
Midterm Exam Stats

View Your Graded Exam on Gradescope (link by e-mail)

• Maximum: 97
• Minimum: 61
• Mean: 75.85
• Median: 77.2
• Standard Deviation: 9.1

Reminder: Homework 3 Released
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Recap

• Polynomial time algorithms (in bit lengths 𝒂𝒂 , 𝒃𝒃 and 𝐍𝐍 ) to do 
important stuff

• GCD(a,b)
• Find multiplicative inverse a-1 of a such that 1=[aa-1 mod N]   (if it exists)

• Note: a-1 exists if and only if GCD(a,N) = 1 i.e. 𝑎𝑎 ∈ ℤ
N

∗.
• Extended Euclidean Algorithm: Finds integers x,y s.t. ax+Ny =GCD(a,N).
• Define: a-1 =[x mod N] and observe [aa-1 mod N]=[ax-Ny mod N] = GCD(a,N)=1.

• PowerMod: [ab mod N]
• Draw uniform sample from ℤ

𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1
• Randomized PPT algorithm
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More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have 

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9 mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1
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More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let N = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑁𝑁�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a 

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑁𝑁�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 0: Let p be a prime so that ℤ
p
∗ = 1, … , 𝑝𝑝 − 1

𝝓𝝓 𝒑𝒑 = 𝑝𝑝 1 −
1
𝑝𝑝

= 𝑝𝑝 − 1
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑁𝑁�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 1: N = 9 = 32     (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3
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More Useful Facts

Example 1: N = 9 = 32     (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3

Double Check: ℤ
9
∗ = 1,2,4,5,7,8
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct 
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8
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More Useful Facts

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8

Double Check: ℤ
15
∗ = 1,2,4,7,8,11,13,14

I count 8 elements in ℤ
15
∗
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More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a 

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1
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More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many elements 

are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Double Counting? N=pq is in both lists. Any other duplicates?
• No! cq = dp q divides d (since, gcd(p,q)=1) and consequently d ≥ 𝑞𝑞

• Hence, dp ≥ 𝑝𝑝𝑝𝑝 = 𝑁𝑁
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More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many 

elements are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Answer: p+q-1 elements are not in ℤ

N
∗

𝝓𝝓 𝑵𝑵 = 𝑵𝑵− 𝒑𝒑 + 𝒒𝒒 − 𝟏𝟏
= 𝐩𝐩𝐩𝐩 − 𝐩𝐩 − 𝐪𝐪 + 𝟏𝟏 = (𝐩𝐩 − 𝟏𝟏)(𝐪𝐪 − 𝟏𝟏)
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Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over 
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have 

g ∘ e = g = e ∘ g
• (Inverses:) For each element  g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.  

We say that h is the inverse of g. 
• (Associativity: ) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if 
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g
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Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?
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Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a, since [ax mod N] = [1-bN mod N] = 1
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Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Closure?

• Recall that 𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗ (see proof from last week)
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Groups

Lemma 8.13: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) and let 
a, b, c ∈ 𝔾𝔾. If a ∘ c = b ∘ c then a = b.

Proof Sketch: Apply the unique inverse to 𝑐𝑐−1 both sides.
a ∘ c = b ∘ c  a ∘ c ∘ 𝑐𝑐−1= b ∘ c ∘ 𝑐𝑐−1

 a ∘ c ∘ 𝑐𝑐−1 = b ∘ c ∘ 𝑐𝑐−1

 a ∘ 𝑒𝑒 = b ∘ 𝑒𝑒
 a = b

(Remark: it is not to difficult to show that a group has a unique identity and 
that inverses are unique).
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Group Exponentiation

Definition: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) 
let m be a positive integer and let g ∈ 𝔾𝔾 be a group element 
then we define

𝑔𝑔𝑚𝑚 ≔ g ∘ ⋯ ∘ g

Theorem: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let g ∈
𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

18
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Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let 
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim 
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Why? If 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔 = 𝑔𝑔𝑗𝑗 ∘ 𝑔𝑔 then 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖 (by Lemma 8.13)
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Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let 
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim 
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Because 𝔾𝔾 is abelian we can re-arrange terms
1 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔𝑚𝑚 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔𝑚𝑚

By Lemma 8.13 we have 1 = 𝑔𝑔𝑚𝑚.                                       QED
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Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let 
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the 
unique identity of 𝔾𝔾). 

Corollary 8.15: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 > 1
and let g ∈ 𝔾𝔾 be a group element then for any integer x we 
have 𝑔𝑔𝑥𝑥 = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚]. 
Proof: 𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑞𝑞𝑞𝑞+[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚] = 1 × 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚], where q is 
unique integer such that x=qm+ [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚]
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Group Exponentiation

Special Case: ℤ
𝑁𝑁

∗ is a group of size 𝝓𝝓 𝑵𝑵 so we have now 
proved

Corollary 8.22: For any 𝑔𝑔 ∈ ℤ
N

∗ and integer x we have 

𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N
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Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse 𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓 𝑦𝑦 = [𝑥𝑥 + 𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 + 𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥
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Chinese Remainder Theorem

Application of CRT: Faster computation modulo N=pq.

Example: Compute [1153 mod 15]
f(11)=([-1 mod 3],[1 mod 5])
f(1153) =([(-1)53 mod 3],[153 mod 5])= (-1,1)

𝑓𝑓−1(-1,1)=11

Thus, 11=[1153 mod 15]
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Cryptography
CS 555

Week 10: 
• RSA
• Attacks on Plain RSA
• Discrete Log/DDH
Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

25Fall 2018



CS 555: Week 10: Topic 1
Finding Prime Numbers, RSA
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RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: …

Question: How do we accomplish step one?
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Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail

29

Can we do this in 
polynomial time?



Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail

30

Assume for now that we can run isPrime(p). What are the 
odds that the algorithm fails?

On each iteration the probability that p is not a prime is  
1 − 1

3𝑛𝑛

We fail if we pick a non-prime in all 3n2 iterations. The 
probability of failure is at most  

1 −
1
3𝑛𝑛

3𝑛𝑛2

= 1 −
1
3𝑛𝑛

3𝑛𝑛
𝑛𝑛

≤ 𝑒𝑒−𝑛𝑛



isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in 𝑝𝑝 .

Theory: Deterministic algorithm to test for primality. 
• See breakthrough paper “Primes is in P”

Practice: Miller-Rabin Test (randomized algorithm)
• Guarantee 1: If p is prime then the test outputs YES
• Guarantee 2: If p is not prime then the test outputs NO except with 

negligible probability. 

31https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf


The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a ∈ {1,…,N−1} we have 𝑎𝑎𝑁𝑁−1 = 𝑎𝑎𝜙𝜙 𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm 
outputs “composite” with probability

1 − 2−𝑡𝑡

33

Need a bit of extra work to 
handle Carmichael 

numbers (see textbook).



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Lemma: If p is prime and
𝑥𝑥2 = 1 mod p then

𝑥𝑥 = ±1 mod p



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Observe: 

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

𝑎𝑎2𝑖𝑖𝑢𝑢
𝟐𝟐
− 𝟏𝟏

= 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏 + 𝟏𝟏



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Observe: 

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

If N is prime we won’t return composite
𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑟𝑟−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

= ⋯ = 𝑎𝑎2𝑟𝑟−2𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−2𝑢𝑢 + 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Observe: 

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

If N is prime we won’t return composite

𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = ⋯ = 𝑎𝑎𝑢𝑢 − 𝟏𝟏 �
𝒊𝒊=𝟎𝟎

𝒓𝒓−𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 + 𝟏𝟏

One of the factors must be 0 
(mod N)



Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁 )=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁 ]      (secret key)
Return: N, e, d

• How do we find d? 
• Answer: Use extended gcd algorithm to find e-1mod 𝜙𝜙 𝑁𝑁 .
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Be Careful Where You Get Your “Random Bits!”

• RSA Keys Generated with weak PRG
• Implementation Flaw
• Unfortunately Commonplace

• Resulting Keys are Vulnerable
• Sophisticated Attack
• Coppersmith’s Method

40
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)



(Plain) RSA Encryption

• Public Key: PK=(N,e)
• Message m ∈ ℤ

N EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

• Remark: Encryption is efficient if we use the power mod algorithm.
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(Plain) RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑑𝑑 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

DecSK(c) = 𝑚𝑚𝑒𝑒 𝑑𝑑 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒 mod N
= 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ] mod N

= 𝑚𝑚1 mod N = 𝑚𝑚
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RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑑𝑑 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Remark 3: Even if m ∈ ℤ
N
− ℤ

N

∗ and let c = EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Use Chinese Remainder Theorem to show this 
𝑒𝑒𝑒𝑒 = 1 + 𝑘𝑘 𝑝𝑝 − 1 𝑞𝑞 − 1

→ f 𝑐𝑐𝑑𝑑 = 𝑚𝑚𝑒𝑒𝑒𝑒 mod p , 𝑚𝑚𝑒𝑒𝑒𝑒 mod q = 𝑚𝑚1 mod p , 𝑚𝑚1 mod q
→ 𝑓𝑓−1 f 𝑐𝑐𝑑𝑑 = 𝑓𝑓−1 𝑚𝑚1 mod p , 𝑚𝑚1 mod q = 𝑚𝑚
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Plain RSA (Summary)

• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q

• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N

44



Factoring Assumption

Let GenModulus(1n) be a randomized algorithm that outputs 
(N=pq,p,q) where p and q are n-bit primes (except with negligible 
probability negl(n)).

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n) 
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins if N=p’q’.
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Factoring Assumption

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n) 
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins (FACTORA,n = 1) if and only if N=p’q’.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr FACTORA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

46

• Necessary for security of RSA. 
• Not known to be sufficient.



RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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• Plain RSA Encryption behaves like a one-way function
• Attacker cannot invert encryption of random message



Discussion of RSA-Assumption

• Plain RSA Encryption behaves like a one-way-function

• Decryption key is a “trapdoor” which allows us to invert the OWF

• RSA-Assumption  OWFs exist
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Recap

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N
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Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slid
es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at 
https://sandbox.open.wolframcloud.com (reduced functionality, but 
can be used to solve homework bonus problems)

51

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb
http://develop.wolframcloud.com/app/
https://sandbox.open.wolframcloud.com/


(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
SeedRandom[123456]

(* Step 1: Generate primes for an RSA key *)
p = RandomPrime[{10^1000, 10^1050}];
q = RandomPrime[{10^1000, 10^1050}];
NN = p q;   (*Symbol N is protected in mathematica *)
phi = (p - 1) (q - 1);
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https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb


(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)
GCD[phi,7]

Output: 7
(* GCD[phi,7] is not 1, so he have to try a different value of e *)

GCD[phi,3]
Output: 1
(* We can set e=3 *)

e=3;

53
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(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]
Output: 
{{x->36469680590663028301700626132883867272718728905205088...
…………………………………………………………………………………………………………
394069421778610209425624440980084481398131}}
(* We can now set d = x *) 

d=364696805…. 8131;
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(Toy) RSA Implementation in Mathematica

(* Double Check 1 = [ed mod 𝜙𝜙 𝑁𝑁 ] *)
Mod [e d, (p-1)(q-1)]

Output: 1
(* Encrypt the message 200, c= m^e mod N *)

m = 200;
PowerMod[m,e,NN]

Output: 8 000 000
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(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m^e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000
(* Hm...That doesn't seem too secure  *)

CubeRoot[PowerMod[m,e,NN]]
Output: 200

(* Moral: if 𝑚𝑚𝑒𝑒 < 𝑁𝑁 then Plain RSA does not hide the message m. *)
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RSA Implementation in Mathematica

(* Encrypt a larger message, c= m^e mod N *)
SeedRandom[1234567];
m2= RandomInteger[{10^1500,10^1501}];
c=PowerMod[m2,e,NN]

Output: 405215834903772786……… 388068292685976133

(* Does it Decrypt Properly? *)
PowerMod[c,d, NN]-m2

Output: 0
(* Yes! *)
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CS 555: Week 10: Topic 2
Attacks on Plain RSA
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(Plain) RSA Discussion

• We have not introduced security models like CPA-Security or CCA-
security for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and 
deterministic.
Plain RSA is not secure against chosen-plaintext attacks
• As we will see Plain RSA is also highly vulnerable to chosen-ciphertext 

attacks
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(Plain) RSA Discussion 

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Remark: In a public key setting the attacker who knows the public key 
always has access to an encryption oracle

• Encrypted messages with low entropy are particularly vulnerable to brute-
force attacks 

• Example: If 𝑚𝑚 < 𝐵𝐵 then attacker can recover 𝑚𝑚 from c = Encpk 𝑚𝑚 after at most 𝐵𝐵
queries to encryption oracle (using public key)
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Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext 𝑐𝑐 = 𝑚𝑚𝑒𝑒 mod N
2. Attacker generates ciphertext c’ for secret message 2m as follows
3. c’ = 𝑐𝑐2𝑒𝑒 mod N
4. = 𝑚𝑚𝑒𝑒2𝑒𝑒 mod N
5. = 2𝑚𝑚 𝑒𝑒 mod N
6. Attacker asks for decryption of 𝑐𝑐2𝑒𝑒 mod N and receives 2m.
7. Divide by two to recover message
Above Example: Shows plain RSA is highly vulnerable to ciphertext-
tampering attacks
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More Weaknesses: Plain RSA with small e

• (Small Messages) If me < N then we can decrypt c = me mod N directly
e.g., m=c(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of 
secret message m = m1‖? ? then he can recover m given 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 pk, m = 𝑚𝑚𝑒𝑒 mod N

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)
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More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)

Example: e = 3, 𝑚𝑚 = 𝑚𝑚1‖𝑚𝑚2 and attacker knows 𝑚𝑚1 2𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and  𝒄𝒄 =
𝑚𝑚1‖𝑚𝑚2

𝑒𝑒mod N, but not 𝑚𝑚2 𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝 𝑥𝑥 = 2𝑘𝑘𝑚𝑚1 + 𝑥𝑥 3 − 𝑐𝑐

Polynomial has a small root mod N at x= 𝑚𝑚2 and coppersmith’s method 
will find it!

63D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation".



More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]:  Can also find small roots of bivariate 
polynomial p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐

• Similar Approach used to factor weak RSA secret keys N=q1q2

• Weak PRG  Can guess many of the bits of prime factors 
• Obtain �𝑞𝑞1 ≈ 𝑞𝑞1 and �𝑞𝑞2 ≈ 𝑞𝑞2

• Coppersmith Attack: Define polynomial p(.,.) as follows
p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 𝒙𝒙𝟏𝟏 + �𝒒𝒒𝟏𝟏 𝒙𝒙𝟐𝟐 + �𝒒𝒒𝟐𝟐 − 𝑵𝑵

• Small Roots of p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 :  𝑥𝑥1 = 𝑞𝑞1 −�𝑞𝑞1 and 𝑥𝑥2 = 𝑞𝑞2 − �𝑞𝑞2

64D. Coppersmith (1996). "Finding a Small Root of a Bivariate Integer Equation; Factoring with high bits known"
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Fixes for Plain RSA

• Approach 1: RSA-OAEP
• Incorporates random nonce r 
• CCA-Secure (in random oracle model)

• Approach 2: Use RSA to exchange symmetric key for Authenticated 
Encryption scheme (e.g., AES)

• Key Encapsulation Mechanism (KEM)

• More details in future lectures…stay tuned!
• For now we will focus on attacks on Plain RSA
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Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥
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Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [1153 mod 15]
f(11)=([-1 mod 3],[1 mod 5])
f(1153) =([(-1)53 mod 3],[153 mod 5])= (-1,1)

𝑓𝑓−1(-1,1)=11

Thus, 11=[1153 mod 15]
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A Side Channel Attack on RSA with CRT

• Suppose that decryption is done via Chinese Remainder Theorem for 
speed.

𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄 = 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 ↔ 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒

• Attacker has physical access to smartcard
• Can mess up computation of 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑
• Response is R ↔ 𝒓𝒓, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• R − m ↔ 𝒓𝒓 −𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑,𝟎𝟎𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• GCD(R-m,N)=q
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Recovering Encrypted Message faster than 
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑇𝑇 = 2𝛼𝛼𝑛𝑛 with high probability. 

For r=1,…,T 
let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏
𝑻𝑻 (by the xr values)

For s=1,…,T 
if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝒙𝒙𝒓𝒓 for some r then

return 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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Recovering Encrypted Message faster than 
Brute-Force
For r=1,…,T 

let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏

𝑻𝑻 (by the xr values)
For s=1,…,T 

if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then
return 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Analysis: 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟 𝑠𝑠𝑒𝑒 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟 𝑥𝑥𝑟𝑟 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
= 𝑟𝑟 𝑐𝑐𝑟𝑟−𝑒𝑒 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟𝑟𝑟−𝑒𝑒𝑒𝑒 𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

= 𝑟𝑟𝑟𝑟−1𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = m
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Recovering Encrypted Message faster than 
Brute-Force
For r=1,…,T 

let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Sort  𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏

𝑻𝑻 (by the xr values)
For s=1,…,T 

if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then
return 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Fact: some constant 𝛼𝛼 = 1
2

+ 𝜀𝜀 setting 𝑇𝑇 = 2𝛼𝛼𝛼𝛼 with high probability 
we will find a pair s and xr with 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑥𝑥.
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Recovering Encrypted Message faster than 
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑇𝑇 = 2𝛼𝛼𝑛𝑛 with high probability. 

Roughly 𝐵𝐵 steps to find a secret message m < B
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CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption
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(Recap) Finite Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over 
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have 

g ∘ e = g = e ∘ g
• (Inverses:) For each element  g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.  

We say that h is the inverse of g. 
• (Associativity: ) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if 
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g
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Finite Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?
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Cyclic Group

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over G) 
and let g ∈ 𝔾𝔾 be given consider the set

𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, …

Fact: 𝑔𝑔 defines a subgroup of 𝔾𝔾.
• Identity: 𝑔𝑔0

• Closure: 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖+𝑗𝑗 ∈ 𝑔𝑔
• g is called a “generator” of the subgroup.

Fact: Let r = 𝑔𝑔 then 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑗𝑗 if and only if 𝑖𝑖 = 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. Also m is divisible 
by r. 
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Finite Abelian Groups (Examples)

Fact: Let p be a prime then ℤ𝑝𝑝∗ is a cyclic group of order p-1. 
• Note: Number of generators g s.t. of 𝑔𝑔 = ℤ𝑝𝑝∗ is 𝜙𝜙 𝑝𝑝 − 1

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}
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Discrete Log Experiment DLogA,G(n)

1. Run G(1n) to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and 
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if  gx=h.

We say that the discrete log problem is hard relative to generator G if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper 
bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that 

A succeeds with probability at most ½ + negl(n).
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Secure key-agreement with DDH

1. Alice publishes 𝑔𝑔𝑥𝑥𝐴𝐴 and Bob publishes 𝑔𝑔𝑥𝑥𝐵𝐵
2. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 but to Eve this key is 

indistinguishable from a random group element (by DDH) 

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob 
cannot validate 𝑔𝑔𝑥𝑥𝐴𝐴.
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Can we find a cyclic group where DDH holds?

• Example 1: ℤ𝑝𝑝∗ where p is a random n-bit prime.
• CDH is believed to be hard
• DDH is *not* hard (Exercise 13.15)

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-
bit prime then the set of rth residues modulo p is a cyclic subgroup of 
order q. Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of 
order q.

• Remark 1: DDH is believed to hold for such a group
• Remark 2: It is easy to generate uniformly random elements of 𝔾𝔾𝑟𝑟
• Remark 3: Any element (besides 1) is a generator of 𝔾𝔾𝑟𝑟
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Can we find a cyclic group where DDH holds?

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-bit 
prime then the set of rth residues modulo p is a cyclic subgroup of order q. 
Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of order q.

• Closure: ℎ𝑟𝑟𝑔𝑔𝑟𝑟 = ℎ𝑔𝑔 𝑟𝑟

• Inverse of ℎ𝑟𝑟 is ℎ−1 𝑟𝑟 ∈ 𝔾𝔾𝑟𝑟
• Size ℎ𝑟𝑟 𝑥𝑥 = ℎ[𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟] = ℎ𝑟𝑟 𝑥𝑥 = ℎ𝑟𝑟[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞] = ℎ𝑟𝑟 [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Remark: Two known attacks on Discrete Log Problem for 𝔾𝔾𝑟𝑟(Section 9.2). 
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3
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Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2). 
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3 , where n is bit length of p

Goal: Set 𝜆𝜆 and n to balance attacks 
𝜆𝜆 = 𝑂𝑂 3 𝑛𝑛 log𝑛𝑛 2/3

How to sample p=rq+1? 
• First sample a random 𝜆𝜆-bit prime q and 
• Repeatedly check if rq+1 is prime for a random n- 𝜆𝜆 bit value r
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Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be 
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?

87



Elliptic Curve Example

The line passing through 
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the 

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

Where the slope 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

88

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐



Elliptic Curve Example

Formally, let 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Be the slope. Then the line 
passing through 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 
𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1
2

= 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 89

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝑥𝑥3 = [𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]
𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

(x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐
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Elliptic Curve Example

91

No third point R on the elliptic curve.

P+Q = 0

(Inverse)



Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. 
Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group 
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations 
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