r = I = g^k$

Schnorr Identification Scheme

- Verifier knows h=g^x
- Prover knows x such that h=g^x
- 1. Prover runs $P_1(x)$ to obtain $(k \in \mathbb{Z}_q, I = g^k)$ and sends initial message I to verifier
- 2. Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
- 3. Prover runs $P_2(x,k,r)$ to obtain $s \coloneqq [rx + k \mod q]$ and sends s to Verifier

4. Verifier checks if
$$g^{s} * (h^{-1})^{r} = I = g^{k}$$

 $g^{s} * (h^{-1})^{r} = g^{rx+k \mod q} * g^{-xr} = g^{k}$

Schnorr Identification Scheme

- Verifier knows h=g^x
- Prover knows x such that h=g^x
- Prover runs $P_1(x)$ to obtain $(k \in \mathbb{Z}_q, I = g^k)$ and sends initial message I to verifier
- Verifier picks random $r \in \mathbb{Z}_{a}$ (q is order of the group) and sends r to prover
- Prover runs P1(x,k,r) to obtain $s \coloneqq [rx + k \mod q]$ and sends s to Verifier
- Verifier checks if $g^s * (h^{-1})^r = I = g^k$

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group generator) then Schnorr identification scheme is secure.

Schnorr Signatures via Fiat-Shamir

- Public Key: $h=g^x$ in cyclic group $\langle g \rangle$ of order q.
- Secret Key: x
- $Sign_{sk}(m)$
 - 1. Select random $k \in \mathbb{Z}_{a}$ and set $I = g^{k}$.
 - **2.** r = H(I, m)
 - 3. Return $\sigma = (r, s)$ where $s \coloneqq [rx + k \mod q]$
- $Verify_{pk}(m, \sigma = (r, s))$
 - Compute $g^s * (h^{-1})^r = g^{s-rx}$ and check if $r = H(g^{s-rx}, m)$

Schnorr Signatures

- $Sign_{sk}(m)$
 - 1. Select random $k \in \mathbb{Z}_{a}$ and set $I = g^{k}$.

2. r = H(I, m)

3. Return $\sigma = (r, s)$ where $s \coloneqq [rx + k \mod q]$

•
$$Verify_{pk}(m, \sigma = (r, s))$$

• Compute $g^s * (h^{-1})^r = g^{s-rx}$ and check if $r = H(g^{s-rx}, m)$

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is hard (relative to group generator) then Schnorr Signatures are secure in the random oracle model.

 Independent of size of original group (rth residue subgroup).

Depends only on order of the <u>subgroup</u>

q!

 Independent of #bits to represent group element (Elliptic Curve Pairs)

 $\frac{+k \mod q}{\text{DLOG 128 bit security:}}$ check if r = $\frac{\log_2 q}{\cos^2 q} \approx 256$

Advantages:

• Short Signatures $||\sigma|| = ||r|| + ||s|| = 2[\log_2 q]$ bits

 g^k .

- Fast and Efficient
- Patent Expired: February 2008

DSA: $\langle g \rangle$ is subgroup of \mathbb{Z}_p^* of order q **ECDSA:** $\langle g \rangle$ is order q subgroup of elliptic curve

- Secret key is x, public key is h=g^x along with generator g (of order q)
- Sign_{sk}(m)
 - Pick random $(k \in \mathbb{Z}_{q})$ and set $r = F(g^{k}) \in \mathbb{Z}_{q}$
 - Compute $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
 - Output signature (r,s)
- Vrfy_{pk}(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

- Sign_{sk}(m)
 - Pick random $(k \in \mathbb{Z}_{q})$ and set $r = F(g^k) = [g^k \mod q]$
 - Compute $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
 - Output signature (r,s)
- Vrfy_{pk}(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

= $F(g^{H(m)k(xr+H(m))^{-1}}g^{xrk(xr+H(m))^{-1}})$
= $F(g^{(H(m)+xr)k(xr+H(m))^{-1}})$
= $F(g^k) \coloneqq r$

- Secret key is x, public key is h=g^x along with generator g (of order q)
- Sign_{sk}(m)
 - Pick random $(k \in \mathbb{Z}_{q})$ and set $r = F(g^{k}) = [g^{k} \mod q]$
 - Compute $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
 - Output signature (r,s)
- Vrfy_{pk}(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

Theorem: If H and F are modeled as random oracles then DSA is secure. Weird Assumption for F(.)?

- Theory: DSA Still lack compelling proof of security from standard crypto assumptions
- Practice: DSA has been used/studied for decades without attacks

- Secret key is x, public key is h=g^x
- Sign_{sk}(m)
 - Pick random $(k \in \mathbb{Z}_{q})$ and set $r = F(g^k) = [g^k \mod q]$
 - Compute $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
 - Output signature (r,s)
- Vrfy_{pk}(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

Remark: If signer signs two messages with same random $k \in \mathbb{Z}_{q}$ then attacker can find secret key sk!

- **Theory:** Negligible Probability this happens
- **Practice:** Will happen if a weak PRG is used
- Sony PlayStation (PS3) hack in 2010.

Certificate Authority

- Trusted Authority (CA)
 - $m_{CA \rightarrow Amazon}$ ="Amazon's public key is pk_{Amazon} (date, expiration, ###)"
 - $cert_{CA \rightarrow Amazon} = Sign_{SK_{CA}}(m)$
- Delegate Authority to other CA₁
 - Root CA signs m= "CA₁ public key is pk_{CA1} (date,expiration,###) can issue certificates"
 - Verifier can check entire certification chain
- Revocation List Signed Daily
- Decentralized Web of Trust (PGP)

Secure Multiparty Computation (Cruchoc)

Key Point: The output H(x,y,z) may leak info about inputs. Thus, we cannot prevent Mickey from FlXN21="match Bg learning anything about x,y but Mickey should not learn anything else besides H(x,y,z)!

Though Question: How can we formalize this property?

Mickey cannot infer y, and learns that $x \neq$ "Mickey"

Micke

Adversary Models

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs

Computational Indistinguishability

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$Adv_{D,n} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right| \le negl(n)$$

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

- Let $B_n = trans_B(n, x, y)$ (resp. $A_n = trans_A(n, x, y)$) be the protocol transcript from Bob's perspective (resp. Alice's perspective) when his input is y and Alice's input is x (assuming that Alice follows the protocol).
- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n\in\mathbb{N}} \equiv_C \{S_A(n, x, f_A(x, y))\}_{n\in\mathbb{N}}$ $\{B_n\}_{n\in\mathbb{N}} \equiv_C \{S_B(n, y, f_B(x, y))\}_{n\in\mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's input y and Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's input x and Bob's output $f_B(x, y)$)

Building Block: Oblivious Transfer (OT)

• 1 out of 2 OT

- Alice has two messages m₀ and m₁
- At the end of the protocol
 - Bob gets exactly one of m₀ and m₁
 - Alice does not know which one, and Bob learns nothing about other message
- Oblivious Transfer with a Trusted Third Party

Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_{α} in which CDH problem is hard

• Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_a in which CDH is Hard

• Oblivious Transfer withou Alice does not learn b because

• g is a generator for a prime • $z_1 = c(z_0)^{-1}$ and • $z_0 = c(z_1)^{-1}$ and • z_1, z_0 are distributed uniformly at random subject to these condition.

This is an information theoretic guarantee!

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{r_b} = g^{kr_b}$

$$z_b = g^k, z_{1-b} = cg^{-k}$$

= $c(z_b)^{-1}$

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{\prime b} = g^{kr_b}$

Yao's Protocol

Vitaly Shmatikov

Yao's Protocol

- Compute any function securely
 - ... in the semi-honest model
- First, convert the function into a boolean circuit

Overview:

- 1. Alice prepares "garbled" version C' of C
- 2. Sends "encrypted" form **x'** of her input **x**
- 3. Allows Bob to obtain "encrypted" form y' of his input y via OT
- 4. Bob can compute from C', x', y' the "encryption" z' of z=C(x,y)
- 5. Bob sends z' to Alice and she decrypts and reveals to him z

Crucial properties:

- 1. Bob never sees Alice's input x in unencrypted form.
- 2. Bob can obtain encryption of y without Alice learning y.
- 3. Neither party learns intermediate values.
- 4. Remains secure even if parties try to cheat.

Intuition

Intuition

1: Pick Random Keys For Each Wire

- Next, evaluate <u>one gate</u> securely
 - Later, generalize to the entire circuit
- Alice picks two random keys for each wire
 - One key corresponds to "0", the other to "1"
 - 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

 Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

3: Send Garbled Truth Table

• Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
 - Alice's input is the two keys corresponding to Bob's wire
 - Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
 - For each wire in the circuit, Bob learns only one key
 - It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

• Bob does not tell her intermediate wire keys (why?)

Security (Semi-Honest Model)

- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n\in\mathbb{N}} \equiv_C \{S_A(n, x, f_A(x, y))\}_{n\in\mathbb{N}}$ $\{B_n\}_{n\in\mathbb{N}} \equiv_C \{S_B(n, y, f_B(x, y))\}_{n\in\mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's output $f_B(x, y)$)

Theorem (informal): If the oblivious transfer protocol is secure, and the underlying encryption scheme is CPA-secure then Yao's protocol is secure in the semi-honest adversary model.

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge
- If m gates in the circuit and n inputs from Bob, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!

Fully Malicious Security?

- 1. Alice could initially garble the wrong circuit C(x,y)=y.
- 2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
- 3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: $c_A = com(x, r_A)$ and $c_B = com(y, r_B)$.

- Alice and Bob can use zero-knowledge proofs to convince other party that they are behaving honestly.
- **Example**: After sending a message A Alice proves that the message she just sent is the same message an honest party would have sent with input x s.t. c_A=com(x,r_A)
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)

Fully Malicious Security

- Assume Alice and Bob have both committed to their input: c_A=com(x,r_A) and c_B=com(y,r_B).
 - Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)
 - Alice has c_B and can unlock c_A
 - Bob has c_A and can unlock c_B
- 1. Alice sets C_f = GarbleCircuit(f,r).
 - 1. Alice sends to Bob.
 - 2. Alice convinces Bob that C_f = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)
- 2. For each original oblivious transfer if Alice's inputs were originally x_0, x_1
 - 1. Alice and Bob run OT with y_0, y_1 where $y_i = Enc_k(x_i)$
 - 2. Bob uses a zero-knowledge proof to convince Alice that he received the correct y_i (e.g. matching his previous commitment c_B)
 - 3. Alice sends K to Bob who decrypts y_i to obtain x_i