Name:
Purdue E-mail:
I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 1
 Due date: Thursday, September $13^{\text {th }} 3: 00$ PM

Question 1 (20 points)

Consider each of the the following encryption schemes and state whether the scheme is perfectly secret or not. Justify your answer by giving a detailed proof if your answer is Yes, a counterexample if your answer is No.

- An encryption scheme whose plaintext space consists of the integers $\mathcal{M}=\{0, \ldots, 12\}$ and key generation algorithm chooses a uniform key from the key space $\mathcal{K}=\{0, \ldots, 13\}$. Suppose $\operatorname{Enc}_{\mathrm{k}}(\mathrm{m})=\mathrm{m}+\mathrm{k} \bmod 13$ and $\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})=\mathrm{c}-\mathrm{k} \bmod 13$.
- An encryption scheme whose plaintext space is $\mathcal{M}=\left\{\mathrm{m} \in\{0,1\}^{\ell} \mid\right.$ the last bit of m is 0$\}$ and key generation algorithm chooses a uniform key from the key space $\{0,1\}^{\ell-1}$. Suppose $\operatorname{Enc}_{\mathrm{k}}(\mathrm{m})=\mathrm{m} \oplus(\mathrm{k} \| 0)$ and $\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})=\mathrm{c} \oplus(\mathrm{k} \| 0)$.
- Consider a encryption scheme in which $\mathrm{M}=\{\mathrm{a}, \mathrm{b}\}, K=\left\{K_{1}, K_{2}, \ldots, K_{4}\right\}$, and $C=$ $\{1,2,3,4,5,6\}$. Suppose that Gen selects the secret key k according to the following probability distribution:

$$
\operatorname{Pr}\left[k=K_{1}\right]=\operatorname{Pr}\left[k=K_{4}\right]=\frac{1}{6}, \operatorname{Pr}\left[k=K_{2}\right]=\operatorname{Pr}\left[k=K_{3}\right]=\frac{1}{3} .
$$

and the encryption matrix is as follows

	a	b
K_{1}	1	4
K_{2}	2	3
K_{3}	3	2
K_{4}	4	1

- Suppose that we have an encryption scheme whose plaintext space is $\mathcal{M}=\{\mathrm{m} \in$ $\left.\{0,1\}^{2 n}\right\}$ and whose key space is $\mathcal{K}=\left\{\mathrm{k} \in\{0,1\}^{n}\right\}$. Suppose that $\operatorname{Enc}_{\mathrm{k}}(m)=m \oplus(k \| F(k))$ where F is a secure length-preserving pseudorandom generator.

Question 2 (10 points)

Prove or refute: An encryption scheme with message space \mathcal{M} is perfectly secret if and only if for every probability distribution over \mathcal{M} and every $c_{0}, c_{1} \in \mathcal{C}$ we have $\operatorname{Pr}\left[C=c_{0}\right]=$ $\operatorname{Pr}\left[C=c_{1}\right]$

Question 3 (20 points +5 points bonus)

Let $\epsilon>0$ be a constant. Say an encryption scheme, $\Pi=$ (Gen, Enc, Dec), is ϵ-perfectly secret if for every adversary \mathcal{A} it holds that:

$$
\operatorname{Pr}\left[\operatorname{PrivK} \mathrm{K}_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right] \leq \frac{1}{2}+\epsilon
$$

(See definition 2.5 page 31)

1. (20 points) Show that ϵ-perfect secrecy can be achieved with $|\mathcal{K}|<|\mathcal{M}|$
2. (5 bonus points) Prove a lower bound on the size of \mathcal{K} in term of ϵ [Challenging]

Question 4 (20 points)

We say that a PRG $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is (t, ϵ)-secure if for all distinguishers \mathcal{D} running in time at most t we have

$$
\mathbf{A d v}_{\mathcal{D}, G}=\left|\operatorname{Pr}_{s \leftarrow\{0,1\}^{n}}[\mathcal{D}(G(s))=1]-\operatorname{Pr}_{r \leftarrow\{0,1\}^{2 n}}[\mathcal{D}(r)=1]\right| \leq \epsilon
$$

Suppose that G is $\left(t, \epsilon_{t}=\frac{1.5 t}{2^{n}}\right)$-secure PRG for all $t \leq 2^{n}$. Show that for all $t \leq 2^{n}$ the encryption scheme $\Pi=$ (Gen, Enc, Dec) (defined below) is $\left(t^{\prime}=t-O(n), \epsilon_{t}=\frac{1.5 t}{2^{n}}\right)$-EAV Secure.

- Gen: on input 1^{n}, choose uniform $k \in\{0,1\}^{n}$ and output it.
- Enc: on input a key $k \in\{0,1\}^{n}$ and a message $m \in\{0,1\}^{2 n}$ output the ciphertext:

$$
\begin{equation*}
c:=\langle G(k) \oplus m\rangle \tag{1}
\end{equation*}
$$

- Dec: on input a $k \in\{0,1\}^{n}$ and a ciphertext $c \in\{0,1\}^{2 n}$, output the plaintext message

$$
\begin{equation*}
m:=G(k) \oplus c \tag{2}
\end{equation*}
$$

Question 5 (30 points)

For any function $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, define $g^{\phi}($.$) to be a probabilistic oracle that, on$ input 1^{n}, choose uniform $r \in\{0,1\}^{n}$ and return $(r, g(r))$. A keyed function F is a weak pseudorandom function if for all PPT algorithm D , there exists a negligible function negl such that:

$$
\begin{equation*}
\left|\operatorname{Pr}\left[D^{F_{k}^{\S}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f^{\S}(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \operatorname{neg} \mid(n) \tag{3}
\end{equation*}
$$

where $k \in\{0,1\}^{n}$ and $f \in F u n c_{n}$ and chosen uniformly.

1. Let F^{\prime} be a pseudorandom function, and define

$$
\mathrm{F}_{\mathrm{k}}(\mathrm{x}) \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\mathrm{F}_{\mathrm{k}}^{\prime}(\mathrm{x}) \text { if } \mathrm{x} \text { is even } \tag{4}\\
\mathrm{F}_{\mathrm{k}}^{\prime}(\mathrm{x}+1) \text { if } \mathrm{x} \text { is odd }
\end{array}\right.
$$

Prove that F is weakly pseudorandom.
2. Is CTR-mode encryption using a weak pseudorandom function necessary CPA-secure? Does it necessarily have indistinguishable encryptions in the presence of an eavesdropper? Prove your answers.
3. Prove that the following construction is CPA-secure if F is a weak pseudorandom function.
Construction: Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- Gen: on input 1^{n}, choose uniform $k \in\{0,1\}^{n}$ and output it.
- Enc: on input a key $k \in\{0,1\}^{n}$ and a message $m \in\{0,1\}^{n}$, choose uniform $r \in\{0,1\}^{n}$ and output the ciphertext:

$$
\begin{equation*}
c:=\left\langle r, F_{k}(r) \oplus m\right\rangle \tag{5}
\end{equation*}
$$

- Dec: on input a $k \in\{0,1\}^{n}$ and a ciphertext $c=\langle r, s\rangle$, output the plaintext message

$$
\begin{equation*}
m:=F_{k}(r) \oplus s \tag{6}
\end{equation*}
$$

