Name:

Purdue E-mail:

I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 4 Due date: Thursday, November 15thnd 3:00 PM

Question 1 (20 points)

Given a prime p > 2 we say that $x \in \mathbb{Z}_p^*$ is a quadratic residue if $x = y^2 \mod p$ for some $y \in \mathbb{Z}_p^*$. Assume that $g \in \mathbb{Z}_p^*$ is a generator such that $\langle g \rangle = \mathbb{Z}_p^*$. Let $QR_p = \{x \in \mathbb{Z}_p^* : \exists y \text{ s.t. } y^2 = x \mod p\}$.

- a. Show that QR_p is a subgroup of \mathbb{Z}_p^* .
- b. Show that $g \notin QR_p$, but that $g^{2i} \in QR_p$ for every $i \ge 0$.
- c. Show that $|QR_p| = \frac{p-1}{2}$ (Hint: Look at Lemma 8.37).
- d. Show that $y \in QR_p$ if and only if $y^{\frac{p-1}{2}} = 1$. In particular, this means that there is a polynomial time algorithm to test if $y \in QR_p$.

Question 2 (20 points)

Here we show how to solve the discrete-logarithm problem in a cyclic group of order $q = p^e$ in time $\mathcal{O}(\mathsf{polylog}(q) \cdot \sqrt{p})$. Given as input a generator g of order $q = p^e$ and value h, we want to compute $x = \log_q h$. You may assume that p > 2 is a prime number.

- (a) Show how to compute $[x \mod p]$ in time $\mathcal{O}(\mathsf{polylog}(q) \cdot \sqrt{p})$. Hint: Consider the equation $(g^{p^{e-1}})^{x_0} = h^{p^{e-1}}$ as well as the ideas from the Pohlig-Hellman algorithm.
- (b) Say $x = x_0 + x_1 \cdot p + \dots + x_{e-1} \cdot p^{e-1}$ with $0 \le x_i < p$. In the previous step we determined x_0 . Show how to compute in $\mathsf{polylog}(q)$ times a value h_1 such that $(g^p)^{x_1 + \dots + x_{e-1} \cdot p^{e-2}} = h_1$
- (c) Use recursion to obtain the claimed running time for the original problem. (Note that $e = \mathcal{O}(\log q)$)

Question 3 (20 points)

Show that the Decisional Diffie-Hellman Problem does not hold over the cyclic group \mathbb{Z}_p^* (although the computational Diffie-Hellman Assumption is believed to hold). Hint: Use the properties you proved in question 1 about quadratic residues. You may assume $g \in \mathbb{Z}_p^*$ is a generator such that $\langle g \rangle = \mathbb{Z}_p^*$ and that p > 3 is a prime number.

Question 4 (20 points)

In class we proved that the Diffie-Hellman Key Exchange Protocol was secure if the DDH assumption holds. In this problem we will develop a secure key exchange protocol based on the weaker CDH assumption. Let $\mathcal{G}(1^n)$ be a PPT algorithm which outputs a cyclic group $\langle g \rangle$ along with the generator g and the size $m = |\langle g \rangle|$ of the cyclic group. Consider the following variant of the Diffie-Hellman Key Exchange Protocol: (1) Alice selects $r_A \in \mathbb{Z}_m$ at random and sends g^{r_A} to Bob. (2) Bob selects $r_B \in \mathbb{Z}_m$ at random and sends g^{r_B} to Alice. (3) Alice and Bob both compute $g^{r_A r_B}$ and set $K_{A,B} = H(g^{r_A r_B})$ where $H : \{0,1\}^* \to \{0,1\}^n$ is a random oracle. Assuming that the Computational Diffie Hellman Key Exchange Protocol (above) is secure in the random oracle model.

Question 5 (20 points)

Consider the following protocol for two parties A and B to flip a fair coin.

- 1. A trusted party T publishes her public key pk;
- 2. Then A chooses a uniform bit b_A , encrypts it using pk, an announces the ciphertext c_A to B and T;
- 3. Next, B acts symmetrically and announces a ciphertext $c_B \neq c_A$;
- 4. T decrypts both c_A and c_B to obtain b_A and b_B and sends bits to A and B. Both parties XOR the results to obtain the value of the coin $b_A \oplus b_B$.
- a) Argue that even if A is dishonest (but B is honest), the final value of the coin is uniformly distributed.
- b) Assume the parties use EI Gamal encryption (where the bit b is encoded as the group element g^b before being encrypted note that efficient decryption is still possible). Show how a dishonest B can bias the coin to any values he likes.
- c) Suggest what type of encryption scheme would be appropriate to use here. Can you define an appropriate notion of security for a fair coin flipping and prove that the above coin flipping protocol achieves this definition when using an appropriate encryption scheme?

Bonus Question 1 (5 Points)

Let q have prime factorization $q = \prod_{i=1}^{k} p_i^{e_i}$. Using the result from problem 2, show a modification of the Pohlig-Hellman algorithm that solves the discrete-logarithm problem in a group of order q in time $\mathcal{O}(\mathsf{polylog}(q) \cdot \sum_{i=1}^{k} e_i \sqrt{p_i}) = \mathcal{O}(\mathsf{polylog}(q) \cdot \max_i \{\sqrt{p_i}\})$

Bonus Question 2 (5 Points)

In the attached Mathematica Notebook file we have generated RSA keys

$$(N_i = p_i q_i, e_i, d_i)$$
 for $i = 1, \dots, 11$

for eleven different kings. Each king used the same public parameter $e_i = 11$ for each i = 1, ..., 11 though the secret prime factors p_i, q_i are all distinct. Archimedes had an important message

$$m \le \min_i N_i$$

that he wanted to share will all eleven kings so he sent the ciphertext

$$c_i = m^{e_i} \mod N_i$$

to each king i. An eavesdropping attacker intercepted all of the ciphertexts and placed them in the Mathematica Notebook file. He needs your help to recover the secret message m that Archimedes sent to the eleven kings.