Name:
Purdue E-mail:
I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 4

Due date: Thursday, November 15th ${ }^{\text {nd }} 3: 00$ PM

Question 1 (20 points)

Given a prime $p>2$ we say that $x \in \mathbb{Z}_{p}^{*}$ is a quadratic residue if $x=y^{2} \bmod p$ for some $y \in \mathbb{Z}_{p}^{*}$. Assume that $g \in \mathbb{Z}_{p}^{*}$ is a generator such that $\langle g\rangle=\mathbb{Z}_{p}^{*}$. Let $Q R_{p}=\{x \in$ $\mathbb{Z}_{p}^{*}: \exists y$ s.t. $\left.y^{2}=x \bmod p\right\}$.
a. Show that $Q R_{p}$ is a subgroup of \mathbb{Z}_{p}^{*}.
b. Show that $g \notin Q R_{p}$, but that $g^{2 i} \in Q R_{p}$ for every $i \geq 0$.
c. Show that $\left|Q R_{p}\right|=\frac{p-1}{2}$ (Hint: Look at Lemma 8.37).
d. Show that $y \in Q R_{p}$ if and only if $y^{\frac{p-1}{2}}=1$. In particular, this means that there is a polynomial time algorithm to test if $y \in Q R_{p}$.

Question 2 (20 points)

Here we show how to solve the discrete-logarithm problem in a cyclic group of order $q=p^{e}$ in time $\mathcal{O}($ polylog $(q) \cdot \sqrt{p})$. Given as input a generator g of order $q=p^{e}$ and value h, we want to compute $x=\log _{g} h$. You may assume that $p>2$ is a prime number.
(a) Show how to compute $[x \bmod p]$ in time $\mathcal{O}(\operatorname{polylog}(q) \cdot \sqrt{p})$. Hint: Consider the equation $\left(g^{p^{e-1}}\right)^{x_{0}}=h^{p^{e-1}}$ as well as the ideas from the Pohlig-Hellman algorithm.
(b) Say $x=x_{0}+x_{1} \cdot p+\cdots+x_{e-1} \cdot p^{e-1}$ with $0 \leq x_{i}<p$. In the previous step we determined x_{0}. Show how to compute in polylog (q) times a value h_{1} such that $\left(g^{p}\right)^{x_{1}+\cdots+x_{e-1} \cdot p^{e-2}}=$ h_{1}
(c) Use recursion to obtain the claimed running time for the original problem. (Note that $e=\mathcal{O}(\log q))$

Question 3 (20 points)

Show that the Decisional Diffie-Hellman Problem does not hold over the cyclic group \mathbb{Z}_{p}^{*} (although the computational Diffie-Hellman Assumption is believed to hold). Hint: Use the properties you proved in question 1 about quadratic residues. You may assume $g \in \mathbb{Z}_{p}^{*}$ is a generator such that $\langle g\rangle=\mathbb{Z}_{p}^{*}$ and that $p>3$ is a prime number.

Question 4 (20 points)

In class we proved that the Diffie-Hellman Key Exchange Protocol was secure if the DDH assumption holds. In this problem we will develop a secure key exchange protocol based on the weaker CDH assumption. Let $\mathcal{G}\left(1^{n}\right)$ be a PPT algorithm which outputs a cyclic group $\langle g\rangle$ along with the generator g and the size $m=|\langle g\rangle|$ of the cyclic group. Consider the following variant of the Diffie-Hellman Key Exchange Protocol: (1) Alice selects $r_{A} \in \mathbb{Z}_{m}$ at random and sends $g^{r_{A}}$ to Bob. (2) Bob selects $r_{B} \in \mathbb{Z}_{m}$ at random and sends $g^{r_{B}}$ to Alice. (3) Alice and Bob both compute $g^{r_{A} r_{B}}$ and set $K_{A, B}=H\left(g^{r_{A} r_{B}}\right)$ where $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is a random oracle. Assuming that the Computational Diffie Hellman Assumption holds with respect to the group generator \mathcal{G} show that the modified Diffie-Hellman Key Exchange Protocol (above) is secure in the random oracle model.

Question 5 (20 points)

Consider the following protocol for two parties A and B to flip a fair coin.

1. A trusted party T publishes her public key $p k$;
2. Then A chooses a uniform bit b_{A}, encrypts it using $p k$, an announces the ciphertext c_{A} to B and T;
3. Next, B acts symmetrically and announces a ciphertext $c_{B} \neq c_{A}$;
4. T decrypts both c_{A} and c_{B} to obtain b_{A} and b_{B} and sends bits to A and B . Both parties XOR the results to obtain the value of the coin $b_{A} \oplus b_{B}$.
a) Argue that even if A is dishonest (but B is honest), the final value of the coin is uniformly distributed.
b) Assume the parties use EI Gamal encryption (where the bit b is encoded as the group element g^{b} before being encrypted - note that efficient decryption is still possible). Show how a dishonest B can bias the coin to any values he likes.
c) Suggest what type of encryption scheme would be appropriate to use here. Can you define an appropriate notion of security for a fair coin flipping and prove that the above coin flipping protocol achieves this definition when using an appropriate encryption scheme?

Bonus Question 1 (5 Points)

Let q have prime factorization $q=\prod_{i=1}^{k} p_{i}^{e_{i}}$. Using the result from problem 2, show a modification of the Pohlig-Hellman algorithm that solves the discrete-logarithm problem in a group of order q in time $\mathcal{O}\left(\operatorname{polylog}(q) \cdot \sum_{i=1}^{k} e_{i} \sqrt{p_{i}}\right)=\mathcal{O}\left(\operatorname{polylog}(q) \cdot \max _{i}\left\{\sqrt{p_{i}}\right\}\right)$

Bonus Question 2 (5 Points)

In the attached Mathematica Notebook file we have generated RSA keys

$$
\left(N_{i}=p_{i} q_{i}, e_{i}, d_{i}\right) \text { for } i=1, \ldots, 11
$$

for eleven different kings. Each king used the same public parameter $e_{i}=11$ for each $i=1, \ldots, 11$ though the secret prime factors p_{i}, q_{i} are all distinct. Archimedes had an important message

$$
m \leq \min _{i} N_{i}
$$

that he wanted to share will all eleven kings so he sent the ciphertext

$$
c_{i}=m^{e_{i}} \quad \bmod N_{i}
$$

to each king i. An eavesdropping attacker intercepted all of the ciphertexts and placed them in the Mathematica Notebook file. He needs your help to recover the secret message m that Archimedes sent to the eleven kings.

