
Updated Office Hours

• Tuesday: 10:30 AM-11:30 AM
• Thursday: 10:30 AM-11:30 AM
• Friday: 10:30 AM-11:30 AM

Office: Lawson 1165
• Plain RSA Public Key: (N=1165,e=11) 

• Challenge: Decrypt the ciphertext c=610

1

Cryptography
CS 555

Week 3:
• Building CPA-Secure Encryption Schemes
• Pseudorandom Functions/Permutations
• Block Ciphers + Modes of Operation
• CCA-Security (definition)
• Message Authentication Codes [time permitting]

Readings: Katz and Lindell Chapter 3.5-3.7

2Fall 2017

Recap CPA-Security

• Defend against attacker’s ability to influence messages that honest party
encrypts

• Practical Importance: Battle of Midway

• CPA-Security Equivalence
• Multiple vs Single Encryption Game

• Limitations
• Passive vs Active Attacker
• What if attacker can get honest party to (partially) decrypt some messages?

3

CPA-Security (Multiple Messages)

4

m0,1,m1,1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏

c1 = EncK(mb,1)

b’

m0,2,m1,2

c2 = EncK(mb,2)

c3 = EncK(mb,3)
m0,3,m1,3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑐𝑐𝑐𝑐𝑐𝑐
≤

1
2

+ 𝜇𝜇(𝑛𝑛)

CPA-Security and Message Length

Observation: Given a CPA-secure encryption scheme Π = Gen, Enc, Dec
that supports messages of a single bit (ℳ = 0,1) it is easy to build a CPA-
secure scheme Π′ = Gen′, Enc′, Dec′ that supports messages m =
m1,…,mn∈ 0,1 𝑛𝑛 of length n.

Enck′ 𝑚𝑚 = Enck 𝑚𝑚1 , … , Enck 𝑚𝑚𝑛𝑛

Exercise: How would you prove Π’ is CPA-secure?

5

Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that
breaks CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.

6

The Reduction

7

m0, m1

Π Encryption AttackerΠ
’ E

nc
ry

pt
io

n
At

ta
ck

er
Random bit b
K ← Gen 𝟏𝟏𝒏𝒏

c′ = Enc′𝐾𝐾 𝑚𝑚𝑏𝑏𝑏

b’

m0[0], m1[0]

EncK(mb[0])

…

Enck′ 𝑚𝑚 = Enck 𝑚𝑚1 , … , Enck 𝑚𝑚𝑛𝑛

Multiple Message CPA-Game

Week 3: Topic 1:
Pseudorandom Functions and

CPA-Security

8

Pseudorandom Function (PRF)

A keyed function F: 0,1 ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 × 0,1 ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 → 0,1 ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 ,
which “looks random” without the secret key k.

• ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 - length of secret key k
• ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 - length of input
• ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 - length of output

• Typically, ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 =ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 =ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 =n (unless otherwise specified)

• Computing FK(x) is efficient (polynomial-time)

9

PRF vs. PRG

• Pseudorandom Generator G is not a keyed function

• PRG Security Model: Attacker sees only output G(r)
• Attacker who sees r can easily distinguish G(r) from

random
• PRF Security Model: Attacker sees both inputs and outputs

(ri,Fk(ri))
• In fact, attacker can select inputs ri
• Attacker Goal: distinguish F from a truly random function

10

Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Question: How big is the set Funcn?
• Hint: Consider the lookup table.

• 2n entries in lookup table
• n bits per entry
• n2n bits to encode f∈Funcn

• Answer: Funcn = 2𝑛𝑛2𝑛𝑛 (by comparison only 2n n-bit keys)

11

Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Can view entries in lookup table as populated in advance (uniformly)
• Space: n2n bits to encode f∈Funcn

• Alternatively, can view entries as populated uniformly “on-the-fly”
• Space: 2n×q(n) bits after q(n) queries

• To store past responses

12

Oracle Notation

• We use Af(.) to denote an algorithm A with oracle access
to a function f.

• A may adaptively query f(.) on multiple different inputs
x1,x2,… and A receives the answers f(x1),f(x2),…

• However, A can only use f(.) as a blackbox (no peaking at
the source code in the box)

13

PRF Security

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a
pseudorandom function if for all PPT distinguishers D there is a negligible
function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Funcnas well as

the randomness of D.
• D is not given the secret k in the first probability (otherwise easy to

distinguish…how?)

14

PRF-Security as a Game

15

m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏
Truly random func R
ri = FK(mi) if b=1

R(mi) o.w

b’

m2

r2

r3

m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

r1

Reminder: CPA-Security (Single Message)

16

m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

CPA-Secure Encryption

• Gen: on input 1n pick uniform 𝑘𝑘 ∈ 0,1 𝑛𝑛

• Enc: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑚𝑚 ∈ 0,1 𝑛𝑛

Output 𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚 for uniform 𝑟𝑟 ∈ 0,1 𝑛𝑛

• Dec: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑐𝑐 = 𝑟𝑟, 𝑠𝑠
Output 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑠𝑠

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.

17

How to begin proof?

Breaking CPA-Security (Single Message)

18

m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏

𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚2

𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚3

m3

…

Assumption: ∃ PPT 𝐴𝐴, P (non − negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≥

1
2

+ 𝑃𝑃(𝑛𝑛)

Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m

• Select random r
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise

19

Analysis: Suppose that O = f then

Pr D𝐹𝐹𝑘𝑘 = 1 = Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
Suppose that O = f then

Pr D𝑓𝑓 = 1 =Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1

where �Π denotes the encryption scheme in which
Fk is replaced by truly random f.

Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m

• Select random r
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise

20

Analysis: Suppose that O = Fk then by PRF security, for
some negligible function 𝜇𝜇, we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
= Pr[D𝐹𝐹𝑘𝑘 = 1] − Pr[D𝑓𝑓 = 1] ≤ 𝜇𝜇(𝑛𝑛)

Implies: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)

Security Reduction

21

• Fact: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)

• Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Conclusion: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

where 𝑞𝑞 𝑛𝑛
2𝑛𝑛

+ 𝜇𝜇 𝑛𝑛 is negligible.

Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: Let m0,m1 denote the challenge messages and let r* denote the
random string used to produce the challenge ciphertext

𝑐𝑐 = 𝑟𝑟∗,𝑓𝑓 𝑟𝑟∗ ⨁𝑚𝑚𝑏𝑏

And let r1,…,rq denote the random strings used to produce the other
ciphertexts 𝑐𝑐𝑖𝑖 = 𝑟𝑟𝑖𝑖 ,𝑓𝑓 𝑟𝑟𝑖𝑖 ⨁𝑚𝑚𝑖𝑖 .
If r∗ ≠ r1,…,rqthen then c leaks no information about b (information
theoretically).

22

Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: If r∗ ≠ r1,…,rq then then c leaks no information about b
(information theoretically). We have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
≤ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π

𝑐𝑐𝑐𝑐𝑐𝑐
= 1 �r∗ ≠ r1,…,rq + Pr r∗ ∈ r1,…,rq

≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

23

Conclusion

Enck(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

Deck(𝑟𝑟, 𝑠𝑠) = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑠𝑠

For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

24

PRF Security

Are PRFs or PRGs more Powerful?

•Easy to construct a secure PRG from a PRF
G(s) = Fs(1)|…|Fs(ℓ)

•Construct a PRF from a PRG?
• Tricky, but possible… (Katz and Lindell Section 7.5)

25

Construct PRF from PRG

Define: G(s)= G0(s)| G1(s)

PRF: 𝐹𝐹𝑘𝑘 𝑥𝑥 = 𝐺𝐺𝑥𝑥1 …𝐺𝐺𝑥𝑥𝑛𝑛−1 𝐺𝐺𝑥𝑥𝑛𝑛 𝑘𝑘

Recursive Definition: 𝐹𝐹𝑘𝑘 𝑥𝑥 = Hk(x) where
Hk(1): = G1(k)
Hk(0): = G0(k)
Hk(1|x): =G1(Hk(x))
Hk(0|x): = G0(Hk(x))

26

Theorem: If G is a PRG then Fk is a PRF

Candidate PRG

• Notation: Given string x ∈ 0,1 𝑛𝑛 and a subset S ⊂ 1, … ,𝑛𝑛 let
xS ∈ 0,1 |𝑆𝑆| denote the substring formed by concatenating bits at the
positions in S.

• Example: x=10110 and S = {1,4,5} xS=110

𝑃𝑃 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5 = 𝑥𝑥1 +𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4𝑥𝑥5 mod 2

• Select random subsets 𝕊𝕊 =S1,…,𝑆𝑆ℓ 𝑛𝑛 ⊂ 1, … ,𝑛𝑛 of size |Si|=5 and
with ℓ 𝑛𝑛 = 𝑛𝑛1.4

𝐺𝐺𝕊𝕊 𝑥𝑥 = �𝑃𝑃 𝑥𝑥𝑆𝑆1 … �𝑃𝑃 𝑥𝑥𝑆𝑆ℓ 𝑛𝑛
27

Week 3: Topic 2: Modes of
Encryption, The Penguin and

CCA security

31

Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is
invertible and “looks random” without the secret key k.

• Similar to a PRF, but
• Computing Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥 is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

32

Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Permnas well as

the randomness of D.
• D is never given the secret k
• However, D is given oracle access to (keyed) permutation and inverse

33

Electronic Code Book (ECB) Mode

• Uses strong PRP Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥
• Enck

• Input: m1,…,mℓ
• Output: Fk(m1), … , Fk(mℓ)

• How to decrypt?
• Is this secure?
• Hint: Encryption is deterministic.

• Implication: Not CPA-Secure
• But, it gets even worse

34

ECB Mode (A Failed Approach)

35

The Penguin Principle
If you can still see the penguin after
“encrypting” the image something is very
very wrong with the encryption scheme.

36

Cipher Block Chaining

• CBC-Mode (below) is CPA-secure if Ek is a PRP

37

IV

IV

Reduces bandwidth!

Message: 3n bits
Ciphertext: 4n bits

Chained CBC-Mode

• First glance: seems similar to CBC-Mode and reduces bandwidth
• Vulnerable to CPA-Attack! (Set m4 = IV⨁𝑐𝑐3⨁𝑚𝑚1

′ and c4=c1 iff m1=m1’)
• Moral: Be careful when tweaking encryption scheme!

38

c3

c4 c5 c6

m4 m5 m6

IV

IV

Counter Mode

• Input: m1,…,mn
• Output: c = (ctr, c1,c2,…,cn) where ctr is chosen uniformly at random
• Theorem: If Ek is PRF then counter mode is CPA-Secure
• Advantages: Parallelizable encryption/decryption

39

Week 3: Topic 3:
CCA-Security

41

Chosen Ciphertext Attacks

• Sometimes an attacker has ability to obtain (partial) decryptions of
ciphertexts of its choice.

• CPA-Security does not model this ability.
Examples:
• An attacker may learn that a ciphertext corresponds to an ill-formed

plaintext based on the reaction (e.g., server replies with “invalid
message”).

• Monitor enemy behavior after receiving and encrypted message.
• Authentication Protocol: Send Enck(r) to recipient who authenticates

by responding with r.

42

CCA-Security (Ind-CCA2)

43

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m3

c2 = EncK(m2)

m3 = DecK(m3)
c3

…

“No Way!”
c4 =c

m-1
c-1 = EncK(m-1)

m-2 = DecK(c-2)
c-2 …

We could set m0 = m-1 or m1 = m-2

However, we could still flip 1 bit
of c and ask challenger to decrypt

CCA-Security 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to Enck and Deck ,however the adversary is

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 if b = b′; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

44

CCA-Security

Definition 3.33: An encryption scheme Π is CCA-secure if for all PPT A
there is a negligible function negl(n) such that

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

45

CPA-Security doesn’t imply CCA-Security

Enck(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

Attacker: Selects m0 = 0n and m1 = 1n

Attacker Receives: c = 𝑟𝑟, 𝑠𝑠 where 𝑠𝑠 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

Attacker Queries: Deck(c’) for
c′ = 𝑟𝑟, s⨁10𝑛𝑛−1

Attacker Receives: 10𝑛𝑛−1 (if b=0) or 01𝑛𝑛−1 (if b=1)

Example Shows: CPA-Security doesn’t imply CCA Security (Why?)

46

Attacks in the Wild

• Padding Oracle Attack
• Length of plaintext message must be multiple of block length
• Popular fix PKCS #5 padding

• 4 bytes of padding (0x04040404)
• 3 bytes of padding (0x030303)

• “Bad Padding Error”
• Adversary submits ciphertext(s) and waits to if this error is produced
• Attacker can repeatedly modify ciphertext to reveal original plaintext piece by

piece!

47

Example

M=“hello…please keep this message secret”+0x030303
C = 𝑟𝑟, 𝑠𝑠 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

• C′ = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁0x0000 … .30000

Ask to decrypt C’
• If we added < 3 bits of padding C’ can be decrypted.
• Otherwise, we will get a decryption error.

Once we know we have three bits of padding we can set
C′′ = 𝑟𝑟, 𝑠𝑠 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁0x0000 … .30303⨁0x0 … 𝐠𝐠𝐠𝐠040404

If C’’ decrypts then we can infer the last byte “t” from 𝐠𝐠𝐠𝐠⨁0x04.

48

CCA-Security

• Gold Standard: CCA-Security is strictly stronger than CPA-Security
• If a scheme has indistinguishable encryptions under one chosen-

ciphertext attack then it has indistinguishable multiple encryptions
under chosen-ciphertext attacks.

• None of the encryption schemes we have considered so far are CCA-
Secure 

• CCA-Security implies non-malleability (message integrity)
• An attacker who modifies a ciphertext c produces c’ which is either

• Invalid, or
• Decrypted message is unrelated to original message

49

CPA-Secure Encryption

Enck(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

Deck(𝑟𝑟, 𝑠𝑠) = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑠𝑠

Drawbacks:
• Encryption is for fixed length messages only
• Length of ciphertext is twice as long as message
• Attacker can still tamper with ciphertexts to flip bits of plaintext

51

Stream Ciphers/Block Ciphers

CCA Security

Stream Ciphers Modes

• What if we don’t know the length of the message to be encrypted a priori?
• Stream Cipher: 𝐺𝐺∞ 𝑠𝑠, 1𝑛𝑛 outputs n pseudorandom bits as follows
• Initial State: st0 = Initialize(s)
• Repeat

• (yi,sti)=GetBits(sti-1)
• Output yi

• Synchronized Mode
• Message sequence: m1,m2,…
• Ciphertext sequence: ci = mi ⨁yi (same length as ciphertext!)
• “CPA-like” security follows from cipher security (must stop after n-bits)
• Deterministic encryption, what gives???
• Requires both parties to maintain state (not good for sporadic communication)

52

Stream Ciphers Modes

• What if we don’t want to keep state?
• Unsynchronized Mode

• Message sequence: m1,m2,…
• Ciphertext sequence: ci = IV, 𝑚𝑚𝑖𝑖⨁ 𝐺𝐺∞ 𝑠𝑠, 𝐼𝐼𝐼𝐼, 1 𝑚𝑚𝑖𝑖

• CPA-Secure if Fk(IV) = 𝐺𝐺∞ 𝑘𝑘, 𝐼𝐼𝐼𝐼, 1𝑛𝑛 is a (weak) PRF.
• No shared state, but longer ciphertexts….

53

Next Class

• Read Katz and Lindell 4.1-4.2
• Message Authentication Codes (MACs) Part 1

55

Week 3: Topic 4:
Message Authentication Codes

(Part 1)

56

Recap

• CPA-Security vs. CCA-Security
• PRFs

Today’s Goals:
• Introduce Message Authentication Codes (MACs)

• Key tool in Construction of CCA-Secure Encryption Schemes

• Build Secure MACs

57

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

58

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you
Alice… - Bob

We need to
break up -Bob

59

Message Authentication Codes

• CPA-Secure Encryption: Focus on Secrecy
• But does not promise integrity

• Message Authentication Codes: Focus on Integrity
• But does not promise secrecy

• CCA-Secure Encryption: Requires Integrity and Secrecy

60

What Does It Mean to “Secure Information”

• Integrity (Authenticity)
• The message was actually sent by the alleged sender
• And the received message matches the original

Bob
Alice

Pay robot
devil $50

Pay robot
devil $5,000

61

Error Correcting Codes?

• Tool to detect/correct a small number of random errors in
transmission

• Examples: Parity Check, Reed-Solomon Codes, LDPC, Hamming Codes
…

• Provides no protection against a malicious adversary who can
introduce an arbitrary number of errors

• Still useful when implementing crypto in the real world (Why?)

62

Modifying Ciphertexts

Enck(m) = 𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

𝑐𝑐′ = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁𝑦𝑦

Deck (𝑐𝑐′) = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁𝑦𝑦 = 𝑚𝑚⨁𝑦𝑦

If attacker knows original message he can forge c’ to decrypt to any
message he wants.
Even if attacker doesn’t know message he may find it advantageous to
flip certain bits (e.g., decimal places)

63

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?

64

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?

65

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

66

General vs Fixed Length MAC

ℳ = 0,1 ∗

versus

ℳ = 0,1 ℓ(𝑛𝑛)

67

Deterministic MACs

• Canonical Verification Algorithm

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = Mack(𝑚𝑚)
0 otherwise

• “All real-world MACs use canonical verification” – page 115

68

MAC Authentication Game (Macforge𝐴𝐴,Π(𝑛𝑛))

69

mq

K = Gen(.)

tq = MacK(mq)

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Discussion

• Is the definition too strong?
• Attacker wins if he can forge any message
• Does not necessarily attacker can forge a “meaningful message”
• “Meaningful Message” is context dependent
• Conservative Approach: Prove Security against more powerful attacker
• Conservative security definition can be applied broadly

• Replay Attacks?
• t=MacK(“Pay Bob $1,000 from Alice’s bank account”)
• Alice cannot modify message to say $10,000, but…
• She may try to replay it 10 times

70

Replay Attacks

• MACs alone do not protect against replay attacks
(they are stateless)

• Common Defenses:
• Include Sequence Numbers in Messages (requires

synchronized state)
• Can be tricky over a lossy channel

• Timestamp Messages
• Double check timestamp before taking action

71

Strong MACs

• Previous game ensures attacker cannot generate a valid tag for a new
message.

• However, attacker may be able to generate a second valid tag t’ for a
message m after observing (m,t)

• Strong MAC: attacker cannot generate second valid tag, even for a
known message

72

Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛))

73

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Strong MAC vs Regular MAC

Proposition 4.4: Let Π = Gen, Mac, Vrfy be a secure MAC that uses
canonical verification. Then Π is a strong MAC.

“All real-world MACs use canonical verification” – page 115

Should attacker have access to VrfyK(.) oracle in games?
(e.g., CPA vs CCA security for encryption)
Irrelevant if the MAC uses canonical verification!

74

Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

75

Example

t= 1 0 1 0 1 1 1 0
t’= 1 0 1 0 1 0 1 1

Returns 0 after 8 steps

Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

76

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 0 1 0

Returns 0 after 1 step

Timing Attack

• MACs used to verify code updates for Xbox 360

• Implementation allowed different rejection times (side-channel)

• Attacks exploited vulnerability to load pirated games onto hardware

• Moral: Ensure verification is time-independent

77

Improved Canonical Verification Algorithm

Input: m,t’

B=1
t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
B=0

else (dummy op)
return B

78

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 0 1 0

Returns 0 after 8 steps

Side-Channel Attacks

• Cryptographic Definition
• Attacker only observes outputs of oracles (Enc, Dec, Mac) and nothing else

• When attacker gains additional information like timing (not captured by
model) we call it a side channel attack.

Other Examples
• Differential Power Analysis
• Cache Timing Attack
• Power Monitoring
• Acoustic Cryptanalysis
• …many others

79

Next Class

• Read Katz and Lindell 4.3
• Message Authentication Codes (MACs) Part 2

• Constructing Secure MACs

80

	Updated Office Hours
	Cryptography�CS 555
	Recap CPA-Security
	CPA-Security (Multiple Messages)
	CPA-Security and Message Length
	Security Reduction
	The Reduction
	Week 3: Topic 1: �Pseudorandom Functions and CPA-Security��
	Pseudorandom Function (PRF)
	PRF vs. PRG
	Truly Random Function
	Truly Random Function
	Oracle Notation
	PRF Security
	PRF-Security as a Game
	Reminder: CPA-Security (Single Message)
	CPA-Secure Encryption
	Breaking CPA-Security (Single Message)
	Security Reduction
	Security Reduction
	Security Reduction
	Finishing Up
	Finishing Up
	Conclusion
	Are PRFs or PRGs more Powerful?
	Construct PRF from PRG
	Candidate PRG
	Week 3: Topic 2: Modes of Encryption, The Penguin and CCA security�
	Pseudorandom Permutation
	Pseudorandom Permutation
	Electronic Code Book (ECB) Mode
	ECB Mode (A Failed Approach)
	The Penguin Principle
	Cipher Block Chaining
	Chained CBC-Mode
	Counter Mode
	Week 3: Topic 3: �CCA-Security�
	Chosen Ciphertext Attacks
	CCA-Security (Ind-CCA2)
	CCA-Security 𝑃𝑟𝑖𝑣𝐾 𝐴,Π 𝑐𝑐𝑎 𝑛
	CCA-Security
	CPA-Security doesn’t imply CCA-Security
	Attacks in the Wild
	Example
	CCA-Security
	CPA-Secure Encryption
	Stream Ciphers Modes
	Stream Ciphers Modes
	Next Class
	Week 3: Topic 4: �Message Authentication Codes�(Part 1)
	Recap
	What Does It Mean to “Secure Information”
	What Does It Mean to “Secure Information”
	Message Authentication Codes
	What Does It Mean to “Secure Information”
	Error Correcting Codes?
	Modifying Ciphertexts
	Message Authentication Code Syntax
	Message Authentication Code Syntax
	Message Authentication Code Syntax
	General vs Fixed Length MAC
	Deterministic MACs
	MAC Authentication Game (Macforge 𝐴,Π (𝑛))
	Discussion
	Replay Attacks
	Strong MACs
	Strong MAC Authentication (Macsforge 𝐴,Π (𝑛))
	Strong MAC vs Regular MAC
	Timing Attacks (Side Channel)
	Timing Attacks (Side Channel)
	Timing Attack
	Improved Canonical Verification Algorithm
	Side-Channel Attacks
	Next Class

