
Midterm Statistics

Minimum Value 56.1

Maximum Value 93.8

Range 37.7

Average 78.72

Median 79.15
Standard
Deviation 9.51

1

Final Exam

• Time: Tuesday, December 12th at 1PM (Tentative Subject to Change)
• Location: LWSN 1106

2

Cryptography
CS 555

Week 8:
• DES, 3DES, AES
• One Way Functions
Readings: Katz and Lindell Chapter 7

3Fall 2017

Feistel Networks and Substitution
Permutation Networks

•Used to construct block-ciphers

•DES: Feistel Network

•AES: Substitution Permutation Network

4

CS 555: Week 8: Topic 1:
DES, 3DES, AES

5

Data Encryption Standard

• Developed in 1970s by IBM (with help from NSA)

• Adopted in 1977 as Federal Information Processing Standard (US)

• Data Encryption Standard (DES): 16-round Feistel Network.

• Key Length: 56 bits
• Vulnerable to brute-force attacks in modern times
• 1.5 hours at 14 trillion keys/second (e.g., Antminer S9)

6

DES Round

7

DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes)

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
8

Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?

9

Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: Given (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥) try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 .

• Solution?
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝑘𝑘2
−1 c

• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential key K and store
𝐾𝐾, 𝐹𝐹𝐾𝐾−1 c and 𝐾𝐾, 𝐹𝐹𝐾𝐾 x

• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x) to find K1 and K2.

10

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

11

Triple DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

12

Allows backward compatibility
with DES by setting k1=k2=k3

Triple DES

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher operations)
• Now viewed as ``weak cipher” by OpenSSL

• Current gold standard: AES

14

Advanced Encryption Standard (AES)

• (1997) US National Institute of Standards and Technology (NIST) announces
competition for new block cipher to replace DES

• Fifteen algorithms were submitted from all over the world
• Analyzed by NIST

• Contestants given a chance to break competitors schemes

• October, 2000 NIST announces a winner Rijndael
• Vincent Rijmen and Joan Daemen
• No serious vulnerabilities found in four other finalists
• Rijndael was selected for efficiency, hardware performance, flexibility etc…

15

Advanced Encryption Standard

• Block Size: 128 bits (viewed as 4x4 byte array)
• Key Size: 128, 192 or 256
• First public cipher approved by NSA for Top Secret information

• (2009) Attack on 11 round version of AES
• recovers 256-bit key in time 270

• But AES is 14 round (with 256 bit key) so the attack doesn’t apply in practice

• (2009) Attack on 192-bit and 256 bit version of AES
• recovers 256-bit key in time 299.5.

16

AES Attacks?

• Side channel attacks affect a few specific implementations
• But, this is not a weakness of AES itself
• Timing attack on OpenSSL’s implementation AES encryption (2005, Bernstein)

17

Presenter
Presentation Notes
In April 2005, D.J. Bernstein announced a cache-timing attack that he used to break a custom server that used OpenSSL's AES encryption.[20] The custom server was designed to give out as much timing information as possible (the server reports back the number of machine cycles taken by the encryption operation), and the attack required over 200 million chosen plaintexts.[21]

CS 555: Week 8: Topic 1:
One Way Functions

18

What are the minimal assumptions necessary for symmetric key-
cryptography?

One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Definition: A function f: 0,1 ∗ → 0,1 ∗ is one way if it is
1. (Easy to compute) There is a polynomial time algorithm (in |x|) for

computing f(x).
2. (Hard to Invert) Select x ← 0,1 𝑛𝑛 uniformly at random and give the

attacker input 1n, f(x). The probability that a PPT attacker outputs x’ such
that f 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) is negligible.

19

One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Key Takeaway: One-Way Functions is a necessary and sufficient
assumption for most of symmetric key cryptography.
• From OWFs we can construct PRGs, PRFs, Authenticated Encryption
• From eavesdropping secure encryption (weakest) notion we can

construct OWFs

20

One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
• A function that is not one-way is not necessarily always easy to invert

(even often)
• Any such function can be inverted in time 2n (brute force)
• Length-preserving OWF: |f(x)| = |x|
• One way permutation: Length-preserving + one-to-one

21

One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. f(x) does not necessarily hide all information about x.
2. If f(x) is one way then so is 𝐟𝐟′ 𝐱𝐱 = 𝐟𝐟 𝐱𝐱 ∥ 𝑳𝑳𝑳𝑳𝑳𝑳 𝒙𝒙 .

22

One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. Actually we usually consider a family of one-way functions

𝒇𝒇𝑰𝑰: 𝟎𝟎,𝟏𝟏 𝑰𝑰 → 𝟎𝟎,𝟏𝟏 𝑰𝑰

23

Candidate One-Way Functions (OWFs)

𝑓𝑓𝑝𝑝,𝑔𝑔 𝑥𝑥 = [𝑔𝑔𝑥𝑥 mo𝑑𝑑 𝑝𝑝]
(Discrete Logarithm Problem)

Note: The existence of OWFs implies P ≠ 𝑁𝑁𝑁𝑁 so we cannot be absolutely
certain that they do exist.

26

Hard Core Predicates

• Recall that a one-way function f may potentially reveal lots of
information about input

• Example: f(x1,x2)=(x1,g(x2)), where g is a one-way function.
• Claim: f is one-way (even if f(x1,x2) reveals half of the input bits!)

27

Hard Core Predicates

Definition: A predicate hc: 0,1 ∗ → 0,1 is called a hard-core
predicate of a function f if
1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function

negl such that we have

𝐏𝐏𝐏𝐏𝑥𝑥← 0,1 𝑛𝑛 𝐴𝐴 1𝑛𝑛, 𝑓𝑓(𝑥𝑥) = hc(𝑥𝑥) ≤
1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

28

Attempt 1: Hard-Core Predicate

Consider the predicate
hc x = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖

Hope: hc is hard core predicate for any OWF.

Counter-example:

f(x) = (g(x), ⨁𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖)

29

Trivial Hard-Core Predicate

Consider the function
f(x1,…,xn) = x1,…,xn-1

f has a trivial hard core predicate
hc x = 𝑥𝑥𝑛𝑛

Not useful for crypto applications (e.g., f is not a OWF)

30

Attempt 3: Hard-Core Predicate

Consider the predicate
hc x, r = ⨁𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
(the bits 𝑟𝑟1,…, 𝑟𝑟𝑛𝑛 will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a
hard-core predicate of g(x,r)=(f(x),r).

31

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we
can construct a PRG G with expansion factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1.

Construction:
𝐺𝐺 𝑠𝑠 = 𝑓𝑓(𝑠𝑠) ∥ hc(𝑠𝑠)

Intuition: f(s) is actually uniformly distributed
• s is random
• f(s) is a permutation
• Last bit is hard to predict given f(s) (since hc is hard-core for f)

32

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a
PRG with expansion factor p(n).

Construction:
• G(x) = y||b. (n+1 bits)
• G1(x) = G(y)||b (n+2 bits)
• Gi+1(x) = G(y)||b where Gi (x) = y||b (n+2 bits)

33

Any Beyond

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a
strong pseudorandom permutation.

34

Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs
and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs.

35

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x) (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …

36

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

37

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

38

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof by Hybrids: Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒋𝒋+𝟏𝟏 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

39

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

40

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝒓𝒓𝟏𝟏 ∥ ⋯ ∥ 𝒓𝒓𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

41

Hybrid H1

42

42

r

r0 r1

G0(r0) G1(r0)

……

G0(r1) G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a
strong pseudorandom permutation.

45

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs
and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs.

46

Are OWFs Necessary for Private Key Crypto

• Previous results show that OWFs are sufficient.

• Can we build Private Key Crypto from weaker assumptions?

• Short Answer: No, OWFs are also necessary for most private-key
crypto primitives

47

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Question: why can we assume that we have an PRG with expansion
2n?
Answer: Last class we showed that a PRG with expansion factor
ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Implies the existence of a PRG with expansion p(n) for
any polynomial.

48

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.

Claim: G is also a OWF!
(Easy to Compute?) ✓
(Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a
random string.

49

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible
probability.
Reduction: Assume (for contradiction) that A can invert G(s) with non-
negligible probability p(n).
Distinguisher D(y): Simulate A(y)
Output 1 if and only if A(y) outputs x s.t. G(x)=y.

50

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible
probability.
Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such
that G(x)=y.

Why not?

51

PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that
G(x)=y.

• Why not? Simple counting argument, 22n possible y’s and 2n x’s.
• Probability there exists such an x is at most 2-n (for a random y)

52

What other assumptions imply OWFs?

• PRGs  OWFs
• (Easy Extension) PRFs  PRGs  OWFs

• Does secure crypto scheme imply OWFs?
• CCA-secure? (Strongest)
• CPA-Secure? (Weaker)
• EAV-secure? (Weakest)

• As long as the plaintext is longer than the secret key
• Perfect Secrecy? X (Guarantee is information theoretic)

53

EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption
scheme that encrypts messages twice as long as its key, then a one-way
function exists.

Recap: EAV-secure.
• Attacker picks two plaintexts m0,m1 and is given c=EncK(mb) for

random bit b.
• Attacker attempts to guess b.
• No ability to request additional encryptions (chosen-plaintext attacks)
• In fact, no ability to observe any additional encryptions

54

EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption
scheme that encrypts messages twice as long as its key, then a one-way
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝒓𝒓 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒌𝒌 𝒎𝒎; 𝒓𝒓 ‖𝒎𝒎.
Input: 4n bits
(For simplicity assume that Enck accepts n bits of randomness)

Claim: f is a OWF

55

EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption
scheme that encrypts messages twice as long as its key, then a one-way
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝒓𝒓 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒌𝒌 𝒎𝒎; 𝒓𝒓 ‖𝒎𝒎.
Claim: f is a OWF
Reduction: If attacker A can invert f, then attacker A’ can break EAV-
security as follows. Given c=Enck(mb;r) run A(c‖𝑚𝑚0). If A outputs
(m’,k’,r’) such that f(m′, k′, r′) = c‖𝑚𝑚0 then output 0; otherwise 1;

56

MACs OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against
an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private
key cryptography.

OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?
• OWFs are known to be necessary
• Not known (or believed) to be sufficient.

57

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

58

Computational Indistinguishability

The advantage of a distinguisher D is

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

• Looks similar to definition of PRGs
• Xn is distribution G(Un) and
• Yn is uniform distribution 𝑈𝑈ℓ(n) over strings of length ℓ(n).

59

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

Theorem 7.32: Let t(n) be a polynomial and let 𝑃𝑃𝑛𝑛 = 𝑋𝑋𝑛𝑛
𝑡𝑡(𝑛𝑛) and 𝑄𝑄𝑛𝑛 =

𝑌𝑌𝑛𝑛
𝑡𝑡(𝑛𝑛) then the ensembles 𝑃𝑃𝑛𝑛 𝑛𝑛∈ℕ and 𝑄𝑄𝑛𝑛 𝑛𝑛∈ℕ are computationally

indistinguishable

60

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

Fact: Let 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ be computationally indistinguishable
and let 𝑍𝑍𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ be computationally indistinguishable
Then
𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑍𝑍𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable

61

	Midterm Statistics
	Final Exam
	Cryptography�CS 555
	Feistel Networks and Substitution Permutation Networks
	CS 555: Week 8: Topic 1:�DES, 3DES, AES�
	Data Encryption Standard
	DES Round
	DES Security
	Double DES
	Meet in the Middle Attack
	Triple DES Variant 1
	Triple DES
	Triple DES
	Advanced Encryption Standard (AES)
	Advanced Encryption Standard
	AES Attacks?
	CS 555: Week 8: Topic 1:�One Way Functions
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	One-Way Functions (OWFs)
	Candidate One-Way Functions (OWFs)
	Hard Core Predicates
	Hard Core Predicates
	Attempt 1: Hard-Core Predicate
	Trivial Hard-Core Predicate
	Attempt 3: Hard-Core Predicate
	Using Hard-Core Predicates
	Arbitrary Expansion
	Any Beyond
	Any Beyond
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	Hybrid H1
	From OWFs (Recap)
	From OWFs (Recap)
	Are OWFs Necessary for Private Key Crypto
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	PRGs  OWFs
	What other assumptions imply OWFs?
	EAV-Secure Crypto  OWFs
	EAV-Secure Crypto  OWFs
	EAV-Secure Crypto  OWFs
	MACs OWFs
	Computational Indistinguishability
	Computational Indistinguishability
	Computational Indistinguishability
	Computational Indistinguishability

