Name:
Purdue E-mail:
I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 2

Due date: Tuesday, October $2^{\text {nd }} 3: 00$ PM

Question 1 (15 points)

1. What is the effect of a single-bit error in the ciphertext when using the CBC, OFB, and CTR modes of operations?
2. Show that the CBC, OFB, and CTR modes of operation do not yield CCA-secure encryption schemes (regardless of F). Briefly describe how an attacker could win the CCA-Security game with non-negligible advantage.
3. Let F be a pseudorandom permutation. Consider the mode of operation in which a uniform value ctr $\in\{0,1\}^{n}$ is chosen, and the $i^{t h}$ ciphertext block c_{i} is computed as $c_{i}:=F_{k}\left(\operatorname{ctr}+i+m_{i}\right)$. Show that this scheme does not have indistinguishable encryptions in the presence of an eavesdropper.

Question 2 (20 points)

Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a length-preserving pseudorandom function. For the following construction of a keyed function $F^{\prime}:\{0,1\}^{n} \times\{0,1\}^{n-2} \rightarrow\{0,1\}^{4 n}$, state whether F^{\prime} is a pseudorandom function: if yes prove it, if not show an attack.

- $F_{k}^{\prime}(x) \stackrel{\text { def }}{=} F_{k}(00 \| x)\left\|F_{k}(x \| 01)\right\| F_{k}(10| | x)| | F_{k}(x \| 11)$
- $F_{k}^{\prime}(x) \stackrel{\text { def }}{=} F_{k}(0| | x| | 0)| | F_{k}(0| | x| | 1) \| F_{k}(1| | x| | 0)| | F_{k}(1| | x| | 1)$

Question 3 (20 points)

Before HMAC, it was common to define a MAC of arbitrary-length message as $\mathrm{Mac}_{\mathrm{s}, \mathrm{k}}(m)=$ $H^{s}(k \| m)$ where H is a collision-resistant hash function. We assume s is known to the attacker, and k is kept secret.

- (5 points) Show that this is not a secure MAC when H is constructed using MerkleDamgård transform. Explain how an attacker can win the MAC security game.
- (15 points) Prove that this is a secure MAC if H is modeled as a random oracle.

Question 4 (20 points)

Let $\left(\operatorname{Gen}_{1}, H_{1}\right)$ and $\left(\mathrm{Gen}_{2}, H_{2}\right)$ be two hash functions. We define (Gen, H) as follow:

- Gen : runs Gen ${ }_{1}$ and Gen 2 to obtain s_{1}, s_{2}
- $H^{s_{1}, s_{2}}(x)=H_{1}^{s_{1}}(x) \| H_{2}^{s_{2}}(x)$

Prove that if at least one of $\left(\mathrm{Gen}_{1}, H_{1}\right)$ and $\left(\mathrm{Gen}_{2}, H_{2}\right)$ is collision resistant, then (Gen, H) is collision resistant

Question 5 (25 points)

One way to build a Pseudorandom Permutation from a pseudorandom function is to use a Feistel Network. In particular, if we select k PRF keys $K_{1}, K_{2}, \ldots, K_{k}$ we can define the Pseudorandom Permutation $P R P_{K_{1}, K_{2}, \ldots, K_{k}}\left(L_{0}, R_{0}\right)=\left(L_{k}, R_{k}\right)$ where for each $0 \leq i<k$ we have $L_{i+1}=R_{i}$ and $R_{i+1}=L_{i} \oplus F_{K_{i+1}}\left(R_{i}\right)$.

It has been shown that if F_{K} is a secure PRF and we use a $k=4$ round Feistel network that the permutation $P R P_{K_{1}, K_{2}, K_{3}, K_{4}}$ is a strong pseudorandom permutation. When $k=3$ it is known that $P R P_{K_{1}, K_{2}, K_{3}}$ is a pseudorandom permutation, but not a strong pseudorandom permutation. Recall: A strong PRP means that no PPT attacker can distinguish $P R P_{K_{1}, K_{2}, K_{3}}$ from a truly random permutation f when given oracle access to both the permutation (either $P R P_{K_{1}, K_{2}, K_{3}}$ or $\left.f()\right)$ AND its inverse (either $P R P_{K_{1}, K_{2}, K_{3}}^{-1}$ or $f^{-1}()$). In the security game for a regular PRP the distinguisher is not given oracle access to the inverse permutation.

1. (2 points) Show that when $k=1$ the function is not a regular PRP. You should explain what the distinguisher does and show that its advantage is non-negligible.
2. (5 points) Show that when $\mathrm{k}=2$ the function is not a regular PRP. You should explain what the distinguisher does and show that its advantage is non-negligible.
3. (10 points) We will show that when $k=3$ the function is not a strong PRP. Consider a distinguisher that makes two queries to the permutation g (either $P R P_{K_{1}, K_{2}, K_{3}}$ or $f()$) and one query to g^{-1}. The first two queries to $g()$ are as follows $g\left(L_{0}, R_{0}\right)$ and $g\left(L_{0}^{\prime}, R_{0}^{\prime}\right)$ where $R_{0}=R_{0}^{\prime}$ but $L_{0}^{\prime} \neq L_{0}$. Let $\left(L_{3}, R_{3}\right)$ and $\left(L_{3}^{\prime}, R_{3}^{\prime}\right)$ denote the outputs of both queries. Finally, consider the query $g^{-1}\left(L_{3}^{\prime}, R_{3}^{\prime} \oplus L_{0} \oplus L_{0}^{\prime}\right)$ and let ($L_{0}^{\prime \prime}, R_{0}^{\prime \prime}$) denote the output of this query. Supposing that $g=P R P_{K_{1}, K_{2}, K_{3}}$ is the Feistel Network defined above write down a formula for $R_{0}^{\prime \prime}$ in terms of variables known to the distinguisher. Note: Your formula should only use variables that are known to the distinguisher such as $L_{0}, L_{0}^{\prime}, R_{0}, R_{0}^{\prime}$ or $L_{3}, L_{3}^{\prime}, R_{3}, R_{3}^{\prime}$. By contrast, your formula should not involve the secret keys K_{1}, K_{2}, K_{3} or internal values (e.g., R_{2}^{\prime}) that would not be known to the distinguisher.
4. (5 points): Supposing that $g=f$ is a truly random permutation and letting $\left(L_{0}^{\prime \prime}, R_{0}^{\prime \prime}\right)$ denote the output of the query $g^{-1}\left(L_{3}^{\prime}, R_{3}^{\prime} \oplus L_{0} \oplus L_{0}^{\prime}\right)$ upper bound the probability that $R_{0}^{\prime \prime}$ satisfies the above formula.
5. (3 points): Using the last two observations explain why our $k=3$ Feistel round construction $P R P_{K_{1}, K_{2}, K_{3}}$ is not a strong $P R P$. What does the distinguisher do? (Note: it is possible to answer parts D and E without answering part C).
