
Homework 2 Released

• Due: Thursday, September 28th at 9 AM (beginning of class)

• Please Typeset Your Solutions (LaTeX, Word etc…)

• You may collaborate, but must write up your own solutions in your
own words

1

Cryptography
CS 555

Week 5:
• Loose Ends
• Cryptographic Hash Functions
• HMACs
• Generic Attacks
• Random Oracle Model
• Applications of Hashing
Readings: Katz and Lindell Chapter 5, Appendix A.4

2Fall 2017

Recap

• Message Authentication Codes
• Integrity vs Confidentiality

Mack(𝑚𝑚) = FK(𝑚𝑚)
• Extension to unbounded messages and pitfalls (block re-ordering, truncation)
• CBC-MAC

• Authenticated Encryption + CCA-Security
• Encrypt and Authenticate [SSH]
• Authenticate then Encrypt [TLS] (Caution Required)
• Encrypt then Authenticate!

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

3

CBC-MAC

Advantages over Previous Solution
• Both MACs are secure
• Works for unbounded length messages
• Canonical Verification
• Short Authentication tag
• Parallelizable 4

FK(.)

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3

⨁

FK(.)

⨁

FK(.)

⨁

𝜏𝜏 = MacK 𝑚𝑚

Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖
for i=1,…,d

(Note: encode i and ℓ as n/4 bit
strings)

Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Caveat: Tricky Padding Issues arise if
m is not a multiple of the block-

length. See textbook.

We will see a simpler MAC
construction using hash functions

soon.

FK(.)

𝑚𝑚

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following

construction is an authenticated encryption scheme.

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof Intuition: Suppose that we have already shown that any PPT attacker
wins Encforge𝐴𝐴,Π with negligible probability.

Why does CCA-Security now follow from CPA-Security?
CCA-Attacker has decryption oracle, but cannot exploit it! Why?
Always sees ⊥ “invalid ciphertext” when he query with unseen ciphertext

5

Proof Sketch

1. Let ValidDecQuery be event that attacker submits new/valid ciphertext
to decryption oracle

2. Show Pr[ValidDecQuery] = negl(n) for any PPT attacker
• Hint: Follows from strong security of MAC since

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c

• This also implies unforgeability.

3. Show that attacker who does not issue valid decryption query wins CCA-
security game with probability ½ + negl(n)
• Hint: otherwise we can use A to break CPA-security
• Hint 2: simulate decryption oracle by always returning ⊥ when given new ciphertext

6

Secure Communication Session

• Solution? Alice transmits c1 = EncK(m1) to Bob, who decrypts and sends
Alice c2 = EncK(m2) etc…

• Authenticated Encryption scheme is
• Stateless
• For fixed length-messages

• We still need to worry about
• Re-ordering attacks

• Alice sends 2n-bit message to Bob as c1 = EncK(m1), c2 = EncK(m2)
• Replay Attacks

• Attacker who intercepts message c1 = EncK(m1) can replay this message later in the
conversation

• Reflection Attack
• Attacker intercepts message c1 = EncK(m1) sent from Alice to Bob and replays to c1 Alice only

7

Secure Communication Session

• Defense
• Counters (CTRA,B,CTRB,A)

• Number of messages sent from Alice to Bob (CTRA,B) --- initially 0
• Number of messages sent from Bob to Alice (CTRB,A) --- initially 0
• Protects against Re-ordering and Replay attacks

• Directionality Bit
• bA,B = 0 and bB,A = 1 (e.g., since A < B)

• Alice: To send m to Bob, set c=EncK(bA,B ∥ CTRA,B ∥m), send c and increment
CTRA,B

• Bob: Decrypts c, (if ⊥ then reject), obtain b ∥ CTR ∥m
• If CTR≠ CTRA,B or b≠ bA,B then reject
• Otherwise, output m and increment CTRA,B

8

Authenticated Security vs CCA-Security

• Authenticated Encryption  CCA-Security (by definition)

• CCA-Security does not necessarily imply Authenticate Encryption
• But most natural CCA-Secure constructions are also Authenticated Encryption

Schemes
• Some constructions are CCA-Secure, but do not provide Authenticated

Encryptions, but they are less efficient.

• Conceptual Distinction
• CCA-Security the goal is secrecy (hide message from active adversary)
• Authenticated Encryption: the goal is integrity + secrecy

9

Week 5: Topic 1:
Cryptographic Hash Functions

10

Hash Functions

H(x)=y

11

Long Input: x Short Output: y

Pigeonhole Principle

12

“You cannot fit 10 pigeons into 9 pigeonholes”

Hash Collisions

By Pigeonhole Principle there must
exist x and y s.t.

H(x) = H(y)

13

Classical Hash Function Applications

•Hash Tables
• O(1) lookup*

•“Good hash function” should yield “few collisions”

* Certain terms and conditions apply

14

Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
• Attempt 1: For all PPT A,

Pr 𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = 𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let x,y be given s.t. H(x)=H(y)
𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = (𝑥𝑥,𝑦𝑦)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)

15

Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛

16

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

17

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

18

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Key is not key
secret (just

random)

For simplicity we will
sometimes just say that H

(or Hs) is a collision
resistant hash function

Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm 

19

Weaker Requirements for Cryptographic Hash

• Target-Collision Resistance

20

s = Gen(1𝑛𝑛;𝑅𝑅)
𝑥𝑥 ∈ 0,1 𝑛𝑛

s,x

x’

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴,Π(𝑛𝑛)= � 1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥𝑥 = 𝐻𝐻𝑠𝑠 𝑥𝑥
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Question: Why is collision resistance stronger?

Weaker Requirements for Cryptographic Hash

• Preimage Resistance (One-Wayness)

21

s = Gen(1𝑛𝑛;𝑅𝑅)
𝑦𝑦 ∈ 0,1 ℓ(𝑛𝑛)

s, 𝑦𝑦

x

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥 = 𝑦𝑦
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Question: Why is collision resistance stronger?

Merkle-Damgård Transform

• Most cryptographic hash functions accept fixed length inputs

• What if we want to hash arbitrary length strings?

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑥𝑥) = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 …ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑥𝑥1 ∥ 𝑥𝑥𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑

22

Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by zeros if needed)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d+1

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1

23

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in hs. Thus a PPT
attacker for (Gen,H) can be transformed into PPT attacker for (Gen,h).

Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

(note x and x’ may have different lengths)

24

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’| (proof for case two is similar)

25

𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑+1′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝑥𝑥𝑑𝑑′

𝑧𝑧𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑 =? 𝑧𝑧𝑑𝑑′ ∥ 𝑥𝑥𝑑𝑑′
No  Found collision

Yes?

ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑−1′

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’| (proof for case two is similar)

26

If for some i we have 𝑧𝑧𝑖𝑖 ∥ 𝑥𝑥𝑖𝑖 ≠ 𝑧𝑧𝑖𝑖′ ∥ 𝑥𝑥𝑖𝑖′ then we will find a collision

But x and x’ are different!

Week 5: Topic 2:
HMACs and Generic Attacks

27

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

28

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

29

Disadvantage 1: Long
output

Randomized Construction (no
canonical verification). Disadvantage?

Two Disadvantages:
1. Lose Strong-MAC Guarantee

2. Security game arguably
should give attacker Vrfy(.)

oracle
(CPA vs CCA security)

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H)
a collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 can be
canonical.

30

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

31

Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎𝒎
• Violates security of the original fixed length MAC

32

MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

33

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?

34

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs

35

HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and
that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden).

Attacker Goal: Find distinct m,m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′

36

HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC is efficient and unbroken
• CBC-MAC was not widely deployed because it as “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

37

Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

38

Can we do
better?

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ
<

1
2

39

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?

40

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

41

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

42

Finds collision after
O 2ℓ/2 steps in

expectation

Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list
• Can traverse “linked list” by computing H

43

• A cycle denotes a hash collision
• Occurs after O 2ℓ/2 steps by

birthday paradox
• First attack phase detects cycle
• Second phase identifies collision

Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space O 2ℓ

• Example: S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by assigning unique binary string b x ∈ 0,1 ℓ of length to
each 𝑥𝑥 ∈ 𝑆𝑆

xi = 𝐻𝐻(b xi−1)

44

Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(pwd)
• Goal find x’ s.t. H(x’) = y

• There is an attack which requires
• Precomputation Time: 𝑂𝑂(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
• Space: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2/3

• On input y finds pwd in Time: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2/3

• Cracking costs amortize over many users…
• Other time-memory tradeoffs are possible…
• Defense 1: y=H(pwd|salt) [password salting]
• Defense 2: Make sure that H is moderately expensive to compute (MHFs)

45

Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(x)

• Goal find x’ s.t. H(x’) = y

• Precomputation (sketch)
• Store s = 2ℓ/3 pairs SPi,EPi where EPi = 𝐻𝐻𝐻𝐻 SPi and t = 2ℓ/3

• Let y=y0
• For i=1,2…., 2ℓ/3

• yi = 𝐻𝐻(yi−1)
• For each j s.t EPj=yi

• Check if y is in the hash chain SPi,EPi
• Yes  Found desired x’

46

Total #j′s = 𝑠𝑠𝑠𝑠2

2ℓ
< 𝑂𝑂(1)

Space: 2ℓ/3

Precomputation Time: 22ℓ/3

Total Runtime = 𝑂𝑂 𝑡𝑡 = 𝑂𝑂(2ℓ/3)

Success Rate ≈ 1
4𝑡𝑡

Targeted Collision (e.g., Password Cracking)

• Attacker is given y=H(x)

• Goal find x’ s.t. H(x’) = y

• Precomputation (sketch)
• Store 4st = 4 × 22ℓ/3 pairs SP𝑖𝑖

𝑗𝑗,EPi
j where EPi

j= 𝐻𝐻𝐻𝐻 𝑐𝑐𝑗𝑗⨁SPi and t = 2ℓ/3

• Let y=y0
• For i=1,2…., 2ℓ/3

• yi
j= 𝐻𝐻(𝑐𝑐𝑗𝑗⨁yi−1)

• Foreach j s.t EPi
j= yi

j

• Check if y is in the hash chain SPi,EPi
• Yes  Found desired x’

47

Repeat for each j < t

Space: 22ℓ/3

Precomputation Time: 2ℓ=22ℓ/32ℓ/3

Total Runtime = 𝑂𝑂 𝑡𝑡 × 𝑡𝑡 = 𝑂𝑂(22ℓ/3)

Success Rate > 0.63

Targeted Collisions (Other Applications)

• Define H(K) = Fk(x)

• Suppose attacker obtains a pair x,Fk(x) (chosen plaintext attack)
• There is a key recovery attack with

• Precomputation Time: 𝒦𝒦
• Space: 𝒦𝒦 2/3

• Cracking Time: 𝒦𝒦 2/3

• Precomputation costs amortize if we are attacking multiple different
keys

• As long as we have x,Fk’(x) we don’t need to repeat precomputation phase

48

Week 5: Topic 3:
Random Oracle Model +

Hashing Applications

49

(Recap) Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find x,y s.t.
H(x) = H(y)

How to formalize this intuition?
• Attempt 1: For all PPT A,

Pr 𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = 𝑥𝑥,𝑦𝑦 𝑠𝑠. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑦𝑦) ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

• The Problem: Let x,y be given s.t. H(x)=H(y)
𝐴𝐴𝑥𝑥,𝑦𝑦 1𝑛𝑛 = (𝑥𝑥,𝑦𝑦)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)

50

(Recap) Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛

51

When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 ∥ 𝑥𝑥𝑑𝑑

52

When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑥𝑥 ∥ 𝑥𝑥𝑑𝑑

• (Gen,H) definitely does not hide all information about input
(𝑥𝑥1, … , 𝑥𝑥𝑥𝑥)

• Conclusion: Collision resistance is not sufficient for message
commitment

53

The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond

collision resistance, but how do we model this capability?

54

Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgård)

55

Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is
secure (Alice cannot change m + Bob learns nothing about m)

• Information Theoretic Guarantee against any attacker with q
queries to H

56

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a
security reduction!

57

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

• Sometimes we only know how to design provably secure protocol in
random oracle model

58

Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are
• Secure in random oracle model…
• But broken in the real world

59

Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on
schemes proven secure in the random oracle model”

60

Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication

61

Tamper Resistant Storage

62

m1

H(m1) m1’

Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)

63

m1,m2,m3

m1’

Send file 1

Disadvantage: Too
many hashes to store

Tamper Resistant Storage

64

m1,m2,m3

m1’

Send file 1

Disadvantage: Need all
files to compute hash

m1,m2,m3

H(m1,m2,m3)

Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store
only one hash value

65

Merkle Trees

66

Theorem: Let (Gen, hs) be a collision resistant hash function and let Hs(m)
return the root hash in a Merkle Tree. Then Hs is collision resistant.

Tamper Resistant Storage

67

m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4

Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

68

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

69

r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

70

r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding

71

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Commitment Scheme in Random Oracle
Model
• Commit(r,m):=H(m|r)

• Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure commitment
scheme.

72

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

73

r = Gen(.)
Bit b

m0,m1

H(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Other Applications

• Password Hashing

• Key Derivation

74

Next Week

• Stream Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
• Read Katz and Lindell 6.1-6.2

75

Revisit: Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

Doesn’t necessarily work
• Approach is still used in TLS
• Some practitioners still advocate for this methodology

76

Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

EncK 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚
A Bad Example:

EncK 𝑚𝑚 = 𝑟𝑟, F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ ECC(m) ∥ 𝑡𝑡
ECC m = 𝑤𝑤 codeword for error correction

Decode w′ = 𝑚𝑚 if w′and w are `mostly the same′

77

Source: The Order of Encryption and Authentication for protecting communication by Hugo Krawczyk
https://eprint.iacr.org/2001/045

https://eprint.iacr.org/2001/045

Building Authenticated Encryption

EncK 𝑚𝑚 = 𝑟𝑟, F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ ECC(m) ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

w = ECC m
𝐷𝐷𝐷𝐷𝐷𝐷𝐾𝐾 𝑟𝑟, 𝑠𝑠
• 𝑤𝑤 ∥ 𝑡𝑡 ← F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑠𝑠
• 𝑚𝑚 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤

• 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑚𝑚 if t = MacKM
′ 𝑚𝑚

⊥ otherwise

78
Source: The Order of Encryption and Authentication for protecting communication by Hugo Krawczyk
https://eprint.iacr.org/2001/045

https://eprint.iacr.org/2001/045

Building Authenticated Encryption

EncK 𝑚𝑚 = 𝑟𝑟, F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ ECC(m) ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

w = ECC m
𝐷𝐷𝐷𝐷𝐷𝐷𝐾𝐾 𝑟𝑟, 𝑠𝑠
• 𝑤𝑤 ∥ 𝑡𝑡 ← F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑠𝑠
• 𝑚𝑚 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤

• 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑚𝑚 if t = MacKM
′ 𝑚𝑚

⊥ otherwise

79
Source: The Order of Encryption and Authentication for protecting communication by Hugo Krawczyk
https://eprint.iacr.org/2001/045

Key Point: Error Correcting Code
allows attacker to flip a few bits of s

without altering message m.

𝑟𝑟, 𝑠𝑠⨁10𝑛𝑛−1 = 𝑟𝑟, F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ 𝑤𝑤𝑤 ∥ 𝑡𝑡

https://eprint.iacr.org/2001/045

Building Authenticated Encryption

EncK 𝑚𝑚 = 𝑟𝑟, F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ ECC(m) ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

w = ECC m
𝐷𝐷𝐷𝐷𝐷𝐷𝐾𝐾 𝑟𝑟, 𝑠𝑠
• 𝑤𝑤 ∥ 𝑡𝑡 ← F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑠𝑠
• 𝑚𝑚 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤

• 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑚𝑚 if t = MacKM
′ 𝑚𝑚

⊥ otherwise

80
Source: The Order of Encryption and Authentication for protecting communication by Hugo Krawczyk
https://eprint.iacr.org/2001/045

Key Point: Error Correcting Code
allows attacker to flip a few bits of s

without altering message m.

𝑟𝑟, 𝑠𝑠⨁10𝑛𝑛−1 = 𝑟𝑟, F𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ 𝑤𝑤𝑤 ∥ 𝑡𝑡

Worst Case: Chosen
ciphertext attack allows
attacker to completely

recover plaintext.

https://eprint.iacr.org/2001/045

	Homework 2 Released
	Cryptography�CS 555
	Recap
	CBC-MAC
	Building Authenticated Encryption
	Proof Sketch
	Secure Communication Session
	Secure Communication Session
	Authenticated Security vs CCA-Security
	Week 5: Topic 1: �Cryptographic Hash Functions��
	Hash Functions
	Pigeonhole Principle
	Hash Collisions
	Classical Hash Function Applications
	Collision-Resistant Hash Function
	Keyed Hash Function Syntax
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Theory vs Practice
	Weaker Requirements for Cryptographic Hash
	Weaker Requirements for Cryptographic Hash
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Week 5: Topic 2: �HMACs and Generic Attacks�
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Hash and MAC Construction
	Hash and MAC Construction
	Hash and MAC Construction
	MAC from Collision Resistant Hash
	HMAC
	HMAC
	HMAC Security
	HMAC in Practice
	Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Small Space Birthday Attack
	Small Space Birthday Attack
	Floyd’s Cycle Finding Algorithm
	Small Space Birthday Attack
	Targeted Collision (e.g., Password Cracking)
	Targeted Collision (e.g., Password Cracking)
	Targeted Collision (e.g., Password Cracking)
	Targeted Collisions (Other Applications)
	�Week 5: Topic 3:�Random Oracle Model + Hashing Applications�
	(Recap) Collision-Resistant Hash Function
	(Recap) Keyed Hash Function Syntax
	When Collision Resistance Isn’t Enough
	When Collision Resistance Isn’t Enough
	The Tension
	Random Oracle Model
	Back to Message Commitment
	Random Oracle Model: Pros
	Random Oracle Model: Pros
	Random Oracle Model: Cons
	Random Oracle Model: Justification
	Hash Function Application: Fingerprinting
	Tamper Resistant Storage
	Tamper Resistant Storage
	Tamper Resistant Storage
	Merkle Trees
	Merkle Trees
	Tamper Resistant Storage
	Commitment Schemes
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Binding (Binding 𝐴,𝐶𝑜𝑚 (𝑛))
	Secure Commitment Scheme
	Commitment Scheme in Random Oracle Model
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Other Applications
	Next Week
	Revisit: Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption

