Course Business

- Homework 4 Due Thursday in Class
- Bonus Problem (10 Points)
- Second bonus problem (5 pts) is easiest to solve with Mathematica
- https://sandbox.open.wolframcloud.com

Cryptography CS 555

Week 13:

- El Gamal
- RSA Attacks and Fixes
- Digital Signatures

Readings: Katz and Lindell Chapter 10 \& Chapter 11.1-11.2, 11.4

Week 13 Topic 1: El-Gamal Encryption

El-Gamal Encryption

- Public Key: g, h
- Secret Key: $x=\operatorname{dlog}_{g}(h)$
- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$
- $\operatorname{Dec}_{\mathrm{sk}}\left(c=\left(c_{1}, c_{2}\right)\right)=c_{2} c_{1}^{-x}$

$$
\begin{gathered}
\operatorname{Dec}_{\mathrm{sk}}\left(g^{y}, m \cdot h^{y}\right)=m \cdot h^{y}\left(g^{y}\right)^{-x} \\
=m \cdot h^{y}\left(g^{y}\right)^{-x} \\
=m \cdot\left(g^{x}\right)^{y}\left(g^{y}\right)^{-x} \\
=m \cdot g^{x y} g^{-x y} \\
=m
\end{gathered}
$$

El-Gamal Encryption

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$
- $\operatorname{Dec}_{\mathrm{sk}}\left(c=\left(c_{1}, c_{2}\right)\right)=c_{2} c_{1}^{-x}$

Theorem 11.18: Let $\Pi=$ (Gen, Enc, Dec) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure. Proof: Recall that CPA-security and eavesdropping security are equivalent for public key crypto. Therefore, it suffices to show that for all PPT A there is a negligible function negl such that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right] \leq \frac{1}{2}+\operatorname{neg}(\mathrm{n})
$$

Eavesdropping Security $\left(\operatorname{PubK}_{A, \Pi}^{\mathrm{eav}}(\mathrm{n})\right)$
Public Key: pk

$$
m_{0}, m_{1} \quad \boldsymbol{c}_{1}=\operatorname{Enc}_{\boldsymbol{p} \boldsymbol{k}}\left(\boldsymbol{m}_{\boldsymbol{b}}\right)
$$

$\forall P P T A \exists \mu$ (negligible) s.t

Random bit b (pk,sk) = Gen(.)

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right] \leq \frac{1}{2}+\mu(n)
$$

El-Gamal Encryption

Theorem 11.18: Let $\Pi=$ (Gen, Enc, Dec) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure. Proof: First introduce an `encryption scheme' $\widetilde{\Pi}$ in which $\overline{\text { Enc }_{\text {pk }}}(m)=$ $\left\langle g^{y}, m \cdot g^{z}\right\rangle$ for random $\mathrm{y}, \mathrm{z} \in \mathbb{Z}_{q}$ (there is actually no way to do decryption, but the experiment $\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\text {eav }}(\mathrm{n})$ is still well defined).

Claim: $\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \widetilde{\Pi}}^{\text {eav }}(\mathrm{n})=1\right]=\frac{1}{2}$

El-Gamal Encryption

Claim: $\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\text {eav }}(\mathrm{n})=1\right]=\frac{1}{2}$
Proof: (using Lemma 11.15)

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\text {eav }}(\mathrm{n})=1\right] \\
&= \frac{1}{2} \operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \tilde{\Pi}}^{\text {eav }}(\mathrm{n})=1 \mid b=1\right] \\
&=\frac{1}{2}+\frac{1}{2}\left(1-\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \tilde{\Pi}}^{\text {eav }}(\mathrm{n})=0 \mid b=0\right]\right) \\
& \operatorname{Pr}_{\mathrm{y}, \mathrm{z} \leftarrow \mathbb{Z}_{q}}\left[A\left(\left\langle g^{y}, m_{1} \cdot g^{z}\right\rangle\right)\right.\left.=1]-\operatorname{Pr}_{\mathrm{y}, \mathrm{z} \leftarrow \mathbb{Z}_{q}}\left[A\left(\left\langle g^{y}, m_{0} \cdot g^{z}\right\rangle\right)=1\right]\right) \\
&=\frac{1}{2}
\end{aligned}
$$

El-Gamal Encryption

Theorem 11.18: Let $\Pi=$ (Gen, Enc, Dec) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure. Proof: We just showed that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\mathrm{eav}}(\mathrm{n})=1\right]=\frac{1}{2}
$$

Therefore, it suffices to show that

$$
\left|\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right]-\operatorname{Pr}\left[\operatorname{PubK} \mathrm{A}_{\mathrm{A}, \tilde{\Pi}}^{\text {eav }}(\mathrm{n})=1\right]\right| \leq \operatorname{negl}(n)
$$

This, will follow from DDH assumption.

El-Gamal Encryption

Theorem 11.18: Let $\Pi=$ (Gen, Enc, $D e c$) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure.
Proof: We can build $B\left(g^{x}, g^{y}, Z\right)$ to break DDH assumption if Π is not CPA-Secure. Simulate eavesdropping attacker A

1. Send attacker public key $\mathrm{pk}=\left\langle\mathbb{G}, q, g, h=g^{x}\right\rangle$
2. Receive m_{0}, m_{1} from A.
3. Send A the ciphertext $\left\langle g^{y}, m_{b} \cdot Z\right\rangle$.
4. Output 1 if and only if attacker outputs $\mathrm{b}^{\prime}=\mathrm{b}$; otherwise output 0 .

$$
\begin{gathered}
\left|\operatorname{Pr}\left[B\left(g^{x}, g^{y}, Z\right)=1 \mid Z=g^{x y}\right]-\operatorname{Pr}\left[B\left(g^{x}, g^{y}, Z\right)=1 \mid Z=g^{z}\right]\right| \\
=\left|\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right]-\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \widetilde{\Pi}}^{\text {eav }}(\mathrm{n})=1\right]\right| \\
=\left|\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\text {eav }}(\mathrm{n})=1\right]-1 / 2\right|
\end{gathered}
$$

El-Gamal Encryption

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $h=g^{x}$,
- $\operatorname{Dec}_{\mathrm{sk}}\left(c=\left(c_{1}, c_{2}\right)\right)=c_{2} c_{1}^{-x}$

Fact: El-Gamal Encryption is malleable.

$$
\begin{gathered}
\mathrm{c}=\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle \\
c^{\prime}=\left\langle g^{y}, 2 \cdot m \cdot h^{y}\right\rangle \\
\operatorname{Dec}_{\mathrm{sk}}\left(c^{\prime}\right)=2 \cdot m \cdot h^{y} \cdot g^{-x y}=2 m
\end{gathered}
$$

Hint: This observation may be relevant for homework 4.

Key Encapsulation Mechanism (KEM)

- Three Algorithms
- Gen $\left(1^{n}, R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: $(\boldsymbol{p} \boldsymbol{k}, s \boldsymbol{k}) \in \mathcal{K}$
- Encaps $\mathrm{pk}\left(1^{n}, R\right)$
- Input: security parameter, random bits R
- Output: Symmetric key $\mathrm{k} \in\{0,1\}^{\ell(n)}$ and a ciphertext c
- $\operatorname{Decaps}_{\mathrm{sk}}(c)$ (Deterministic algorithm)
- Input: Secret key sk $\in \mathcal{K}$ and a ciphertex c
- Output: a symmetric $\operatorname{key}\{0,1\}^{\ell(n)}$ or \perp (fail)
- Invariant: $\operatorname{Decaps}_{\mathrm{sk}}(\mathrm{c})=\mathrm{k}$ whenever $(\mathrm{c}, \mathrm{k})=\operatorname{Encaps}_{\mathrm{pk}}\left(1^{n}, R\right)$

KEM CCA-Security ($\operatorname{KEM}_{\mathrm{A}, \Pi}^{\mathrm{cca}}(\mathrm{n})$)

KEM from RSA and El-Gamal

- Recap: CCA-Secure KEM from RSA in Random Oracle Model
- El-Gamal also yields CCA-Secure KEM in Random Oracle Model
- $\left(\boldsymbol{g}^{y}, \boldsymbol{H}\left(\boldsymbol{h}^{y}\right)\right) \leftarrow \operatorname{Encaps}_{\mathrm{pk}}\left(\mathbf{1}^{\boldsymbol{n}} ; \boldsymbol{R}\right)$ and $\operatorname{Decaps}_{\mathrm{sk}}\left(\boldsymbol{g}^{y}\right)=\boldsymbol{H}\left(\boldsymbol{g}^{x y}\right)$
- CDH assumption must hold.
- Above construction is also a CPA-Secure KEM in standard model
- As long as $P r_{x \in \mathbb{G}}[H(x)=k] \approx 2^{-\ell}$ for each key $k \in\{0,1\}^{\ell}$ and $\boldsymbol{D D H}$ holds
- Disadvantage: weaker security notion for KEM, stronger DDH assumption
- Advantage: Proof in standard model

CCA-Secure Variant in Random Oracle Model

- Key Generation (Gen(1 $\left.1^{n}\right)$):

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain a cyclic group \mathbb{G} of order $\mathrm{q}($ with $\|q\|=n$) and a generator g such that $\langle\mathrm{g}\rangle=\mathbb{G}$.
2. Choose a random $\mathrm{x} \in \mathbb{Z}_{q}$ and set $h=g^{x}$
3. Public Key: $\mathrm{pk}=\langle\mathbb{G}, q, g, h\rangle$
4. Private Key: sk $=\langle\mathbb{G}, q, g, x\rangle$

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{K_{M}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ where

$$
K_{E} \| K_{M}=H\left(h^{y}\right) \quad \text { (KEM) }
$$

and

$$
c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m) \quad(\text { Encrypt then MAC })
$$

CCA-Secure Variant in Random Oracle Model

Public Key: pk $=\langle\mathbb{G}, q, g, h\rangle$
Private Key: sk $=\langle\mathbb{G}, q, g, x\rangle$

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{K_{M}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M}=$ $H\left(h^{y}\right)$ and $c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m)$
- $\operatorname{Dec}_{\text {sk }}\left(\left\langle c, c^{\prime}, t\right\rangle\right)$

1. $K_{E} \| K_{M}=H\left(c^{x}\right)$
2. If $\operatorname{Vrfy}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}, t\right) \neq 1$ or $c \notin \mathbb{G}$ output \perp; otherwise output $\operatorname{Dec}_{\mathrm{K}_{\mathrm{E}}}^{\prime}\left(c^{\prime}\right)$

CCA-Secure Variant in Random Oracle Model

Theorem: If $\mathrm{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}$ is CPA-secure, $\mathrm{Mac}_{\mathrm{K}_{\mathrm{M}}}$ is a strong MAC and a problem called gap-CDH is hard then this a CCA-secure public key encryption scheme in the random oracle model.

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M}=$ $H\left(h^{y}\right)$ and $c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m)$
- $\operatorname{Dec}_{\text {sk }}\left(\left\langle c, c^{\prime}, t\right\rangle\right)$

1. $K_{E} \| K_{M}=H\left(c^{x}\right)$
2. If $\operatorname{Vrfy}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}, t\right) \neq 1$ or $c \notin \mathbb{G}$ output \perp; otherwise output $\operatorname{Dec}_{\mathrm{K}_{\mathrm{E}}}^{\prime}\left(c^{\prime}\right)$

CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2 standard for public-key encryption.

- Diffie-Hellman Integrated Encryption Scheme (DHIES)
- Elliptic Curve Integrated Encryption Scheme (ECIES)
- $\operatorname{Enc}_{\mathrm{ppk}_{k}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M}=$ $H\left(h^{y}\right)$ and $c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m)$
- $\operatorname{Dec}_{\text {sk }}\left(\left\langle c, c^{\prime}, t\right\rangle\right)$

1. $K_{E} \| K_{M}=H\left(c^{x}\right)$
2. If $\operatorname{Vrfy}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}, t\right) \neq 1$ or $c \notin \mathbb{G}$ output \perp; otherwise output $\operatorname{Dec}_{\mathrm{K}_{\mathrm{E}}}^{\prime}\left(c^{\prime}\right)$

Week 13: Topic 2: More RSA Attacks + Fixes

Recap

- CPA/CCA Security for Public Key Crypto
- Key Encapsulation Mechanism
- El-Gamal

Recap

- Plain RSA
- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 $\bmod \phi(N)$

$$
\begin{aligned}
\operatorname{Enc}_{p k}(m) & =m^{e} \bmod N \\
\operatorname{Dec}_{s k}(c) & =c^{d} \bmod N
\end{aligned}
$$

- Decryption Works because $\left[c^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(N)]} \bmod \mathrm{N}\right]=[m \bmod \mathrm{~N}]$

(Review) Attacks on Plain RSA

- We have not introduced security models like CPA-Security or CCA-security for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic. \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- Plain RSA is also highly vulnerable to chosen-ciphertext attacks
- Attacker intercepts ciphertext c of secret message m
- Attacker generates ciphertext c' for secret message $2 m$
- Attacker asks for decryption of c^{\prime} to obtain $2 m$
- Divide by 2 to recover original message m

(Review) More Plain RSA Attacks

- Encrypted messages with low entropy are vulnerable to a brute-force attack.
- If $m<B$ then attacker can recover m after at most B queries to encryption oracle (using public key)
- In fact, there is an attack that runs in time $T=B^{\frac{1}{2}+\varepsilon}$
- Coppersmith Attacks
- Recover partially known message m from ciphertext (when e is small)
- Factor $\mathrm{N}=\mathrm{pq}$ when we have good estimate $\tilde{p} \approx p$

More Attacks: Encrypting Related Messages

- Sender encrypts m and $m+\delta$, where offset δ is known to attacker
- Attacker intercepts

$$
c_{1}=\operatorname{Enc}_{p k}(m)=m^{e} \bmod N
$$

and

$$
c_{2}=\operatorname{Enc}_{p k}(m+\delta)=(m+\delta)^{e} \bmod N
$$

- Attacker defines polynomials

$$
f_{1}(x)=x^{e}-c_{1} \bmod N
$$

and

$$
f_{2}(x)=(x+\delta)^{e}-c_{2} \bmod N
$$

More Attacks: Encrypting Related Messages

$$
\begin{gathered}
c_{1}=\mathrm{Enc}_{p k}(m)=m^{e} \bmod N \\
c_{2}=\mathrm{Enc}_{p k}(m+\delta)=(m+\delta)^{e} \bmod N
\end{gathered}
$$

- Attacker defines polynomials

$$
f_{1}(x)=x^{e}-c_{1} \bmod N
$$

and

$$
f_{2}(x)=(x+\delta)^{e}-c_{2} \bmod N
$$

- Both polynomials have a root at $\mathrm{x}=\mathrm{m}$, thus ($\mathrm{x}-\mathrm{m}$) is a factor of both polynomials
- The GCD operation can be extended to operate over polynomials $)$
- $\operatorname{GCD}\left(f_{1}(x), f_{2}(x)\right)$ reveals the factor ($x-m$), and hence the message m

Sending the Same Message to Multiple Receivers

- Homework 4 Bonus Question
- $e=3$
- $\mathrm{c}_{1}=\left[m^{3} \bmod N_{1}\right]$
- $\mathrm{c}_{2}=\left[m^{3} \bmod N_{2}\right]$
- $\mathrm{c}_{2}=\left[m^{3} \bmod N_{3}\right]$
- Attacker receives all ($\mathrm{e}=3$) ciphexts (sent to Alice, Bob and Jane) and can recover m.
- Homework 4 Hint: The solution involves the Chinese Remainder Theorem

Apply GCD to Pairs of RSA Moduli?

- Fact: If we pick two random RSA moduli N_{1} and N_{2} then except with negligible probability $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$
- In theory the attack shouldn't work, but...
- In practice, many people generated RSA moduli using weak pseudorandom number generators.
- . 5% of TLS hosts
- . 03% of SSH hosts
- See https://factorable.net

Dependent Keys Part 1

- Suppose an organization generates $N=p q$ and a pair $\left(e_{i}, d_{i}\right)$ for each employee i subject to the constraints $\mathrm{e}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=1 \bmod \phi(N)$.
- Question: Is this secure?
- Answer: No, given $\mathrm{e}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$ employee i can factor N (and then recover everyone else's secret key).
- See Theorem 8.50 in the textbook

Dependent Keys Part 2

- Suppose an organization generates $N=p q$ and a pair $\left(e_{i}, d_{i}\right)$ for each employee i subject to the constraints $\mathrm{e}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=1 \bmod \phi(N)$.
- Suppose that each employee is trusted (so it is ok if employee i factors N)
- Suppose that a message m is encrypted and sent to employee 1 and 2.
- Attacker intercepts $\mathrm{c}_{1}=\left[m^{e_{1}} \bmod N\right]$ and $\mathrm{c}_{2}=\left[m^{e_{2}} \bmod N\right]$

Dependent Keys Part 2

- Suppose an organization generates $\mathrm{N}=\mathrm{pq}$ and a pair $\left(\mathrm{e}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right)$ for each employee i subject to the constraints $\mathrm{e}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=1 \bmod \phi(N)$.
- Suppose that a message m is encrypted and sent to employee 1 and 2 .
- Attacker intercepts $\mathrm{c}_{1}=\left[m^{e_{1}} \bmod N\right]$ and $\mathrm{c}_{2}=\left[m^{e_{2}} \bmod N\right]$
- If $\operatorname{gcd}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)=1$ (which is reasonably likely) then attacker can run extended GCD algorithm to find X,Y such that $\mathrm{Xe}_{1}+\mathrm{Ye}_{2}=1$.

$$
\left[\mathrm{c}_{1}{ }^{X} c_{2}{ }^{Y} \bmod N\right]=\left[m^{X e_{1}} m^{Y e_{2}} \bmod N\right]=\left[m^{X e_{1}+Y e_{2}} \bmod N\right]=m
$$

RSA-OAEP
 (Optimal Asymmetric Encryption Padding)

- $\operatorname{Enc}_{\boldsymbol{p k}}(m ; r)=\left[(x \| y)^{e} \bmod N\right]$
- Where $x \| y \leftarrow \operatorname{OAEP}\left(m\left\|0^{k_{1}}\right\| r\right)$
- $\operatorname{Dec}_{s k}(c)=$
- $\widetilde{m} \leftarrow\left[(c)^{d} \bmod N\right]$
- If $\|\widetilde{m}\|>n$ return fail
- $m\|z\| r \leftarrow \operatorname{OAEP}^{-1}(\widetilde{m})$
- If $z \neq 0^{k_{1}}$ then output fail
- Otherwise output m

Recap RSA-Assumption

RSA-Experiment: RSA-INV $V_{A, n}$

1. Run KeyGeneration($1^{\text {n }}$) to obtain ($\mathbf{N}, \mathrm{e}, \mathrm{d}$)
2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
3. Attacker A is given $\mathrm{N}, \mathrm{e}, \mathrm{y}$ and outputs $\mathrm{x} \in \mathbb{Z}_{\mathrm{N}}^{*}$
4. Attacker wins $\left(\operatorname{RSA}-\mathrm{INV}_{A, n}=1\right)$ if $x^{e}=y \bmod \mathrm{~N}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\operatorname{RSA}-\mathrm{INV}_{A, n}=1\right] \leq \mu(n)
$$

RSA-OAEP

(Optimal Asymmetric Encryption Padding)

Theorem: If we model G and H as Random oracles then RSA-OAEP is a CCA-Secure public key encryption scheme (given RSA-Inversion assumption).

Bonus: One of the fastest in practice!

PKCS \#1 v2.0

- Implementation of RSA-OAEP
- James Manger found a chosen-ciphertext attack.
- What gives?

PKCS \#1 v2.0 (Bad Implementation)

- $\operatorname{Enc}_{\boldsymbol{p} \boldsymbol{k}}(m ; r)=\left[(x \| y)^{e} \bmod N\right]$
- Where $x \| y \leftarrow \operatorname{OAEP}\left(m\left\|0^{k_{1}}\right\| r\right)$
- $\operatorname{Dec}_{s k}(c)=$
- $\widetilde{m} \leftarrow\left[(c)^{d} \bmod N\right]$
- If $\|\widetilde{\boldsymbol{m}}\|>\boldsymbol{n}$ return Error Message 1
- $m\|z\| r \leftarrow \operatorname{OAEP}^{-1}(\widetilde{m})$
- If $\boldsymbol{Z} \neq \mathbf{0}^{\boldsymbol{k}_{1}}$ then output Error Message 2
- $\operatorname{Enn}_{p k}\left(m_{1}, r\right)=\left[(x \| y)^{e} \bmod N\right]$
- Wherex $\boldsymbol{\|} \| y+\operatorname{OAEP}\left(m\left\|0^{0}\right\| r\right)$
- $\operatorname{Dec}_{\text {sk }}(c)=$
- $\tilde{m} \leftarrow\left[(c)^{d} \bmod N\right]$

- $m\|z\| r-0 A E E^{-1}(\tilde{m})$
- $\| z=0^{k}$ then output Eroor Messyge 2
- Otherwise output m
- Otherwise output m

PKCS \#1 v2.0 (Attack)

- Manger's CCA-Attack recovers secret message
- Step 1: Use decryption oracle to check if $2 \widetilde{m} \geq 2^{n}$
- $c=\left[(\widetilde{m})^{e} \bmod N\right] \rightarrow 2^{e} c=\left[(2 \widetilde{m})^{e} \bmod N\right]$
- Requires $|\mid N \|$ queries to decryption oracle.
- Attack also works as a side channel attack
- Even if error messages are the same the time to respond could be different in each case.
- Fix: Implementation should return same error message and should make sure that the time to return each error is the same.

Week 13: Topic 3: Digital Signatures (Part 1)

Recap

- CPA/CCA Security for Public Key Crypto
- Key Encapsulation Mechanism
- EI-Gamal/RSA-OAEP

What Does It Mean to "Secure Information"

- Confidentiality (Security/Privacy)
- Only intended recipient can see the communication
- Integrity (Authenticity)
- The message was actually sent by the alleged sender

Encryption/MACs/Signatures

- (Public/Private Key) Encryption: Focus on Secrecy
- But does not promise integrity
- MACs/Digital Signatures: Focus on Integrity
- But does not promise secrecy
- Digital Signatures
- Public key analogue of MAC

Digital Signature: Application

- Verify updates to software package
- Vendor generates (sk,pk) for Digital Signature scheme and packages pk in the original software bundle
- An update \mathbf{m} should be signed by vendor using secret key $\mathbf{~ s k}$
- Security: Malicious party should not be able to generate signature for new update \mathbf{m}^{\prime}

Digital Signature vs MACs

- Application: Validate updates to software
- Problem can be addressed by MACs, but there are several problems
- Key Explosion: Vendor must sign update using every individual key
- Thought Question: Why not use a shared Private key?
- Non-Transferable: If Alice validates an update from vendor she can not convince Bob that the update is valid
- Bob needs to receive MAC directly from vendor

Digital Signatures vs MACs

- Publicly Verifiable
- Transferable
- Alice can forward digital signature to Bob, who is convinced (both Alice and Bob have the public key of the vendor)
- Non-repudiation
- Can "certify" a particular message came from sender
- MACs do not satisfy non-repudiation
- Suppose Alice reveals a shared key KAB along with a valid tag for a message m to a judge.
- The judge should not be convinced the message was MACed by Bob. Why not?

Digital Signature Scheme

- Three Algorithms
- Gen $\left(1^{n}, R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: $(p k, s k) \in \mathcal{K}$
- $\sigma \leftarrow \operatorname{Sign}_{\mathrm{sk}}(m, R)$ (Signing algorithmi)
- Input: Secret key sk message m, random bits n
- Output: signature σ
- $\mathrm{b}:=\operatorname{Vrfy}_{\mathrm{pk}}(m, \sigma)$ (Verification algorithm --- Deterministirn
- Input: Public key pk, message m and a signature σ
- Output: 1 (Valid) or 0 (Invalid)

Assumption: Adversary only gets to see pk (not sk)

- Correctness: $\operatorname{Vrfy}_{\mathrm{pk}}\left(\mathrm{m}, \operatorname{Sign}_{\mathrm{sk}}(m, R)\right)=1$ (except with negligible probability)

Signature Experiment (Sig - forge $_{\mathrm{A}, \Pi}(\mathrm{n})$)

Public Key: pk
Public Key: pk
(pk,sk) = Gen(.)

$$
\begin{gathered}
\forall P P T A \exists \mu(\text { negligible }) \text { s.t } \\
\operatorname{Pr}\left[\operatorname{Sig}-\text { forge }_{\mathrm{A}, \Pi}(\mathrm{n})=1\right] \leq \mu(n)
\end{gathered}
$$

Signature Experiment (Sig - forge ${ }_{\wedge-}(\eta)$)

Formally, let $\Pi=$ (Gen, Sign, Vrfy) denote the signature scheme, call the experiment Sig - forge $_{\mathrm{A}, \Pi}(\mathrm{n})$

We say that Π is existentially unforgeable under an adaptive chosen message attack (or just secure) if for all PPT adversaries A, there is a negligible function μ such that

$$
\operatorname{Pr}\left[\operatorname{Sig}-\operatorname{forge}_{\mathrm{A}, \Pi}(n)=1\right] \leq \mu(n)
$$

Existential Unforgeability

- Limitation: Does not prevent replay attacks
- $\sigma \leftarrow \operatorname{Sign}_{\mathrm{sk}}($ "Pay Bob $\$ 50$ ", R)
- If this is a problem then you can include timestamp in signature
- Unforgeability: does rule out the possibility attacker modifies a signature
- Plain RSA signatures are malleable (does not satisfy our security notion)
- Remark: By design signatures cannot hide all information about message m
- Public Verification \rightarrow Attacker can easily distinguish between a signature for m_{1} and m_{2}

Plain RSA Signatures

- Plain RSA
- Public Key (pk): $\mathrm{N}=\mathrm{pq}, \mathrm{e}$ such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 $\bmod \phi(N)$

$$
\begin{gathered}
\operatorname{Sign}_{s k}(m)=m^{d} \bmod N \\
\operatorname{Vrfy}_{p k}(m, \sigma)=\left\{\begin{array}{lr}
1 & \text { if } m=\left[\sigma^{e} \bmod N\right] \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

- Verification Works because
$\left[\operatorname{Sign}_{\boldsymbol{s k}}(\boldsymbol{m})^{e} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(\boldsymbol{N})]} \bmod \mathrm{N}\right]=m$

No Message Attack

- Goal: Generate a forgery using only the public key
- No intercepted signatures required
- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Pick random $\sigma \in \mathbb{Z}_{\mathrm{N}}^{*}$
- Set $\boldsymbol{m}=\left[\sigma^{e} \bmod \boldsymbol{N}\right]$.
- Output (m, σ)

$$
\operatorname{Vrfy}_{p k}(m, \sigma)=\left\{\begin{array}{rr}
1 & \text { if } m=\left[\sigma^{e} \bmod N\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

Hash and Sign Paradigm

- Public-Key vs Private Key Encryption
- Private Key Encryption is much more efficient (computationally)
- Similarly, natural signature schemes (e.g., RSA signatures) are much less efficient than MACs
- For long messages we can achieve same (amortized) efficiency

Hash and Sign Paradigm

- Suppose we have a Digital Signature Scheme for messages of length $\ell(n)$ and we want to sign a longer message $m \in\{0,1\}^{*}$.
- Attempt 1:

$$
\begin{gathered}
\operatorname{Sign}_{\mathrm{sk}}^{*}\left(m_{1}, m_{2}, \ldots, m_{k}, R_{1}, \ldots, R_{k}\right)= \\
\operatorname{Sign}_{\mathrm{sk}}\left(m_{1}, R_{1}\right), \ldots, \operatorname{Sign}_{\mathrm{sk}}\left(m_{k}, R_{k}\right)
\end{gathered}
$$

- Problem?

Hash and Sign Paradigm

- Suppose we have a Digital Signature Scheme for messages of length $\ell(n)$ and we want to sign a longer message $m \in\{0,1\}^{*}$.

$$
\begin{array}{r}
\operatorname{Sign}_{\langle\mathrm{sk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m_{k}, R\right)=\operatorname{Sign}_{\mathrm{sk}}\left(H\left(m_{1}, m_{2}, \ldots, m_{k}\right), R\right) \\
\operatorname{Vrfy}_{\langle\mathrm{pk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m_{k}, \sigma\right)=\operatorname{Vrfy}_{\mathrm{pk}}\left(H^{s}\left(m_{1}, m_{2}, \ldots, m_{k}\right), \sigma\right)
\end{array}
$$

- Secure?

Hash and Sign Paradigm

- Suppose we have a Digital Signature Scheme for messages of length $\ell(n)$ and we want to sign a longer message $m \in\{0,1\}^{*}$.

$$
\begin{aligned}
& \operatorname{Sign}_{\langle\mathrm{sk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m_{k}, R\right)=\operatorname{Sign}_{\mathrm{sk}}\left(H^{s}\left(m_{1}, m_{2}, \ldots, m_{k}\right), R\right) \\
& \operatorname{Vrfy}_{\langle\mathrm{pk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m_{k}, \sigma\right)=\operatorname{Vrfy}_{\mathrm{pk}}\left(H^{S}\left(m_{1}, m_{2}, \ldots, m_{k}\right), \sigma\right)
\end{aligned}
$$

- Secure?

Theorem 12.4. If $\Pi=$ (Gen, Sign, Vrfy) is a secure signature scheme for messages of length $\ell(n)$ and Π_{H} is collision resistant then the above construction is a secure signature scheme for arbitrary length messages.

Hash and Sign Paradigm

- Suppose we have a Digital Signature Scheme for messages of length $\ell(n)$ and we want to sign a longer message $m \in\{0,1\}^{*}$.

$$
\begin{aligned}
\operatorname{Sign}_{\langle\mathrm{sk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m_{k}, R\right) & =\operatorname{Sign}_{\mathrm{sk}}\left(H^{S}\left(m_{1}, m_{2}, \ldots, m k\right), R\right) \\
\operatorname{Vrfy}_{\langle\mathrm{pk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m k, \sigma\right) & =\operatorname{Vrfy}_{\mathrm{pk}}\left(H^{S}\left(m_{1}, m_{2}, \ldots, m k\right), \sigma\right)
\end{aligned}
$$

Theorem 12.4. If $\Pi=$ (Gen, Sign, Vrfy) is a secure signature scheme for messages of length $\ell(n)$ and Π_{H} is collision resistant then the above construction is a secure signature scheme for arbitrary length messages.
Proof Sketch: If attacker wins security game with $\operatorname{Sign}_{\langle s k, s\rangle}^{*}$ then he outputs message $m \notin \mathfrak{Q}$ such that $\operatorname{Vrfy}_{\langle p k, s\rangle}^{*}(m, \sigma)$

Hash and Sign Paradigm

- Suppose we have a Digital Signature Scheme for messages of length $\ell(n)$ and we want to sign a longer message $m \in\{0,1\}^{*}$.

$$
\left.\begin{array}{rl}
\operatorname{Sign}_{\langle s k, s\rangle}^{*} & \left(m_{1}, m_{2}, \ldots, m_{k}, R\right) \\
\operatorname{Vrfy}_{\langle\mathrm{pk}, s\rangle}^{*}\left(m_{1}, m_{2}, \ldots, m k, \sigma\right) & =\operatorname{Sign}_{\mathrm{sk}}\left(H^{s}\left(m_{1}, m_{2}, \ldots, m k\right), R\right) \\
\mathrm{pk}
\end{array} H^{s}\left(m_{1}, m_{2}, \ldots, m k\right), \sigma\right),
$$

Theorem 12.4. If $\Pi=$ (Gen, Sign, Vrfy) is a secure signature scheme for messages of length $\ell(n)$ and Π_{H} is collision resistant then the above construction is a secure signature scheme for arbitrary length messages.
Proof Sketch: If attacker wins security game with $\operatorname{Sign}_{\langle s k, s\rangle}^{*}$ then he outputs message $m \notin$ \mathfrak{Q} such that $\operatorname{Vrfy}_{\langle p k, s\rangle}^{*}(m, \sigma)$

- Case 1: $\mathrm{H}(\mathrm{m})=\mathrm{H}\left(\mathrm{m}^{\prime}\right)$ for some $m^{\prime} \notin \mathfrak{Q}$
\rightarrow break collision-resistance
- Case 2: $\mathrm{H}(\mathrm{m}) \neq \mathrm{H}\left(\mathrm{m}^{\prime}\right)$ for all $m^{\prime} \notin \mathfrak{Q}$
\rightarrow (break security of underlying signature scheme Π)

RSA-FDH

- Full Domain Hash: $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}^{*}$
- Given a message $m \in\{0,1\}^{*}$

$$
\sigma=\operatorname{Sign}_{s k}(m)=H(m)^{d} \bmod N
$$

Theorem 12.7: RSA-FDH is a secure signature scheme assuming that the RSA-Inversion problem is hard and H is modeled as a random oracle.

Remark: The domain of H (e.g.,SHA3) may be shorter than \mathbb{Z}_{N}^{*}. Solution: Repeated application of H .

RSA-FDH

- Full Domain Hash: $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}^{*}$
- Given a message $m \in\{0,1\}^{*}$

$$
\sigma=\operatorname{Sign}_{s k}(m)=H(m)^{d} \bmod N
$$

Theorem 12.7: RSA-FDH is a secure signature scheme assuming that the RSA-Inversion problem is hard and H is modeled as a random oracle.
Proof Sketch: Given an RSA-Inversion challenge $\mathrm{c}=r^{e} \bmod N$ we will program the value $H(m)=c \in \mathbb{Z}_{N}^{*}$ into the random oracle to trick the signature attacker into revealing $\operatorname{Sign}_{s k}(m)=r^{e d}=r \bmod N$.

One-Time Signature Scheme

- Weak notion of one-time secure signature schemes
- Attacker makes one query to oracle $\operatorname{Sign}_{\text {sk }}($.$) and then attempts to output$ forged signature for m^{\prime}
- If attacker sees two different signatures then guarantees break down
- Achievable from Hash Functions
- No number theory!
- No Random Oracles!

Lamport's Signature Scheme (from OWFs)

$$
\begin{gathered}
s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
p k=\left[\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right] \\
x_{i, j} \in\{0,1\}^{n} \text { (uniform) } \\
y_{i, j}=f\left(x_{i, j}\right)
\end{gathered}
$$

Assumption: f is a One-Way Function

Lamport's Signature Scheme (from OWFs)

$$
\begin{aligned}
& s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
& p k=\left[\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right]
\end{aligned}
$$

$\operatorname{Sign}_{s k}(011)=\left(x_{1,0}, x_{2,1}, x_{3,1}\right)$

Lamport's Signature Scheme (from OWFs)

$$
\begin{aligned}
s k & =\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
p k & =\left[\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{Sign}_{s k}(011)=\left(x_{1,0}, x_{2,1}, x_{3,1}\right)
$$

$\operatorname{Vrfy}_{p k}\left(011,\left(x_{1}, x_{2}, x_{3}\right)\right)= \begin{cases}1 & \text { if } f\left(x_{1}\right)=y_{1,0} \wedge f\left(x_{2}\right)=y_{2,1} \wedge f\left(x_{3}\right)=y_{3,1} \\ 0 & \text { otherwise }\end{cases}$

Lamport's Signature Scheme

Theorem 12.16: Lamport's Signature Scheme is a secure one-time signature scheme (assuming f is a one-way function).

Proof Sketch: Signing a fresh message requires inverting $f\left(x_{i, j}\right)$ for random $x_{i, j}$.

Remark: Attacker can break scheme if he can request two signatures.

> How?
> \quad Request signatures of both 0^{n} and 1^{n}.

Lamport's Signature Scheme

Remark: Attacker can break scheme if he can request two signatures.
How?
Request signatures of both 0^{n} and 1^{n}.

$$
\begin{gathered}
s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
\operatorname{Sign}_{s k}(000)=\left(x_{1,0}, x_{2,0}, x_{3,0}\right) \\
\operatorname{Sign}_{s k}(111)=\left(x_{1,1}, x_{2,1}, x_{3,1}\right)
\end{gathered}
$$

Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant hash functions.

- Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme П which is existentially unforgeable under an adaptive chosen message attacks using the minimal assumption that one-way functions exist.

