Midterm Statistics

Minimum Value	56.1
Maximum Value	93.8
Range	37.7
Average	78.72
Median	79.15
Standard Deviation	9.51

Final Exam

- Time: Tuesday, December 12th at 1PM (Tentative Subject to Change)
- Location: LWSN 1106

Cryptography CS 555

Week 8:

- DES, 3DES, AES
- One Way Functions

Readings: Katz and Lindell Chapter 7

Feistel Networks and Substitution Permutation Networks

Used to construct block-ciphers

• DES: Feistel Network

•AES: Substitution Permutation Network

CS 555: Week 8: Topic 1: DES, 3DES, AES

Data Encryption Standard

- Developed in 1970s by IBM (with help from NSA)
- Adopted in 1977 as Federal Information Processing Standard (US)
- Data Encryption Standard (DES): 16-round Feistel Network.
- Key Length: 56 bits
 - Vulnerable to brute-force attacks in modern times
 - 1.5 hours at 14 trillion keys/second (e.g., Antminer S9)

DES Round

Figure 3-6. DES Round

DES Security

- Best Known attack is brute-force 2⁵⁶
 - Except under unrealistic conditions (e.g., 2⁴³ known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
 - Output is a few terabytes
 - Subsequently keys are cracked in 2³⁸ DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES

Double DES

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

• Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

Goal: Given (x, $c = F'_k(x)$) try to find secret key k in time and space $O(n2^n)$.

- Solution?
 - Key Observation

$$F_{k_1}(x) = F_{k_2}^{-1}(c)$$

- Compute $F_K^{-1}(c)$ and $F_K(x)$ for each potential key K and store $\begin{pmatrix} K, F_K^{-1}(c) \end{pmatrix}$ and $\begin{pmatrix} K, F_K(x) \end{pmatrix}$
- Sort each list of pairs (by $F_K^{-1}(c)$ or $F_K(x)$) to find K_1 and K_2 .

Triple DES Variant 1

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Triple DES

Allows backward compatibility with DES by setting $k_1 = k_2 = k_3$

- Let F_k(x) denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Triple DES

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

- Standardized in 1999
- Still widely used, but it is relatively slow (three block cipher operations)
 - Now viewed as ``weak cipher" by OpenSSL

• Current gold standard: AES

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
 - Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
 - Vincent Rijmen and Joan Daemen
 - No serious vulnerabilities found in four other finalists
 - Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4x4 byte array)
- Key Size: 128, 192 or 256
- First public cipher approved by NSA for Top Secret information
- (2009) Attack on 11 round version of AES
 - recovers 256-bit key in time 2⁷⁰
 - But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Attack on 192-bit and 256 bit version of AES
 - recovers 256-bit key in time 2^{99.5}.

AES Attacks?

- Side channel attacks affect a few specific implementations
 - But, this is not a weakness of AES itself
 - Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)

CS 555: Week 8: Topic 1: One Way Functions

What are the minimal assumptions necessary for symmetric keycryptography?

f(x) = y

Definition: A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is one way if it is

- **1.** (Easy to compute) There is a polynomial time algorithm (in |x|) for computing f(x).
- **2.** (Hard to Invert) Select $x \leftarrow \{0,1\}^n$ uniformly at random and give the attacker input 1^n , f(x). The probability that a PPT attacker outputs x' such that f(x') = f(x) is negligible.

f(x) = y

Key Takeaway: One-Way Functions is a necessary and sufficient assumption for most of symmetric key cryptography.

- From OWFs we can construct PRGs, PRFs, Authenticated Encryption
- From eavesdropping secure encryption (weakest) notion we can construct OWFs

f(x) = y

Remarks:

- A function that is not one-way is not necessarily always easy to invert (even often)
- Any such function can be inverted in time 2ⁿ (brute force)
- Length-preserving OWF: |f(x)| = |x|
- One way permutation: Length-preserving + one-to-one

f(x) = y

Remarks:

- 1. f(x) does not necessarily hide all information about x.
- 2. If f(x) is one way then so is $f'(x) = f(x) \parallel LSB(x)$.

f(x) = y

Remarks:

1. Actually we usually consider a family of one-way functions $f_I: \{0, 1\}^I \to \{0, 1\}^I$

Candidate One-Way Functions (OWFs)

$f_{p,g}(x) = [g^x \mod p]$

(Discrete Logarithm Problem)

Note: The existence of OWFs implies $P \neq NP$ so we cannot be *absolutely certain* that they do exist.

Hard Core Predicates

- Recall that a one-way function f may potentially reveal lots of information about input
- **Example**: $f(x_1, x_2) = (x_1, g(x_2))$, where g is a one-way function.
- Claim: f is one-way (even if f(x₁,x₂) reveals half of the input bits!)

Hard Core Predicates

Definition: A predicate $hc: \{0,1\}^* \rightarrow \{0,1\}$ is called a hard-core predicate of a function f if

- 1. (Easy to Compute) hc can be computed in polynomial time
- 2. (Hard to Guess) For all PPT attacker A there is a negligible function negl such that we have

$$\mathbf{Pr}_{x \leftarrow \{0,1\}^n}[A(1^n, f(x)) = \operatorname{hc}(x)] \le \frac{1}{2} + \operatorname{negl}(n)$$

Attempt 1: Hard-Core Predicate

Consider the predicate

$$hc(\mathbf{x}) = \bigoplus_{i=1}^n x_i$$

Hope: hc is hard core predicate for any OWF.

Counter-example:

$$f(x) = (g(x), \bigoplus_{i=1}^n x_i)$$

Trivial Hard-Core Predicate

Consider the function

$$f(x_1,...,x_n) = x_1,...,x_{n-1}$$

f has a trivial hard core predicate $hc(x) = x_n$

Not useful for crypto applications (e.g., f is not a OWF)

Attempt 3: Hard-Core Predicate

Consider the predicate

 $hc(\mathbf{x},\mathbf{r}) = \bigoplus_{i=1}^n x_i r_i$

(the bits $r_1, ..., r_n$ will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hard-core predicate of g(x,r)=(f(x),r).

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we can construct a PRG G with expansion factor $\ell(n) = n + 1$.

Construction:

 $G(s) = f(s) \parallel hc(s)$

Intuition: f(s) is actually uniformly distributed

- s is random
- f(s) is a permutation
- Last bit is hard to predict given f(s) (since hc is hard-core for f)

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Construction:

- G(x) = y || b. (n+1 bits)
- $G^{1}(x) = G(y)||b (n+2 bits)$
- $G^{i+1}(x) = G(y)||b$ where $G^i(x) = y||b(n+2)|$

Any Beyond

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

Any Beyond

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Let $G(x) = G_0(x) ||G_1(x)$ (first/last n bits of output)

$$F_{K}(x_{1},\ldots,x_{n})=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right)\ldots\right)$$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Proof:

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Proof by Hybrids: Fix j $Adv_{j} = \left| Pr\left[A\left(r_{1} \parallel \cdots \parallel r_{j+1} \parallel G\left(s_{j+2}\right) \ldots \parallel G\left(s_{t(n)}\right) \right) \right]$

Claim 1: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ &\leq \sum_{j < t(n)} Adv_j \\ &\leq t(n) \times negl(n) = negl(n) \end{aligned}$$

Claim 1: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ &\leq \sum_{j < t(n)} Adv_j \\ &\leq t(n) \times negl(n) = negl(n) \end{aligned}$$

Hybrid H₁

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Are OWFs Necessary for Private Key Crypto

- Previous results show that OWFs are <u>sufficient</u>.
- Can we build Private Key Crypto from weaker assumptions?

 Short Answer: No, OWFs are also <u>necessary</u> for most private-key crypto primitives

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Question:** why can we assume that we have an PRG with expansion

Question: why can we assume that we have an PRG with expansion 2n?

Answer: Last class we showed that a PRG with expansion factor $\ell(n) = n + 1$. Implies the existence of a PRG with expansion p(n) for any polynomial.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim: G is also a OWF!

- (Easy to Compute?) \checkmark
- (Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Reduction: Assume (for contradiction) that A can invert G(s) with non-negligible probability p(n).

Distinguisher D(y): Simulate A(y)

Output 1 if and only if A(y) outputs x s.t. G(x)=y.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.

Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

Why not?

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Claim 1:** Any PPT A, given G(s), cannot find s except with negligible probability. **Intuition:** If we can invert G(x) then we can distinguish G(x) from a random string. **Fact:** Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

- Why not? Simple counting argument, 2²ⁿ possible y's and 2ⁿ x's.
- Probability there exists such an x is at most 2⁻ⁿ (for a random y)

What other assumptions imply OWFs?

- PRGs \rightarrow OWFs
- (Easy Extension) PRFs \rightarrow PRGs \rightarrow OWFs
- Does secure crypto scheme imply OWFs?
 - CCA-secure? (Strongest)
 - CPA-Secure? (Weaker)
 - EAV-secure? (Weakest)
 - As long as the plaintext is longer than the secret key
 - Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts m₀,m₁ and is given c=Enc_K(m_b) for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Input: 4n bits

(For simplicity assume that **Enc**_k accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Claim: f is a OWF

Reduction: If attacker A can invert f, then attacker A' can break EAVsecurity as follows. Given $c=Enc_k(m_b;r)$ run $A(c||m_0)$. If A outputs (m',k',r') such that $f(m',k',r') = c||m_0$ then output 0; otherwise 1;

$MACs \rightarrow OWFs$

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.

 \rightarrow OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

- Looks similar to definition of PRGs
 - X_n is distribution $G(U_n)$ and
 - Y_n is uniform distribution $U_{\ell(n)}$ over strings of length $\ell(n)$.

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Theorem 7.32: Let t(n) be a polynomial and let $P_n = X_n^{t(n)}$ and $Q_n = Y_n^{t(n)}$ then the ensembles $\{P_n\}_{n \in \mathbb{N}}$ and $\{Q_n\}_{n \in \mathbb{N}}$ are <u>computationally</u> <u>indistinguishable</u>

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Fact: Let $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ be <u>computationally indistinguishable</u> and let $\{Z_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ be <u>computationally indistinguishable</u> Then

 $\{X_n\}_{n\in\mathbb{N}}$ and $\{Z_n\}_{n\in\mathbb{N}}$ are <u>computationally indistinguishable</u>