Homework 2 Statistics

Minimum Value	40.00
Maximum Value	100.00
Range	60.00
Average	83.79
Median	85.00
Standard Deviation	15.93

Midterm Exam

- Thursday, October 5th at 9 AM (in class)
 - Multiple Choice, True/False, Fill-in-the-Blank
 - 75 minutes
- You may bring one (double sided) index card with notes
- No electronic devices/calculators
- May Incorporate Content from Today's Lecture or Katz and Lindell Chapters 1--6

Final Exam

- Time: Tuesday, December 12th at 1PM (Tentative Subject to Change)
- Location: LWSN 1106

Recap

- Random Oracle Model
 - Pros (Easier Proofs/More Efficient Protocols/Solid Evidence for Security in Practice)
 - Cons (Strong Assumption)
- Hashing Applications
- Building Stream Ciphers
 - Linear Feedback Shift Registers (+ Attacks)
 - RC4 (+ Attacks)
 - Trivium
- Block Ciphers

Cryptography CS 555

Week 7:

- Block Ciphers
- Feistel Networks
- DES, 3DES, AES

Readings: Katz and Lindell Chapter 6

CS 555: Week 7: Topic 1 Block Ciphers (Continued)

Review Pseudorandom Permutation

A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$, which is invertible and "looks random" without the secret key k.

- Similar to a PRF, but
- Computing $F_k(x)$ and $F_k^{-1}(x)$ is efficient (polynomial-time)

Definition 3.28: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **strong pseudorandom permutation** if for all PPT distinguishers D there is a negligible function μ s.t. $\left| Pr\left[D^{F_k(.),F_k^{-1}(.)}(1^n) \right] - Pr\left[D^{f(.),f^{-1}(.)}(1^n) \right] \right| \le \mu(n)$

Pseudorandom Permutation

Definition 3.28: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **strong pseudorandom permutation** if for all PPT distinguishers D there is a negligible function μ s.t.

$$\left| Pr\left[D^{F_k(.),F_k^{-1}(.)}(1^n) \right] - Pr\left[D^{f(.),f^{-1}(.)}(1^n) \right] \right| \le \mu(n)$$

Notes:

- the first probability is taken over the uniform choice of $k \in \{0,1\}^n$ as well as the randomness of D.
- the second probability is taken over uniform choice of f ∈ Perm_nas well as the randomness of D.
- D is *never* given the secret k
- However, D is given oracle access to keyed permutation and inverse

How many permutations?

- |Perm_n|=?
- Answer: 2ⁿ!
- How many bits to store f ∈ **Perm**_n?
- Answer:

$$\log(2^{n}!) = \sum_{i=1}^{2^{n}} \log(i)$$
$$\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \ge (n-1) \times 2^{n-1}$$

How many bits to store permutations?

$$\log(2^{n}!) = \sum_{i=1}^{2^{n}} \log(i)$$
$$\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \ge (n-1) \times 2^{n-1}$$

Example: Storing $f \in \operatorname{Perm}_{50}$ requires over 6.8 petabytes (10¹⁵) **Example 2:** Storing $f \in \operatorname{Perm}_{100}$ requires about 12 yottabytes (10²⁴) **Example 3:** Storing $f \in \operatorname{Perm}_8$ requires about 211 bytes

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$.
- Secret key: $k = f_1, ..., f_{16}$ (about 3 KB)
- Input: x=x₁,...,x₁₆ (16 bytes)

$$F_{k}(x) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$$

• Any concerns?

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$.

$$F_{k}(x) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$$

- Any concerns? $F_{k}(x_{1} \parallel x_{2} \parallel \cdots \parallel x_{16}) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$ $F_{k}(\mathbf{0} \parallel x_{2} \parallel \cdots \parallel x_{16}) = \mathbf{f_{1}(0)} \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$
- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $F \in \mathbf{Perm}_{128}$ would not behave this way!

Pseudorandom Permutation Requirements

- Consider a truly random permutation $F \in Perm_{128}$
- Let inputs x and x' differ on a single bit
- We expect outputs F(x) and F(x') to differ on approximately half of their bits
 - F(x) and F(x') should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!

Confusion-Diffusion Paradigm

- Our previous construction was not pseudorandom, but apply the permutations do accomplish something
 - They introduce confusion into F
 - Attacker cannot invert (after seeing a few outputs)
- Approach:
 - **Confuse**: Apply random permutations $f_1, ..., to each block of input to obtain <math>y_1, ..., y_1, ..., y_n$
 - **Diffuse**: Mix the bytes $y_1, ..., to obtain byes <math>z_1, ..., t_n$
 - **Confuse**: Apply random permutations $f_1, ..., with inputs <math>z_1, ..., z_n$
 - Repeat as necessary

Confusion-Diffusion Paradigm

Example:

- Select 8 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$
- Select 8 extra random permutations on 8-bits $g_1, \dots, g_8 \in \mathbf{Perm}_8$

$$F_{k}(x_{1} || x_{2} || \cdots || x_{8}) =$$
1. $y_{1} || \cdots || y_{8} := f_{1}(x_{1}) || f_{2}(x_{2}) || \cdots || f_{8}(x_{8})$
2. $z_{1} || \cdots || z_{8} := Mix(y_{1} || \cdots || y_{8})$
3. Output: $f_{1}(z_{1}) || f_{2}(z_{2}) || \cdots || f_{8}(z_{8})$

Example Mixing Function

- $\mathbf{Mix}(\mathbf{y}_1 \parallel \cdots \parallel \mathbf{y}_8) =$
- 1. For i=1 to 8
- 2. $z_i := y_1[i] \parallel \cdots \parallel y_8[i]$
- 3. End For
- **4.** Output: $g_1(z_1) \parallel g_2(z_2) \parallel \cdots \parallel g_8(z_8)$

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in \mathbf{Perm}_8$).
- S is not part of a secret key, but can be used with one $f(x) = S(x \oplus k)$
- Input to round: x, k (k is subkey for current round)
- Key Mixing: Set $x \coloneqq x \oplus k$
- Substitution: $\mathbf{x} \coloneqq S_1(\mathbf{x}_1) \parallel S_2(\mathbf{x}_2) \parallel \cdots \parallel S_8(\mathbf{x}_8)$
- **Bit Mixing Permutation**: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2ⁿ! Permutations of {0,1}ⁿ

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_k is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

Remarks

- Want to achieve "avalanche effect" (one bit change should "affect" every output bit)
- Should a S-box be a random byte permutation?
- Better to ensure that S(x) differs from x on at least 2-bits (for all x)
 - Helps to maximize "avalanche effect"
- Mixing Permutation should ensure that output bits of any given S-box are used as input to multiple S-boxes in the next round

Remarks

- How many rounds?
- Informal Argument: If we ensure that S(x) differs from S(x') on at least 2bits (for all x,x' differing on at least 1 bit) then every input bit affects
 - 2 bits of round 1 output
 - 4 bits of round 2 output
 - 8 bits of round 3 output
 -
 - 128 bits of round 4 output
- Need at least 7 rounds (minimum) to ensure that every input bit affects every output bit

- Trivial Case: One full round with no final key mixing step
- Key Mixing: Set $x \coloneqq x \oplus k$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- **Bit Mixing Permutation**: P permute the bits of y to obtain the round output
- Given input/output (x,F_k(x))
 - Permutations P and S_i are public and can be run in reverse
 - $P^{-1}(F_k(\mathbf{x})) = S_1(\mathbf{x}_1 \oplus k_1) \parallel S_2(\mathbf{x}_2 \oplus k_2) \parallel \cdots \parallel S_8(\mathbf{x}_8 \oplus k_8)$
 - $\mathbf{x}_{i} \otimes k_{i} = \mathbf{S}_{i}^{-1} (\mathbf{S}_{1} (\mathbf{x}_{1} \oplus k_{1}))$
 - Attacker knows x_i and can thus obtain k_i

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathbf{x} \coloneqq \mathbf{x} \otimes k_1$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- Bit Mixing Permutation: $z_1 \parallel \cdots \parallel z_8 = P(y)$
- Final Key Mixing: Output $z \oplus k_2$
- Given input/output (x,F_k(x))
 - Permutations P and S_i are public and can be run in reverse once k₂ is known
 - Immediately yields attack in 2⁶⁴ time (k₁,k₂ are each 64 bit keys) which narrows down key-space to 2⁶⁴ but we can do much better!

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathbf{x} \coloneqq \mathbf{x} \oplus k_1$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- Bit Mixing Permutation: $z_1 \parallel \cdots \parallel z_8 = P(y)$
- Final Key Mixing: Output $z \oplus k_2$
- Given input/output (x,F_k(x))
 - Permutations P and S_i are public and can be run in reverse once k_2 is known
 - Guessing 8 specific bits of k_2 (which bits depends on P) we can obtain one value $y_i = S_i(x_i \otimes k_i)$
 - Attacker knows x_i and can thus obtain k_i by inverting S_i and using XOR
 - Narrows down key-space to 2⁶⁴, but in time 8x2⁸

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathbf{x} \coloneqq \mathbf{x} \oplus k_1$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- Bit Mixing Permutation: $z_1 \parallel \cdots \parallel z_8 = P(y)$
- Final Key Mixing: Output $z \oplus k_2$
- Given several input/output pairs (x_i, F_k(x_i))
 - Can quickly recover k₁ and k₂

- Harder Case: Two round SPN
- Exercise 😳

Feistel Networks

- Alternative to Substitution Permutation Networks
- Advantage: underlying functions need not be invertible, but the result is still a permutation

•
$$R_{i-1} = L_i$$

• $L_{i-1} := R_i \bigoplus F_{k_i}(R_{i-1})$

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16round Feistel Network.

CS 555: Week 7: Topic 2 DES, 3DES, AES

Feistel Networks

Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the result is still a permutation

•
$$L_{i+1} = R_i$$

• $R_{i+1} \coloneqq L_i \bigoplus F_{k_i}(R_i)$

Proposition: the function is invertible.

Data Encryption Standard

- Developed in 1970s by IBM (with help from NSA)
- Adopted in 1977 as Federal Information Processing Standard (US)
- Data Encryption Standard (DES): 16-round Feistel Network.
- Key Length: 56 bits
 - Vulnerable to brute-force attacks in modern times
 - 1.5 hours at 14 trillion keys/second (e.g., Antminer S9)

DES Round

Figure 3-6. DES Round

DES Mangle Function

- Expand E: 32-bit input → 48-bit output (duplicates 16 bits)
- S-boxes: S₁,...,S₈
 - Input: 6-bits
 - Output: 4 bits
 - Not a permutation!
- 4-to-1 function
 - Exactly four inputs mapped to each possible output

Mangle Function

S-Box Representation as Table 4 columns (2 bits)

		00	01	10	11
16 columns (4 bits)	0000				
	0001				
	0010				
	0011				
	0100				
	0101				
	0110				S(x)=1101
	1111				

x = 101101 S(x) = Table[0110,11]

S-Box Representation

Each column is permutation

4 columns (2 bits)

		00	01	10	11
ts)	0000				
16 columns (4 bi	0001				
	0010				
	0011				
	0100				
	0101				
	0110				S(x)=1101
	1111				

x = 101101 S(x) = T[0110, 11]

Pseudorandom Permutation Requirements

- Consider a truly random permutation $F \in Perm_{128}$
- Let inputs x and x' differ on a single bit
- We expect outputs F(x) and F(x') to differ on approximately half of their bits
 - F(x) and F(x') should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!
- **Requirement**: DES Avalanche Effect!

DES Avalanche Effect

 Permutation the end of the mangle function helps to mix bits

Special S-box property #1

Let x and x' differ on one bit then $S_i(x)$ differs from $S_i(x')$ on two bits.

Avalanche Effect Example

- Consider two 64 bit inputs
 - (L_n, R_n) and $(L_n', R'_n = R_n)$
 - L_n and L_n' differ on one bit
- This is worst case example
 - $L_{n+1} = L_{n+1}' = R_n$
 - But now R'_{n+1} and R_{n+1} differ on one bit
- Even if we are unlucky E(R'_{n+1}) and E(R_{n+1}) differ on 1 bit
- \rightarrow R_{n+2} and R'_{n+2} differ on two bits
- $\rightarrow L_{n+2} = R'_{n+1}$ and $L_{n+2}' = R'_{n+1}$ differ in one bit

A DES Round

Avalanche Effect Example

- R_{n+2} and R'_{n+2} differ on two bits
- $L_{n+2} = R_{n+1}$ and $L_{n+2}' = R'_{n+1}$ differ in one bit
- \rightarrow R_{n+3} and R'_{n+3} differ on four bits since we have different inputs to two of the S-boxes
- $\rightarrow L_{n+3} = R'_{n+2}$ and $L_{n+2}' = R'_{n+2}$ now differ on two bits
- Seven rounds we expect all 32 bits in right half to be "affected" by input change

DES has sixteen rounds

...

A DES Round

Attack on One-Round DES

- Given input/output pair (x,y)
 - **Output:** y=(L₁,R₁)
 - **Input:** X=(L₀,R₀)
- Note: $R_0 = L_1$
- Note: $R_1 = L_0 \bigoplus f_1(R_0)$ where f is the Mangling Function with key k_1

Conclusion:

 $f_1(R_0)=L_0 \oplus R_1$

Attack on One-Round DES

Attack on Two-Round DES

- Output $y = (L_2, R_2)$
- Note: $R_1 = L_0 \bigoplus f_1(R_0)$
 - Also, $R_1 = L_2$
 - Thus, $f_1(R_0)=L_2 \oplus L_0$
- So we can still attack the first round key k1 as before as R_0 and $L_2 \bigoplus L_0$ are known
- Note: $R_2 = L_1 \oplus f_2(R_1)$
 - Also, $L_1 = R_0$ and $R_1 = L_2$
 - Thus, $f_2(L_2)=R_2 \oplus R_0$
- So we can attack the second round key k2 as before as L_2 and $R_2 \bigoplus R_0$ are known

Attack on Three-Round DES

$$f_1(\mathbf{R_0}) \oplus f_3(\mathbf{R_2}) = (\mathsf{L_0} \oplus \mathsf{L_2}) \oplus (\mathsf{L_2} \oplus \mathsf{R_3})$$
$$= \mathsf{L_0} \oplus \mathsf{R_3}$$
We know all of the values $\mathsf{L_0}, \mathsf{R_0}, \mathsf{R_3}$ and $\mathsf{L_3} = \mathsf{R_2}$.

Leads to attack in time $\approx 2^{n/2}$

(See details in textbook)

Remember that DES is 16 rounds

DES Security

- Best Known attack is brute-force 2⁵⁶
 - Except under unrealistic conditions (e.g., 2⁴³ known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
 - Output is a few terabytes
 - Subsequently keys are cracked in 2³⁸ DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES

Double DES

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

• Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

Goal: Given (x, $c = F'_k(x)$) try to find secret key k in time and space $O(n2^n)$.

- Solution?
 - Key Observation

$$F_{k_1}(x) = F_K^{-1}(c)$$

- Compute $F_K^{-1}(c)$ and $F_K(x)$ for each potential key K and store $(K, F_K^{-1}(c))$ and $(K, F_K(x))$
- Sort each list of pairs (by $F_K^{-1}(c)$ or $F_K(x)$) to find K_1 and K_2 .

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Allows backward compatibility with DES by setting $k_1 = k_2 = k_3$

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by $E'(x) = E \left(\sum_{k=1}^{n-1} (k_1, k_2, k_3) \right)$

$$\Gamma_{k}(x) - \Gamma_{k_{3}}(\Gamma_{k_{2}}(r_{k_{1}}(x)))$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Just two keys!

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by $F'_k(x) = F_{k_1}\left(F_{k_2}^{-1}\left(F_{k_1}(x)\right)\right)$
- Meet-in-the-Middle Attack still requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$
- Key length is still just 112 bits (128 bits is recommended)

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

- Standardized in 1999
- Still widely used, but it is relatively slow (three block cipher operations)
 - Now viewed as ``weak cipher" by OpenSSL

• Current gold standard: AES

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
 - Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
 - Vincent Rijmen and Joan Daemen
 - No serious vulnerabilities found in four other finalists
 - Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4x4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
 - **SubBytes:** Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
 - **ShiftRows** shift ith row by i bytes
 - MixColumns permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in Perm_8$).
- S is not part of a secret key, but can be used with one $f(x) = S(x \oplus k)$

Input to round: x, k (k is subkey for current round)

- **1.** Key Mixing: Set $x \coloneqq x \oplus k$
- **2.** Substitution: $\mathbf{x} \coloneqq S_1(\mathbf{x}_1) \parallel S_2(\mathbf{x}_2) \parallel \cdots \parallel S_8(\mathbf{x}_8)$
- **3.** Bit Mixing Permutation: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2ⁿ! Permutations of {0,1}ⁿ

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_k is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256

Key Mixing

- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
 - SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
 - ShiftRows
 - MixColumns

Permutation

AddR	oundKey:					
	4			Round	l Key (16 Bytes)	
			00001111			
			10100011			
			11001100			
	State	(+)	01111111			
	State	V				
11110000						
01100010						
00110000						
11111111						
			_			
		11111111				
		11000001				
		11111100				
		1000000				E 7

SubBytes (Apply S-box)

S(1111111)			
S(11000001)	S()		
S(11111100)		S()	
S(1000000)			S()

AddRoundKey:											
				Round Key (16 Bytes)							
	State										
	State										
S(11111111)											
S(11000001)	S()										
S(11111100)		S()									
S(1000000)				S()							
Shift Rows											
		S(1111111)									
					S(110	00001)	S()				
			S()				S(111	11100)			
							S()		S(1000	0000)	

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

- We just described one round of the SPN
- AES uses
 - 10 rounds (with 128 bit key)
 - 12 rounds (with 192 bit key)
 - 14 rounds (with 256 bit key)

AES Attacks?

- Side channel attacks affect a few specific implementations
 - But, this is not a weakness of AES itself
 - Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Attack on 11 round version of AES
 - recovers 256-bit key in time 2⁷⁰
 - But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Attack on 192-bit and 256 bit version of AES
 - recovers 256-bit key in time 2^{99.5}.
- First public cipher approved by NSA for Top Secret information