
Course Business

• Homework 3 Released
• Due: Tuesday, October 31st.

• I will be travelling early next week to attend a workshop on data-
privacy

• Guest Lecture on 10/24 (Professor Spafford)

1

Cryptography
CS 555

Week 9:
• One Way Functions
• Number Theory
Readings: Katz and Lindell Chapter 7, B.1, B.2, 8.1-8.2

2Fall 2017

CS 555: Week 8: Topic 1:
One Way Functions

3

What are the minimal assumptions necessary for symmetric key-
cryptography?

One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Definition: A function f: 0,1 ∗ → 0,1 ∗ is one way if it is
1. (Easy to compute) There is a polynomial time algorithm (in |x|) for

computing f(x).
2. (Hard to Invert) Select x ← 0,1 𝑛𝑛 uniformly at random and give the

attacker input 1n, f(x). The probability that a PPT attacker outputs x’ such
that f 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) is negligible.

4

Hard Core Predicates

• Recall that a one-way function f may potentially reveal lots of
information about input

• Example: f(x1,x2)=(x1,g(x2)), where g is a one-way function.
• Claim: f is one-way (even if f(x1,x2) reveals half of the input bits!)

5

Hard Core Predicates

Definition: A predicate hc: 0,1 ∗ → 0,1 is called a hard-core
predicate of a function f if
1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function

negl such that we have

𝐏𝐏𝐏𝐏𝑥𝑥← 0,1 𝑛𝑛 𝐴𝐴 1𝑛𝑛, 𝑓𝑓(𝑥𝑥) = hc(𝑥𝑥) ≤
1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

6

Attempt 1: Hard-Core Predicate

Consider the predicate
hc x = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖

Hope: hc is hard core predicate for any OWF.

Counter-example:

f(x) = (g(x), ⨁𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖)

7

Trivial Hard-Core Predicate

Consider the function
f(x1,…,xn) = x1,…,xn-1

f has a trivial hard core predicate
hc x = 𝑥𝑥𝑛𝑛

Not useful for crypto applications (e.g., f is not a OWF)

8

Attempt 3: Hard-Core Predicate

Consider the predicate
hc x, r = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
(the bits 𝑟𝑟1,…, 𝑟𝑟𝑛𝑛 will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a
hard-core predicate of g(x,r)=(f(x),r).

9

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we
can construct a PRG G with expansion factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1.

Construction:
𝐺𝐺 𝑠𝑠 = 𝑓𝑓(𝑠𝑠) ∥ hc(𝑠𝑠)

Intuition: f(s) is actually uniformly distributed
• s is random
• f(s) is a permutation
• Last bit is hard to predict given f(s) (since hc is hard-core for f)

10

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any
polynomial p(.) there is a PRG with expansion factor
p(n).

Construction:
•G(x) = y||b. (n+1 bits)
•Gi+1(x) = G(z)||b where Gi (x) = z||b (n+i bits)

11

Any Beyond

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a
strong pseudorandom permutation.

12

Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs
and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs.

13

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x) (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …

14

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

15

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1
1

Fk(011)=G1(G1(G0(k)))

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Related Claim: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

(recall Homework 2!)

16

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof by Hybrids: Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒋𝒋+𝟏𝟏 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

17

Hybrid H1

20

20

r

r0 r1

G0(r0) G1(r0)

……

G0(r1) G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a
strong pseudorandom permutation.

23

OWFs/OWPs are Sufficient for Symmetric Crypto

Corollary: If one-way permutations exist then PRGs,
PRFs and strong PRPs all exist.

Corollary: If one-way permutations exist then there exist
CCA-secure encryption schemes and secure MACs.

Remark: Can obtain all of the above results from OWFs as well

24

Are OWFs Necessary for Private Key Crypto?

• Previous results show that OWFs are sufficient.

• Can we build Private Key Crypto from weaker assumptions?

• Short Answer: No, OWFs are also necessary for most private-key
crypto primitives

25

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Question: why can we assume that we have an PRG with expansion
2n?
Answer: We already showed that a PRG with expansion factor ℓ 𝑛𝑛 =
𝑛𝑛 + 1. Implies the existence of a PRG with expansion p(n) for any
polynomial.

26

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.

Claim: G is also a OWF!
(Easy to Compute?) ✓
(Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a
random string.

27

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible
probability.
Reduction: Assume (for contradiction) that A can invert G(s) with non-
negligible probability p(n).
Distinguisher D(y): Simulate A(y)
Output 1 if and only if A(y) outputs x s.t. G(x)=y.

28

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible
probability.
Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such
that G(x)=y.

Why not?

29

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that
G(x)=y.

• Why not? Simple counting argument, 22n possible y’s and 2n x’s.
• Probability there exists such an x is at most 2-n (for a random y)

30

What other assumptions imply OWFs?

• PRGs  OWFs
• (Easy Extension) PRFs  PRGs  OWFs

• Does secure crypto scheme imply OWFs?
• CCA-secure? (Strongest)
• CPA-Secure? (Weaker)
• EAV-secure? (Weakest)

• As long as the plaintext is longer than the secret key
• Perfect Secrecy? X (Guarantee is information theoretic)

31

EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption
scheme that encrypts messages twice as long as its key, then a one-way
function exists.

Recap: EAV-secure.
• Attacker picks two plaintexts m0,m1 and is given c=EncK(mb) for

random bit b.
• Attacker attempts to guess b.
• No ability to request additional encryptions (chosen-plaintext attacks)
• In fact, no ability to observe any additional encryptions

32

EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption
scheme that encrypts messages twice as long as its key, then a one-way
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝒓𝒓 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒌𝒌 𝒎𝒎; 𝒓𝒓 ‖𝒎𝒎.
Input: 4n bits
(For simplicity assume that Enck accepts n bits of randomness)

Claim: f is a OWF

33

EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption
scheme that encrypts messages twice as long as its key, then a one-way
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝒓𝒓 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒌𝒌 𝒎𝒎; 𝒓𝒓 ‖𝒎𝒎.
Claim: f is a OWF
Reduction Intuition: Inverting f involves finding secret key k consistent
with known message-ciphertext pair.

34

MACs OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against
an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private
key cryptography.

OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?
• OWFs are known to be necessary
• Not known (or believed) to be sufficient.

35

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

36

Computational Indistinguishability

The advantage of a distinguisher D is

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

• Looks similar to definition of PRGs
• Xn is distribution G(Un) and
• Yn is uniform distribution 𝑈𝑈ℓ(n) over strings of length ℓ(n).

37

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

Theorem 7.32: Let t(n) be a polynomial and let 𝑃𝑃𝑛𝑛 = 𝑋𝑋𝑛𝑛
𝑡𝑡(𝑛𝑛) and 𝑄𝑄𝑛𝑛 =

𝑌𝑌𝑛𝑛
𝑡𝑡(𝑛𝑛) then the ensembles 𝑃𝑃𝑛𝑛 𝑛𝑛∈ℕ and 𝑄𝑄𝑛𝑛 𝑛𝑛∈ℕ are computationally

indistinguishable

38

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

Fact: Let 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ be computationally indistinguishable
and let 𝑍𝑍𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ be computationally indistinguishable
Then
𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑍𝑍𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable

39

CS 555: Week 9: Topic 2
Number Theory/Public Key-

Cryptography

40

Public Key Cryptography

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin
• Can they use Anakin to exchange a secret key?

41

Public Key Cryptography

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin
• Can they use Anakin to exchange a secret key?
• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private

just in case.

42

Public Key Cryptography

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin
• Can they use Anakin to exchange a secret key?
• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private

just in case.

• Need for Public-Key Crypto
• We can solve the key-exchange problem using public-key cryptography.
• No solution is known using symmetric key cryptography alone

43

Public Key Cryptography

• Suppose we have n people and
each pair of people want to be able
to maintain a secure communication
channel.

• How many private keys per person?
• Answer: n-1

• Key Explosion Problem
• n can get very big if you are Google or Amazon!

44

Number Theory

• Key tool behind public key-crypto
• RSA, El-Gamal, Diffie-Hellman Key Exchange

• Aside: don’t worry we will still use symmetric key crypto
• It is more efficient in practice
• First step in many public key-crypto protocols is to generate symmetric key

• Then communicate using authenticated encryption

45

Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For i=1,…,N

if N/i is an integer then
Output I

Running time: O(N) steps
Correctness: Always returns a factor

46

Did we just break RSA?

Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For i=1,…,N

if N/i is an integer then
Output I

Running time: O(N) steps
Correctness: Always returns a factor

47

We measure running time of an arithmetic
algorithm (multiply, divide, GCD, remainder) in

terms of the number of bits necessary to encode
the inputs.

How many bits 𝑁𝑁 to encode N?
Answer: 𝑁𝑁 = log2(N)

Polynomial Time Operations on Integers

• Addition
• Multiplication
• Division with Remainder

• Input: a and divisor b
• Output: quotient q and remainder r < b such that

𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
Convenient Notation: r = a mod b

• Greatest Common Divisor
• Example: gcd(9,15) = 3

• Extended GCD(a,b)
• Output integers X,Y such that

𝑋𝑋𝒂𝒂 + 𝑌𝑌𝒃𝒃 = gcd(𝒂𝒂,𝒃𝒃)

48

Polynomial time in 𝑎𝑎 and 𝑏𝑏

Polynomial Time Operations on Integers

• Division with Remainder
• Input: a and b
• Output: quotient q and remainder r < b such that

𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
• Greatest Common Divisor

• Key Observation: if 𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
Then gcd(a,b) = gcd(r, b)=gcd(a mod b, b)

Proof:
• Let d = gcd(a,b). Then d divides both a and b. Thus, d also divides r=a-qb.

d=gcd(a,b) ≤ gcd(r, b)
• Let d’ = gcd(r, b). Then d’ divides both b and r. Thus, d’ also divides a = qb+r.
gcd(a,b) ≥ gcd(r, b)=d’

• Conclusion: d=d’.

49

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product

[ab mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists
5. Compute the exponentiation [ab mod N]

50

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product

[ab mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists
5. Compute the exponentiation [ab mod N]

51

Remark: Part 3 and 4 use extended GCD
algorithm

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute the exponentiation [ab mod N]

Attempt 1:

X =1
For i=1,…,b

X = X*a

52

What is wrong?

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in 𝑎𝑎 , 𝑏𝑏 and 𝑁𝑁 .
1. Compute the exponentiation [ab mod N]

Attempt 2:
If (b=0) return 1
X[0]=a;
For i=1,…,log2(b)+1

X[i] = X[i-1]*X[i-1] // Invariant: X[i] = 𝒂𝒂2𝑖𝑖

[ab mod N]=𝒂𝒂∑𝑖𝑖 𝒃𝒃[𝑖𝑖]2𝑖𝑖mod 𝐍𝐍
= �

𝑖𝑖

b[i] X[i] mod 𝐍𝐍

53

What is wrong?

The number of bits in 𝒂𝒂2 𝑏𝑏 +1 is
O(2 𝑏𝑏 +1).

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in 𝑎𝑎 , 𝑏𝑏 and 𝑁𝑁 .
1. Compute the exponentiation [ab mod N]

Fixed Algorithm:
If (b=0) return 1
X[0]=a;
For i=1,…,log2(b)+1

X[i] = X[i-1]*X[i-1] mod N // Invariant: X[i] = 𝒂𝒂2𝑖𝑖 mod N
[ab mod N]=𝒂𝒂∑𝑖𝑖 𝒃𝒃[𝑖𝑖]2𝑖𝑖mod 𝐍𝐍

= �
𝑖𝑖

b[i] X[i] mod 𝐍𝐍

54

More Polynomial Time Operations on Integers

(Sampling) Let
ℤ𝑁𝑁 = 1, … ,𝑁𝑁

ℤ
𝑁𝑁
∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

Examples:
ℤ6∗ = 1,5

ℤ7∗ = 1,2,3,4,5,6

55

More Polynomial Time Operations on Integers

(Sampling) Let
ℤ𝑁𝑁 = 1, … ,𝑁𝑁

ℤ
𝑁𝑁
∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

• There is a probabilistic polynomial time algorithm (in |N|) to sample
from ℤ

𝑁𝑁
∗ and ℤ𝑁𝑁

• Algorithm to sample from ℤ
𝑁𝑁
∗ is allowed to output “fail” with

negligible probability in |N|.
• Conditioned on not failing sample must be uniform.

56

Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Example 1: ℤ8∗ = 1,3,5,7

3 × 7 mod 8 = 21 mod 8 = [5 mod 8] ∈ ℤ
N

∗

Proof: gcd(xy,N) = d
Suppose d>1 then for some prime p and integer q we have d=pq.
Now p must divide N and xy (by definition) and hence p must divide either x
or y.
(WLOG) say p divides x. In this case gcd(x,N)=p > 1, which means 𝑥𝑥 ∉ ℤ

N

∗

57

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1

58

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 𝑥𝑥

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

59

Recap

• Polynomial time algorithms (in bit lengths 𝒂𝒂 , 𝒃𝒃 and 𝐍𝐍) to do
important stuff

• GCD(a,b)
• Find inverse a-1 of a such that 1=[aa-1 mod N] (if it exists)
• PowerMod: [ab mod N]
• Draw uniform sample from ℤ

𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1
• Randomized PPT algorithm

60

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1

61

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

62

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 0: Let p be a prime so that ℤ
p
∗ = 1, … , 𝑝𝑝 − 1

𝝓𝝓 𝒑𝒑 = 𝑝𝑝 1 −
1
𝑝𝑝

= 𝑝𝑝 − 1

63

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 1: N = 9 = 32 (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3

64

More Useful Facts

Example 1: N = 9 = 32 (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3

Double Check: ℤ
9
∗ = 1,2,4,5,7,8

65

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8

66

More Useful Facts

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8

Double Check: ℤ
15
∗ = 1,2,4,7,8,11,13,14

I count 8 elements in ℤ
15
∗

67

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑛𝑛�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

68

More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many elements

are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Double Counting? N=pq is in both lists. Any other duplicates?
• No! cq = dp q divides d (since, gcd(p,q)=1) and consequently d ≥ 𝑞𝑞

• Hence, dp ≥ 𝑝𝑝𝑝𝑝 = 𝑁𝑁

69

More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many

elements are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Answer: p+q-1 elements are not in ℤ

N
∗

𝝓𝝓 𝑵𝑵 = 𝑵𝑵− 𝒑𝒑 + 𝒒𝒒 − 𝟏𝟏
= 𝐩𝐩𝐩𝐩 − 𝐩𝐩 − 𝐪𝐪 + 𝟏𝟏 = (𝐩𝐩 − 𝟏𝟏)(𝐪𝐪 − 𝟏𝟏)

70

Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have

g ∘ e = g = e ∘ g
• (Inverses:) For each element g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.

We say that h is the inverse of g.
• (Associativity:) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g

71

Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?

72

Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a, since [ax mod N] = [1-bN mod N] = 1

73

Groups

Lemma 8.13: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) and let
a, b, c ∈ 𝔾𝔾. If a ∘ c = b ∘ c then a = b.

Proof Sketch: Apply the unique inverse to 𝑐𝑐−1 both sides.
a ∘ c = b ∘ c  a ∘ c ∘ 𝑐𝑐−1= b ∘ c ∘ 𝑐𝑐−1

 a ∘ c ∘ 𝑐𝑐−1 = b ∘ c ∘ 𝑐𝑐−1

 a ∘ 𝑒𝑒 = b ∘ 𝑒𝑒
 a = b

(Remark: it is not to difficult to show that a group has a unique identity and
that inverses are unique).

74

Group Exponentiation

Definition: Let 𝔾𝔾 be a group with a binary operation ∘ (over G)
let m be a positive integer and let g ∈ 𝔾𝔾 be a group element
then we define

𝑔𝑔𝑚𝑚 = g ∘ ⋯ ∘ g

Theorem: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let g ∈
𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

75

m times

Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Why? If 𝑔𝑔 ∘ 𝑔𝑔𝑖𝑖 = 𝑔𝑔 ∘ 𝑔𝑔𝑗𝑗 then 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖 (by Lemma 8.13)

76

Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Because 𝔾𝔾 is abelian we can re-arrange terms
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 𝑔𝑔𝑚𝑚

By Lemma 8.13 we have 1 = 𝑔𝑔𝑚𝑚. QED

77

Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

Corollary 8.15: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 > 1
and let g ∈ 𝔾𝔾 be a group element then for any integer x we
have 𝑔𝑔𝑥𝑥 = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚].
Proof: 𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑞𝑞𝑞𝑞+[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚] = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚], where q is unique
integer such that x=qm+ [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚]

78

Group Exponentiation

Special Case: ℤ
𝑁𝑁

∗ is a group of size 𝝓𝝓 𝑵𝑵 so we have now
proved

Corollary 8.22: For any 𝑔𝑔 ∈ ℤ
N

∗ and integer x we have

𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N

79

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥

80

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [1153 mod 15]
f(11)=([-1 mod 3],[1 mod 5])
f(1153) =([(-1)53 mod 3],[153 mod 5])= (-1,1)

𝑓𝑓−1(-1,1)=11

Thus, 11=[1153 mod 15]

81

	Course Business
	Cryptography�CS 555
	CS 555: Week 8: Topic 1:�One Way Functions
	One-Way Functions (OWFs)
	Hard Core Predicates
	Hard Core Predicates
	Attempt 1: Hard-Core Predicate
	Trivial Hard-Core Predicate
	Attempt 3: Hard-Core Predicate
	Using Hard-Core Predicates
	Arbitrary Expansion
	Any Beyond
	Any Beyond
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	Hybrid H1
	From OWFs (Recap)
	OWFs/OWPs are Sufficient for Symmetric Crypto
	Are OWFs Necessary for Private Key Crypto?
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	What other assumptions imply OWFs?
	EAV-Secure Crypto  OWFs
	EAV-Secure Crypto  OWFs
	EAV-Secure Crypto  OWFs
	MACs OWFs
	Computational Indistinguishability
	Computational Indistinguishability
	Computational Indistinguishability
	Computational Indistinguishability
	CS 555: Week 9: Topic 2�Number Theory/Public Key-Cryptography
	Public Key Cryptography
	Public Key Cryptography
	Public Key Cryptography
	Public Key Cryptography
	Number Theory
	Polynomial Time Factoring Algorithm?
	Polynomial Time Factoring Algorithm?
	Polynomial Time Operations on Integers
	Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	Useful Facts
	More Useful Facts
	More Useful Facts
	Recap
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	Groups
	Abelian Groups (Examples)
	Abelian Groups (Examples)
	Groups
	Group Exponentiation
	Group Exponentiation
	Group Exponentiation
	Group Exponentiation
	Group Exponentiation
	Chinese Remainder Theorem
	Chinese Remainder Theorem

