Name:
Purdue E-mail:
I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 3
 Due date: Thursday, November 1st ${ }^{\text {nd }} 3: 00$ PM

Question 1 (20 points)

Let $e=3,\langle N, e\rangle$ be an RSA public key, and $m_{1} \neq m_{2} \in \mathbb{Z}_{N}^{*}$ satisfy the condition that $m_{2}=2 m_{1}+1 \bmod N$.

Show that: given $\left\langle N, e=3, c_{1}=m_{1}^{e}, c_{2}=m_{2}^{e}\right\rangle$ and the fact that $m_{2}=2 m_{1}+1 \bmod N$, one can construct a PPT adversary \mathcal{A} that can recover both m_{1} and m_{2}

Question 2 (20 points)

Let $p \geq 5$ be prime and let E be the elliptic curve given by $y^{2}=x^{3}+A x+B \bmod p$ where $4 A^{3}+27 B^{2} \neq 0 \bmod p$. Let $P_{1}, P_{2} \neq \mathcal{O}$ be the points on E, with $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$. Prove the following statements:
If $P_{1}=P_{2}$ and $y_{1} \neq 0$ then $P_{1}+P_{2}=2 P_{1}=\left(x_{3}, y_{3}\right)$ with

$$
\begin{align*}
x_{3} & =\left[\begin{array}{ll}
m^{2}-2 x_{1} & \bmod p
\end{array}\right] \\
y_{3} & =\left[\begin{array}{ll}
m \cdot\left(x_{1}-x_{3}\right)-y_{1} & \bmod p
\end{array}\right] \tag{1}
\end{align*}
$$

where $m=\left[\frac{3 x_{1}^{2}+A}{2 y_{1}}\right]$

Question 3 (15 points)

Consider a specific cyclic group \mathbb{G} of prime order q generated by $g \in \mathbb{G}$. Let \mathcal{A} be an efficient algorithm with the following property:

$$
\operatorname{Pr}\left[u \stackrel{\$}{\leftarrow} \mathbb{G}, x \leftarrow \mathcal{A}(\mathbb{G}, g, u): g^{x}=u\right]=\epsilon
$$

Then we can construct an efficient algorithm \mathcal{B} with the following property:

$$
\forall u \in \mathbb{G} \quad \operatorname{Pr}\left[x \leftarrow \mathcal{B}(\mathbb{G}, g, u): g^{x}=u\right]=\epsilon
$$

where the probability is over the random choices made by \mathcal{B}

Question 4 (25 points)

Fix $N \in \mathbb{N}$ such that $N, e \geq 1$ and $\operatorname{gcd}(e, \phi(N))=1$. Assume that there is an adversary \mathcal{A} running in time t such that

$$
\operatorname{Pr}\left[\mathcal{A}\left(\left[x^{e} \quad \bmod N\right]\right)=x\right] \geq 0.01
$$

where the probability is taken over the uniform choice of $x \in \mathbb{Z}_{N}^{*}$. Show how to construct an adversary \mathcal{A}^{\prime} with running time $t^{\prime}=O\left(\right.$ poly $\left.\left(t, \log _{2} N\right)\right)$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(\left[x^{e} \quad \bmod N\right]\right)=x\right] \geq 0.99
$$

Hint: Use the fact that $y^{1 / e} \cdot r=\left(y \cdot r^{e}\right)^{1 / e} \bmod N$. Here, $y^{1 / e}=y^{d} \in \mathbb{Z}_{N}^{*}$ where d is a (secret) number such that $e d \equiv 1 \bmod \phi(N)$. Also use the fact that, given $r \in \mathbb{Z}_{N}^{*}$, we can find a number r^{-1} such that $r r^{-1}=1 \bmod N$.

Question 5 (20 points)

Define a fixed-length hash function (Gen, H) as follows:
(a) Gen: on input 1^{n}, run $\mathcal{G}\left(1^{n}\right)$ to obtain $\left(\mathbb{G}, q, h_{1}\right)$ and selects $h_{2}, \cdots, h_{t} \leftarrow \mathbb{G}$. Output $s:=\left\langle\mathbb{G}, q,\left(h_{1}, \cdots, h_{t}\right)\right\rangle$ as the key.
(b) H : given a key $s:=\left\langle\mathbb{G}, q,\left(h_{1}, \cdots, h_{t}\right)\right\rangle$ and input $\left(x_{1}, \cdots, x_{t}\right)$ with $x_{i} \in \mathbb{Z}_{q}$, output $H^{s}\left(x_{1}, \cdots, x_{t}\right)=\prod_{i} h_{i}^{x_{i}}$

Prove that if the discrete-logarithm problem is hard relative to \mathcal{G} and q is prime, then for any $t=\operatorname{poly}(n)$ this construction is a fixed length collision-resistant hash function

