Course Business

- Homework 3 Released
 - Due: Tuesday, October 31st.

 I will be travelling early next week to attend a workshop on dataprivacy

Guest Lecture on 10/24 (Professor Spafford)

Cryptography CS 555

Week 9:

- One Way Functions
- Number Theory

Readings: Katz and Lindell Chapter 7, B.1, B.2, 8.1-8.2

Fall 2017

CS 555: Week 8: Topic 1: One Way Functions

What are the minimal assumptions necessary for symmetric keycryptography?

One-Way Functions (OWFs)

$$f(x) = y$$

Definition: A function $f: \{0,1\}^* \to \{0,1\}^*$ is one way if it is

- 1. (Easy to compute) There is a polynomial time algorithm (in |x|) for computing f(x).
- **2.** (Hard to Invert) Select $x \leftarrow \{0,1\}^n$ uniformly at random and give the attacker input 1^n , f(x). The probability that a PPT attacker outputs x' such that f(x') = f(x) is negligible.

Hard Core Predicates

 Recall that a one-way function f may potentially reveal lots of information about input

- Example: $f(x_1,x_2)=(x_1,g(x_2))$, where g is a one-way function.
- Claim: f is one-way (even if $f(x_1,x_2)$ reveals half of the input bits!)

Hard Core Predicates

Definition: A predicate $hc: \{0,1\}^* \to \{0,1\}$ is called a hard-core predicate of a function f if

- 1. (Easy to Compute) hc can be computed in polynomial time
- 2. (Hard to Guess) For all PPT attacker A there is a negligible function negl such that we have

$$\mathbf{Pr}_{x \leftarrow \{0,1\}^n}[A(1^n, f(x)) = \text{hc}(x)] \le \frac{1}{2} + negl(n)$$

Attempt 1: Hard-Core Predicate

Consider the predicate

$$hc(x) = \bigoplus_{i=1}^{n} x_i$$

Hope: hc is hard core predicate for any OWF.

Counter-example:

$$f(x) = (g(x), \bigoplus_{i=1}^{n} x_i)$$

Trivial Hard-Core Predicate

Consider the function

$$f(x_1,...,x_n) = x_1,...,x_{n-1}$$

f has a trivial hard core predicate

$$hc(x) = x_n$$

Not useful for crypto applications (e.g., f is not a OWF)

Attempt 3: Hard-Core Predicate

Consider the predicate

$$hc(x, r) = \bigoplus_{i=1}^{n} x_i r_i$$

(the bits $r_1,...,r_n$ will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hard-core predicate of g(x,r)=(f(x),r).

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we can construct a PRG G with expansion factor $\ell(n) = n + 1$.

Construction:

$$G(s) = f(s) \parallel hc(s)$$

Intuition: f(s) is actually uniformly distributed

- s is random
- f(s) is a permutation
- Last bit is hard to predict given f(s) (since hc is hard-core for f)

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Construction:

- G(x) = y||b. (n+1 bits)
- $G^{i+1}(x) = G(z)||b|$ where $G^i(x) = z||b|(n+i)$

Any Beyond

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2n$. Then there is a secure PRF.

Let $G(x) = G_0(x)||G_1(x)$ (first/last n bits of output)

$$F_K(x_1,\ldots,x_n)=G_{x_n}\left(\ldots\left(G_{x_2}\left(G_{x_1}(K)\right)\right)\ldots\right)$$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2n$. Then there is a secure PRF.

Proof:

Related Claim: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

(recall Homework 2!)

Claim 1: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

Proof by Hybrids: Fix j

$$= \left| Pr \left[A \left(r_1 \parallel \cdots \parallel r_{j+1} \parallel G(s_{j+2}) \dots \parallel G(s_{t(n)}) \right) \right] \right|$$

Hybrid H₁

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

OWFs/OWPs are Sufficient for Symmetric Crypto

Corollary: If one-way permutations exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way permutations exist then there exist CCA-secure encryption schemes and secure MACs.

Remark: Can obtain all of the above results from OWFs as well

Are OWFs Necessary for Private Key Crypto?

Previous results show that OWFs are <u>sufficient</u>.

Can we build Private Key Crypto from weaker assumptions?

• **Short Answer:** No, OWFs are also <u>necessary</u> for most private-key crypto primitives

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Question: why can we assume that we have an PRG with expansion 2n?

Answer: We already showed that a PRG with expansion factor $\ell(n) = n + 1$. Implies the existence of a PRG with expansion p(n) for any polynomial.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim: G is also a OWF!
 (Easy to Compute?) √
 (Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Reduction: Assume (for contradiction) that A can invert G(s) with nonnegligible probability p(n).

Distinguisher D(y): Simulate A(y)

Output 1 if and only if A(y) outputs x s.t. G(x)=y.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.

Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

Why not?

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.

Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

- Why not? Simple counting argument, 2²ⁿ possible y's and 2ⁿ x's.
- Probability there exists such an x is at most 2⁻ⁿ (for a random y)

What other assumptions imply OWFs?

- PRGs → OWFs
- (Easy Extension) PRFs → PRGs → OWFs

- Does secure crypto scheme imply OWFs?
 - CCA-secure? (Strongest)
 - CPA-Secure? (Weaker)
 - EAV-secure? (Weakest)
 - As long as the plaintext is longer than the secret key
 - Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto → OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts m_0 , m_1 and is given $c=Enc_K(m_b)$ for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto → OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Input: 4n bits

(For simplicity assume that **Enc**_k accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto → OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Claim: f is a OWF

Reduction Intuition: Inverting f involves finding secret key k consistent with known message-ciphertext pair.

MACs OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.

→OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_{ℓ} or Y_{ℓ} .

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ are computationally indistinguishable if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$Adv_{D,n} \leq negl(n)$$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

- Looks similar to definition of PRGs
 - X_n is distribution G(U_n) and
 - Y_n is uniform distribution $U_{\ell(n)}$ over strings of length $\ell(n)$.

Definition: We say that an ensemble of distributions $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$Adv_{D,n} \leq negl(n)$$

Theorem 7.32: Let t(n) be a polynomial and let $P_n = X_n^{t(n)}$ and $Q_n = Y_n^{t(n)}$ then the ensembles $\{P_n\}_{n\in\mathbb{N}}$ and $\{Q_n\}_{n\in\mathbb{N}}$ are <u>computationally indistinguishable</u>

Definition: We say that an ensemble of distributions $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ are computationally indistinguishable if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$Adv_{D,n} \leq negl(n)$$

Fact: Let $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ be <u>computationally indistinguishable</u> and let $\{Z_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ be <u>computationally indistinguishable</u>

Then

 $\{X_n\}_{n\in\mathbb{N}}$ and $\{Z_n\}_{n\in\mathbb{N}}$ are computationally indistinguishable

CS 555: Week 9: Topic 2 Number Theory/Public Key-Cryptography

• Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate one
 - Obi-Wan and Yoda share an asymmetric key with Anakin
 - Can they use Anakin to exchange a secret key?

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate one
 - Obi-Wan and Yoda share an asymmetric key with Anakin
 - Can they use Anakin to exchange a secret key?

• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private

just in case.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate one
 - Obi-Wan and Yoda share an asymmetric key with Anakin
 - Can they use Anakin to exchange a secret key?
 - **Remark**: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.
- Need for Public-Key Crypto
 - We can solve the key-exchange problem using public-key cryptography.
 - No solution is known using symmetric key cryptography alone

- Suppose we have n people and each pair of people want to be able to maintain a secure communication channel.
 - How many private keys per person?
 - Answer: n-1

- Key Explosion Problem
 - n can get very big if you are Google or Amazon!

Number Theory

- Key tool behind public key-crypto
 - RSA, El-Gamal, Diffie-Hellman Key Exchange

- Aside: don't worry we will still use symmetric key crypto
 - It is more efficient in practice
 - First step in many public key-crypto protocols is to generate symmetric key
 - Then communicate using authenticated encryption

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N

For i=1,...,N

if N/i is an integer then

Output I

Running time: O(N) steps

Correctness: Always returns a factor

Did we just break RSA?

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N

For i=1,...,N

if N/i is an integer then

Output I

We measure running time of an arithmetic algorithm (multiply, divide, GCD, remainder) in terms of the number of bits necessary to encode the inputs.

How many bits ||N|| to encode N? Answer: $||N|| = \log_2(N)$

Running time: O(N) steps

Correctness: Always returns a factor

- Addition
- Multiplication
- Division with Remainder
 - Input: a and divisor b
 - **Output**: quotient q and remainder r < **b** such that

$$a = qb + r$$

Convenient Notation: r = a mod b

- Greatest Common Divisor
 - **Example:** gcd(9,15) = 3
- Extended GCD(a,b)
 - Output integers X,Y such that

$$X\mathbf{a} + Y\mathbf{b} = \gcd(\mathbf{a}, \mathbf{b})$$

Polynomial time in ||a|| and ||b||

- Division with Remainder
 - Input: a and b
 - Output: quotient q and remainder r < b such that

$$a = qb + r$$

- Greatest Common Divisor
 - **Key Observation:** if a = qb + rThen gcd(a,b) = gcd(r, b)=gcd(a mod b, b)

Proof:

- Let d = gcd(a,b). Then d divides both a and b. Thus, d also divides r=a-qb.
 →d=gcd(a,b) ≤ gcd(r, b)
- Let d' = gcd(r, b). Then d' divides both b and r. Thus, d' also divides a = qb+r.
 →gcd(a,b) ≥ gcd(r, b)=d'
- Conclusion: d=d'.

• (Modular Arithmetic) The following operations are polynomial time in ||a|| and ||b|| and ||N||.

- 1. Compute [a mod N]
- 2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product [ab mod N]
- 3. Determine whether **a** has an inverse \mathbf{a}^{-1} such that $1=[\mathbf{a}\mathbf{a}^{-1} \mod \mathbf{N}]$
- 4. Find **a**⁻¹ if it exists
- 5. Compute the exponentiation [ab mod N]

- (Modular Arithmetic) The in I
- 1. Compute [a mod N]
- 2. Compute sum [ab mod N]

Remark: Part 3 and 4 use extended GCD algorithm

- 3. Determine whether **a** has an inverse a^{-1} such that $1=[aa^{-1} \mod N]$
- 4. Find **a**⁻¹ if it exists
- 5. Compute the exponentiation [ab mod N]

- (Modular Arithmetic) The following operations are polynomial time in in ||a|| and ||b|| and ||N||.
- 1. Compute the exponentiation [ab mod N]

Attempt 1:

What is wrong?

(Modular Arithmetic) The following operations are polynomial time in ||a||, ||b|| and ||N||.

1. Compute the exponentiation [ab mod N]

Attempt 2:

If (b=0) return 1
X[0]=a;
For i=1,...,log₂(b)+1
X[i] = X[i-1]*X[i-1

What is wrong?

The number of bits in $a^{2^{\parallel b \parallel + 1}}$ is $O(2^{\parallel b \parallel + 1})$.

$$X[i] = X[i-1]*X[i-1] \qquad \qquad \text{invariant: } X[i] = \boldsymbol{a}^{2^{i}}$$

$$[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}] = \boldsymbol{a}^{\sum_{i} \boldsymbol{b}[i] 2^{i}} \bmod \mathbf{N}$$

$$= \prod_{i} \mathbf{b}[i] \ X[i] \ \bmod \mathbf{N}$$

(Modular Arithmetic) The following operations are polynomial time in ||a||, ||b|| and ||N||.

1. Compute the exponentiation [ab mod N]

Fixed Algorithm:

(Sampling) Let

$$\mathbb{Z}_{N} = \{1, \dots, N\}$$

$$\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$$

Examples:

$$\mathbb{Z}_{6}^{*} = \{1,5\}$$

$$\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$$

(Sampling) Let

$$\mathbb{Z}_{N} = \{1, \dots, N\}$$

$$\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$$

- There is a probabilistic polynomial time algorithm (in |N|) to sample from \mathbb{Z}_{N}^{*} and \mathbb{Z}_{N}
- Algorithm to sample from \mathbb{Z}^* is allowed to output "fail" with negligible probability in |N|.
- Conditioned on not failing sample must be uniform.

Useful Facts

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Example 1: $\mathbb{Z}_8^* = \{1,3,5,7\}$

$$[3 \times 7 \mod 8] = [21 \mod 8] = [5 \mod 8] \in \mathbb{Z}_{N}^{*}$$

Proof: gcd(xy,N) = d

Suppose d>1 then for some prime p and integer q we have d=pq.

Now p must divide N and xy (by definition) and hence p must divide either x or y.

(WLOG) say p divides x. In this case gcd(x,N)=p > 1, which means $x \notin \mathbb{Z}_{N}^{*}$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \bmod N\right] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \, \phi(8) = 4$$
 $\left[3^4 \mod 8\right] = \left[9 \times 9 \mod 8\right] = 1$ $\left[5^4 \mod 8\right] = \left[25 \times 25 \mod 8\right] = 1$ $\left[7^4 \mod 8\right] = \left[49 \times 49 \mod 8\right] = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_{\mathbb{N}}^*|$ then for any $x \in \mathbb{Z}_{\mathbb{N}}^*$ we have $\left[x^{\phi(N)} \bmod \mathbb{N}\right] = x$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Recap

- Polynomial time algorithms (in bit lengths $\|a\|$, $\|b\|$ and $\|N\|$) to do important stuff
 - GCD(a,b)
 - Find inverse a⁻¹ of a such that 1=[aa⁻¹ mod N] (if it exists)
 - PowerMod: [a^b mod N]
 - Draw uniform sample from $\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$
 - Randomized PPT algorithm

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \bmod N\right] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \phi(8) = 4$$
 $\left[3^4 \mod 8\right] = \left[9 \times 9 \mod 8\right] = 1$ $\left[5^4 \mod 8\right] = \left[25 \times 25 \mod 8\right] = 1$ $\left[7^4 \mod 8\right] = \left[49 \times 49 \mod 8\right] = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \mod N\right] = 1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Example 0: Let p be a prime so that $\mathbb{Z}^* = \{1, ..., p-1\}$ $\phi(p) = p\left(1 - \frac{1}{p}\right) = p-1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 1: N = 9 = 3² (m=1, e₁=2)

$$\phi(9) = \prod_{i=1}^{2} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Example 1: N = 9 = 3² (m=1, e₁=2)

$$\phi(9) = \prod_{i=1}^{1} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Double Check:
$$\mathbb{Z}_{9}^{*} = \{1,2,4,5,7,8\}$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, $e_1 = e_2 = 1$)
$$\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, $e_1 = e_2 = 1$)
$$\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Double Check:
$$\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$$

I count 8 elements in \mathbb{Z}_{15}^*

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Special Case: N = pq (p and q are distinct primes) $\phi(N) = (p-1)(q-1)$

```
Special Case: N = pq (p and q are distinct primes) \phi(N) = (p-1)(q-1)
```

Proof Sketch: If $x \in \mathbb{Z}_{N}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- **Double Counting?** N=pq is in both lists. Any other duplicates?
- No! cq = dp \rightarrow q divides d (since, gcd(p,q)=1) and consequently d $\geq q$
 - Hence, $dp \ge pq = N$

Special Case: N = pq (p and q are distinct primes)
$$\phi(N) = (p-1)(q-1)$$

Proof Sketch: If $x \in \mathbb{Z}$ is not divisible by p or q then $x \in \mathbb{Z}_{\mathbb{N}}^*$. How many elements are not in $\mathbb{Z}_{\mathbb{N}}^*$?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- Answer: p+q-1 elements are not in \mathbb{Z}^* $\phi(N) = N - (p^N + q - 1)$ = pq - p - q + 1 = (p - 1)(q - 1)

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over \mathbb{G}) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have $g \circ e = g = e \circ g$
- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is abelian if

• (Commutativity:) For all $g, h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$
- Observe that: $x^{-1} = a$, since [ax mod N] = [1-bN mod N] = 1

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) and let $a,b,c\in\mathbb{G}$. If $a\circ c=b\circ c$ then a=b.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$a \circ c = b \circ c \rightarrow (a \circ c) \circ c^{-1} = (b \circ c) \circ c^{-1}$$

 $\rightarrow a \circ (c \circ c^{-1}) = b \circ (c \circ c^{-1})$
 $\rightarrow a \circ (e) = b \circ (e)$
 $\rightarrow a = b$

(**Remark**: it is not to difficult to show that a group has a *unique* identity and that inverses are *unique*).

Definition: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) let m be a positive integer and let $g \in \mathbb{G}$ be a group element then we define

$$g^m = g \circ \cdots \circ g$$

m times

Theorem: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G} = \{g_1, \dots, g_m\}$ then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$

Why? If $(g \circ g_i) = (g \circ g_j)$ then $g_j = g_i$ (by Lemma 8.13)

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let
$$\mathbb{G} = \{g_1, \dots, g_m\}$$
 then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$

Because G is abelian we can re-arrange terms

$$g_1 \circ \cdots \circ g_m = (g_1 \circ \cdots \circ g_m)(g^m)$$

By Lemma 8.13 we have $1 = g^m$.

QED

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Corollary 8.15: Let \mathbb{G} be finite group with size $m = |\mathbb{G}| > 1$ and let $g \in \mathbb{G}$ be a group element then for any integer x we have $g^x = g^{[x \mod m]}$.

Proof: $g^x = g^{qm+[x \bmod m]} = g^{[x \bmod m]}$, where q is unique integer such that x=qm+ $[x \bmod m]$

Special Case: \mathbb{Z}_{N}^{*} is a group of size $\phi(N)$ so we have now proved

Corollary 8.22: For any $g \in \mathbb{Z}_{\mathbb{N}}^*$ and integer x we have

$$[g^{x} \bmod N] = [g^{[x \bmod \phi(N)]} \bmod N]$$

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows

$$f(x) = ([x \bmod p], [x \bmod q])$$

then

- f is a bijective mapping (invertible)
- f and its inverse f^{-1} : $\mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_N$ can be computed efficiently
- $\bullet f(x+y) = f(x) + f(y)$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute $[11^{53} \mod 15]$ $f(11)=([-1 \mod 3],[1 \mod 5])$ $f(11^{53})=([(-1)^{53} \mod 3],[1^{53} \mod 5])=(-1,1)$

$$f^{-1}(-1,1)=11$$

Thus, $11=[11^{53} \mod 15]$