Name:

Purdue E-mail:

I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 1 Due date: Thursday, September 13th 3:00 PM

Question 1 (20 points)

Consider each of the following encryption schemes and state whether the scheme is perfectly secret or not. Justify your answer by giving a detailed proof if your answer is *Yes*, a counterexample if your answer is *No*.

- An encryption scheme whose plaintext space consists of the integers $\mathcal{M} = \{0, ..., 12\}$ and key generation algorithm chooses a uniform key from the key space $\mathcal{K} = \{0, ..., 13\}$. Suppose $\text{Enc}_k(m) = m + k \mod 13$ and $\text{Dec}_k(c) = c - k \mod 13$.
- An encryption scheme whose plaintext space is $\mathcal{M} = \{m \in \{0,1\}^{\ell} | \text{the last bit of } m \text{ is } 0\}$ and key generation algorithm chooses a uniform key from the key space $\{0,1\}^{\ell-1}$. Suppose $\text{Enc}_k(m) = m \oplus (k \mid\mid 0)$ and $\text{Dec}_k(c) = c \oplus (k \mid\mid 0)$.
- Consider a encryption scheme in which $M = \{a, b\}$, $K = \{K_1, K_2, \ldots, K_4\}$, and $C = \{1, 2, 3, 4, 5, 6\}$. Suppose that Gen selects the secret key k according to the following probability distribution:

$$\Pr[k = K_1] = \Pr[k = K_4] = \frac{1}{6}, \Pr[k = K_2] = \Pr[k = K_3] = \frac{1}{3}.$$

and the encryption matrix is as follows

a	b
1	4
2	3
3	2
4	1
	a 1 2 3 4

• Suppose that we have an encryption scheme whose plaintext space is $\mathcal{M} = \{m \in \{0,1\}^{2n}\}$ and whose key space is $\mathcal{K} = \{k \in \{0,1\}^n\}$. Suppose that $\operatorname{Enc}_k(m) = m \oplus (k||F(k))$ where F is a secure length-preserving pseudorandom generator.

Question 2 (10 points)

Prove or refute: An encryption scheme with message space \mathcal{M} is perfectly secret if and only if for every probability distribution over \mathcal{M} and every $c_0, c_1 \in \mathcal{C}$ we have $\Pr[C = c_0] = \Pr[C = c_1]$

Question 3 (20 points + 5 points bonus)

Let $\epsilon > 0$ be a constant. Say an encryption scheme, $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$, is ϵ -perfectly secret if for every adversary \mathcal{A} it holds that:

$$\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] \le \frac{1}{2} + \epsilon$$

(See definition 2.5 page 31)

- 1. (20 points) Show that ϵ -perfect secrecy can be achieved with $|\mathcal{K}| < |\mathcal{M}|$
- 2. (5 bonus points) Prove a lower bound on the size of \mathcal{K} in term of ϵ [Challenging]

Question 4 (20 points)

We say that a PRG $G : \{0, 1\}^n \to \{0, 1\}^{2n}$ is (t, ϵ) -secure if for all distinguishers \mathcal{D} running in time at most t we have

$$\mathbf{Adv}_{\mathcal{D},G} = \left| Pr_{s \leftarrow \{0,1\}^n} \left[\mathcal{D}(G(s)) = 1 \right] - Pr_{r \leftarrow \{0,1\}^{2n}} \left[\mathcal{D}(r) = 1 \right] \right| \le \epsilon \; .$$

Suppose that G is $(t, \epsilon_t = \frac{1.5t}{2^n})$ -secure PRG for all $t \leq 2^n$. Show that for all $t \leq 2^n$ the encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ (defined below) is $(t' = t - O(n), \epsilon_t = \frac{1.5t}{2^n})$ -EAV Secure.

- Gen: on input 1^n , choose uniform $k \in \{0, 1\}^n$ and output it.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{2n}$ output the ciphertext:

$$c := \langle G(k) \oplus m \rangle \tag{1}$$

• Dec: on input a $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{2n}$, output the plaintext message

$$m := G(k) \oplus c \tag{2}$$

Question 5 (30 points)

For any function $g : \{0,1\}^n \to \{0,1\}^n$, define $g^{\$}(.)$ to be a probabilistic oracle that, on input 1^n , choose uniform $r \in \{0,1\}^n$ and return (r,g(r)). A keyed function F is a *weak pseudorandom function* if for all PPT algorithm D, there exists a negligible function **negl** such that:

$$\left|\Pr[D^{F_k^{\$}(.)}(1^n) = 1] - \Pr[D^{f^{\$}(.)}(1^n) = 1]\right| \le \mathsf{negl}(n)$$
(3)

where $k \in \{0, 1\}^n$ and $f \in Func_n$ and chosen uniformly.

1. Let F' be a pseudorandom function, and define

$$F_{k}(x) \stackrel{\text{def}}{=} \begin{cases} F'_{k}(x) & \text{if } x \text{ is even} \\ F'_{k}(x+1) & \text{if } x \text{ is odd} \end{cases}$$
(4)

Prove that F is weakly pseudorandom.

- 2. Is CTR-mode encryption using a weak pseudorandom function necessary CPA-secure? Does it necessarily have indistinguishable encryptions in the presence of an eavesdrop-per? Prove your answers.
- 3. Prove that the following construction is CPA-secure if F is a weak pseudorandom function.

Construction: Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- Gen: on input 1^n , choose uniform $k \in \{0, 1\}^n$ and output it.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext:

$$c := \langle r, F_k(r) \oplus m \rangle \tag{5}$$

• Dec: on input a $k \in \{0,1\}^n$ and a ciphertext $c = \langle r, s \rangle$, output the plaintext message

$$m := F_k(r) \oplus s \tag{6}$$