
Homework 2 Statistics

Minimum Value 40.00

Maximum Value 100.00

Range 60.00

Average 83.79

Median 85.00
Standard
Deviation 15.93

1

Harry

Hagrid

Midterm Exam

• Thursday, October 5th at 9 AM (in class)
• Multiple Choice, True/False, Fill-in-the-Blank
• 75 minutes

• You may bring one (double sided) index card with notes

• No electronic devices/calculators

• May Incorporate Content from Today’s Lecture or Katz and Lindell
Chapters 1--6

2

Final Exam

• Time: Tuesday, December 12th at 1PM (Tentative Subject to Change)
• Location: LWSN 1106

3

Recap

• Random Oracle Model
• Pros (Easier Proofs/More Efficient Protocols/Solid Evidence for Security in Practice)
• Cons (Strong Assumption)

• Hashing Applications

• Building Stream Ciphers
• Linear Feedback Shift Registers (+ Attacks)
• RC4 (+ Attacks)
• Trivium

• Block Ciphers

4

Cryptography
CS 555

Week 7:
• Block Ciphers
• Feistel Networks
• DES, 3DES, AES
Readings: Katz and Lindell Chapter 6

5Fall 2017

CS 555: Week 7: Topic 1
Block Ciphers (Continued)

6

Review Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is
invertible and “looks random” without the secret key k.

• Similar to a PRF, but
• Computing Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥 is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

7

Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Permnas well as

the randomness of D.
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse

8

How many permutations?

• |Permn|=?

• Answer: 2n!

• How many bits to store f ∈Permn?

• Answer:

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

9

How many bits to store permutations?

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

Example: Storing f ∈Perm50 requires over 6.8 petabytes (1015)
Example 2: Storing f ∈Perm100 requires about 12 yottabytes (1024)
Example 3: Storing f ∈Perm8 requires about 211 bytes

10

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

• Secret key: k = f1,…,f16 (about 3 KB)
• Input: x=x1,…,x16 (16 bytes)

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?

11

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!

12

Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of
their bits

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!

13

Confusion-Diffusion Paradigm

• Our previous construction was not pseudorandom, but apply the
permutations do accomplish something

• They introduce confusion into F
• Attacker cannot invert (after seeing a few outputs)

• Approach:
• Confuse: Apply random permutations f1,…, to each block of input to obtain
𝑦𝑦1,…,

• Diffuse: Mix the bytes 𝑦𝑦1,…, to obtain byes 𝑧𝑧1,…,
• Confuse: Apply random permutations f1,…, with inputs 𝑧𝑧1,…,
• Repeat as necessary

14

Confusion-Diffusion Paradigm

Example:
• Select 8 random permutations on 8-bits f1,…,f16 ∈ Perm8

• Select 8 extra random permutations on 8-bits g1,…,g8 ∈ Perm8

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8

2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8

3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

15

Example Mixing Function

Mix y1 ∥ ⋯ ∥ y8 =
1. For i=1 to 8
2. zi:=y1[i] ∥ ⋯ ∥ y8[i]
3. End For
4. Output: g1 z1 ∥ g2 z2 ∥ ⋯ ∥ g8 z8

16

y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Substitution Permutation Networks

• S-box a public “substitution function” (e.g.S ∈ Perm8).

• S is not part of a secret key, but can be used with one
f(x) = S x⨁𝑘𝑘

• Input to round: x, k (k is subkey for current round)
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: permute the bits of x to obtain the round output

17

Note: there are only n!
possible bit mixing
permutations of [n] as
opposed to 2n!
Permutations of {0,1}n

Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed
function defined by a Substitution
Permutation Network. Then for any
keys/number of rounds Fk is a
permutation.

• Why? Composing permutations f,g
results in another permutation
h(x)=g(f(x)).

18

Remarks

• Want to achieve “avalanche effect” (one bit change should “affect”
every output bit)

• Should a S-box be a random byte permutation?

• Better to ensure that S(x) differs from x on at least 2-bits (for all x)
• Helps to maximize “avalanche effect”

• Mixing Permutation should ensure that output bits of any given S-box
are used as input to multiple S-boxes in the next round

19

Remarks

• How many rounds?

• Informal Argument: If we ensure that S(x) differs from S(x’) on at least 2-
bits (for all x,x’ differing on at least 1 bit) then every input bit affects

• 2 bits of round 1 output
• 4 bits of round 2 output
• 8 bits of round 3 output
• ….
• 128 bits of round 4 output

• Need at least 7 rounds (minimum) to ensure that every input bit affects
every output bit

20

Attacking Lower Round SPNs

• Trivial Case: One full round with no final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: P permute the bits of y to obtain the round
output

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse
• P-1(Fk(x)) = S1 x1⨁𝑘𝑘1 ∥ S2 x2⨁𝑘𝑘2 ∥ ⋯ ∥ S8 x8⨁𝑘𝑘8
• xi ⨂𝑘𝑘i =Si

-1 S1 x1⨁𝑘𝑘1
• Attacker knows xi and can thus obtain ki

21

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨂𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Immediately yields attack in 264 time (k1,k2 are each 64 bit keys) which

narrows down key-space to 264 but we can do much better!

22

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8
• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Guessing 8 specific bits of k2 (which bits depends on P) we can obtain one value yi =

Si xi ⨂𝑘𝑘i
• Attacker knows xi and can thus obtain ki by inverting Si and using XOR
• Narrows down key-space to 264 , but in time 8x28

23

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given several input/output pairs (xj,Fk(xj))
• Can quickly recover k1 and k2

24

Attacking Lower Round SPNs

• Harder Case: Two round SPN

• Exercise

25

Feistel Networks

• Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the
result is still a permutation

26

• Ri-1 = Li

• Li-1:=Ri⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri-1)

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16-
round Feistel Network.

27

CS 555: Week 7: Topic 2
DES, 3DES, AES

28

Feistel Networks

•Alternative to Substitution Permutation Networks

•Advantage: underlying functions need not be
invertible, but the result is still a permutation

29

• Li+1 = Ri

• Ri+1≔Li⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri)

Proposition: the function is invertible.

30

Data Encryption Standard

• Developed in 1970s by IBM (with help from NSA)

• Adopted in 1977 as Federal Information Processing Standard (US)

• Data Encryption Standard (DES): 16-round Feistel Network.

• Key Length: 56 bits
• Vulnerable to brute-force attacks in modern times
• 1.5 hours at 14 trillion keys/second (e.g., Antminer S9)

31

DES Round

32

DES Mangle Function

• Expand E: 32-bit input 48-bit
output (duplicates 16 bits)

• S-boxes: S1,…,S8
• Input: 6-bits
• Output: 4 bits
• Not a permutation!

• 4-to-1 function
• Exactly four inputs mapped to each

possible output

33

Mangle Function

34

32 bit input

48-bit sub key48 bit output of expand

XOR block before
Applying S-Boxes

Each S-box
outputs 4 bits

S-Box Representation as Table

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

35
x =101101 S(x) = Table[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)

S-Box Representation

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

36x =101101 S(x) = T[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)
Each column is permutation

Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of
their bits

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
• Requirement: DES Avalanche Effect!

37

DES Avalanche Effect

• Permutation the end of the mangle function helps to
mix bits

• Special S-box property #1

Let x and x’ differ on one bit then Si(x) differs from Si(x’)
on two bits.

38

Avalanche Effect Example

• Consider two 64 bit inputs
• (Ln,Rn) and (Ln’,R’n=Rn)
• Ln and Ln’ differ on one bit

• This is worst case example
• Ln+1 = Ln+1’=Rn
• But now R’n+1 and Rn+1 differ on one

bit
• Even if we are unlucky E(R’n+1) and

E(Rn+1) differ on 1 bit
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = R’n+1 and Ln+2’ = R’n+1 differ

in one bit

39

Avalanche Effect Example
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = Rn+1 and Ln+2’ = R’n+1 differ in

one bit

Rn+3 and R’n+3 differ on four bits since
we have different inputs to two of the
S-boxes
Ln+3 = R’n+2 and Ln+2’ = R’n+2 now differ

on two bits
• Seven rounds we expect all 32 bits in

right half to be “affected” by input
change

…
DES has sixteen rounds

40

Attack on One-Round DES

• Given input/output pair (x,y)
• Output: y=(L1,R1)
• Input: X=(L0,R0)

• Note: R0=L1

• Note: R1=L0 ⨁𝑓𝑓1 R0 where f is the Mangling Function with key k1

Conclusion:
𝑓𝑓1 R0 =L0⨁R1

41

Attack on One-Round DES

42

R0

L0⨁R1

Four possible inputs

Trivial to Recover

Attack on Two-Round DES

• Output y =(L2,R2)
• Note: R1=L0⨁𝑓𝑓1 R0

• Also,R1= L2
• Thus, 𝑓𝑓1 R0 =L2⨁L0

• So we can still attack the first round key k1 as before as R0 and L2⨁L0 are known

• Note:R2=L1⨁𝑓𝑓2 R1
• Also,L1=R0 and R1= L2

• Thus, 𝑓𝑓2 L2 =R2⨁R0

• So we can attack the second round key k2 as before as L2 and R2⨁R0 are known

43

Attack on Three-Round DES

𝑓𝑓1 R0 ⨁𝑓𝑓3 R2 = L0⨁L2 ⨁ L2⨁R3

= L0⨁R3

We know all of the values L0,R0, R3 and L3 = R2.

Leads to attack in time ≈2n/2

(See details in textbook)

Remember that DES is 16 rounds

44

DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes)

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
45

Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?

46

Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: Given (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥) try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 .

• Solution?
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝐾𝐾−1 c
• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential key K and store 𝑲𝑲, 𝐹𝐹𝐾𝐾−1 c and

𝑲𝑲, 𝐹𝐹𝐾𝐾 x
• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x) to find K1 and K2.

47

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

48

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

49

Allows backward compatibility
with DES by setting k1=k2=k3

Triple DES Variant 2

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1, 𝑘𝑘2 of length 2n can be defined
by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘1 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack still requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

• Key length is still just 112 bits (128 bits is recommended)

50

Just two keys!

Triple DES Variant 1

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher operations)
• Now viewed as ``weak cipher” by OpenSSL

• Current gold standard: AES

51

Advanced Encryption Standard (AES)

• (1997) US National Institute of Standards and Technology (NIST) announces
competition for new block cipher to replace DES

• Fifteen algorithms were submitted from all over the world
• Analyzed by NIST

• Contestants given a chance to break competitors schemes

• October, 2000 NIST announces a winner Rijndael
• Vincent Rijmen and Joan Daemen
• No serious vulnerabilities found in four other finalists
• Rijndael was selected for efficiency, hardware performance, flexibility etc…

52

Advanced Encryption Standard

• Block Size: 128 bits (viewed as 4x4 byte array)
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key XOR with current

state
• SubBytes: Each byte of state array (16 bytes) is replaced by another byte

according a a single S-box (lookup table)
• ShiftRows – shift ith row by i bytes
• MixColumns – permute the bits in each column

53

Substitution Permutation Networks

• S-box a public “substitution function” (e.g. S ∈ Perm8).

• S is not part of a secret key, but can be used with one
f(x) = S x⨁𝑘𝑘

Input to round: x, k (k is subkey for current round)
1. Key Mixing: Set x ≔ x⨁𝑘𝑘
2. Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

3. Bit Mixing Permutation: permute the bits of x to obtain the round
output

54

Note: there are only n!
possible bit mixing
permutations of [n] as
opposed to 2n!
Permutations of {0,1}n

Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed
function defined by a Substitution
Permutation Network. Then for any
keys/number of rounds Fk is a
permutation.

• Why? Composing permutations f,g
results in another permutation
h(x)=g(f(x)).

55

Advanced Encryption Standard

• Block Size: 128 bits
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key, XOR

with current state array
• SubBytes: Each byte of state array (16 bytes) is replaced by

another byte according a single S-box (lookup table)
• ShiftRows
• MixColumns

56

Permutation

Key Mixing

Substitution

11110000

01100010 …

00110000 …

11111111 …

57

State

00001111

10100011 …

11001100 …

01111111 …

Round Key (16 Bytes)

AddRoundKey:

⨁

11111111

11000001 …

11111100 …

10000000 …

=

58

State

11111111

11000001 …

11111100 …

10000000 …

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

SubBytes (Apply S-box)

59

State

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

Shift Rows

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)

60

State

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)

AES

• We just described one round of the SPN

• AES uses
• 10 rounds (with 128 bit key)
• 12 rounds (with 192 bit key)
• 14 rounds (with 256 bit key)

61

AES Attacks?

• Side channel attacks affect a few specific implementations
• But, this is not a weakness of AES itself
• Timing attack on OpenSSL’s implementation AES encryption (2005, Bernstein)

• (2009) Attack on 11 round version of AES
• recovers 256-bit key in time 270

• But AES is 14 round (with 256 bit key) so the attack doesn’t apply in practice
• (2009) Attack on 192-bit and 256 bit version of AES

• recovers 256-bit key in time 299.5.

• First public cipher approved by NSA for Top Secret information

62

Presenter
Presentation Notes
In April 2005, D.J. Bernstein announced a cache-timing attack that he used to break a custom server that used OpenSSL's AES encryption.[20] The custom server was designed to give out as much timing information as possible (the server reports back the number of machine cycles taken by the encryption operation), and the attack required over 200 million chosen plaintexts.[21]

	Homework 2 Statistics
	Midterm Exam
	Final Exam
	Recap
	Cryptography�CS 555
	CS 555: Week 7: Topic 1�Block Ciphers (Continued)
	Review Pseudorandom Permutation
	Pseudorandom Permutation
	How many permutations?
	How many bits to store permutations?
	Attempt 1: Pseudorandom Permutation
	Attempt 1: Pseudorandom Permutation
	Pseudorandom Permutation Requirements
	Confusion-Diffusion Paradigm
	Confusion-Diffusion Paradigm
	Example Mixing Function
	Substitution Permutation Networks
	Substitution Permutation Networks
	Remarks
	Remarks
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Feistel Networks
	Slide Number 27
	CS 555: Week 7: Topic 2 �DES, 3DES, AES�
	Feistel Networks
	Slide Number 30
	Data Encryption Standard
	DES Round
	DES Mangle Function
	Mangle Function
	S-Box Representation as Table
	S-Box Representation
	Pseudorandom Permutation Requirements
	DES Avalanche Effect
	Avalanche Effect Example
	Avalanche Effect Example
	Attack on One-Round DES
	Attack on One-Round DES
	Attack on Two-Round DES
	Attack on Three-Round DES
	DES Security
	Double DES
	Meet in the Middle Attack
	Triple DES Variant 1
	Triple DES Variant 1
	Triple DES Variant 2
	Triple DES Variant 1
	Advanced Encryption Standard (AES)
	Advanced Encryption Standard
	Substitution Permutation Networks
	Substitution Permutation Networks
	Advanced Encryption Standard
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	AES
	AES Attacks?

