
Cryptography
CS 555

Week 2: 
• Computational Security against Eavesdropper
• Constructing Secure Encryption Schemes against Eavesdropper
• Chosen Plaintext Attacks and CPA-Security

Readings: Katz and Lindell Chapter 3.1-3.4
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An Important Remark on Randomness

• In our analysis we have made (and will
continue to make) a key assumption:

We have access to  true “randomness” 
to generate a secret key K  (e.g. OTP)

• Independent Random Bits 
• Unbiased Coin flips
• Radioactive decay?
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In Practice
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• Hard to flip thousands/millions of coins

• Mouse-movements/keys
• Uniform bits?
• Independent bits?

• Use Randomness Extractors 
• As long as input has high entropy, we can extract (almost) 

uniform/independent bits
• Hot research topic in theory



In Practice
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• Hard to flip thousands/millions of coins

• Mouse-movements/keys

• Customized Randomness Chip?



Caveat: Don’t do this!

• Rand() in C stdlib.h is no good for cryptographic 
applications

• Source of many real 
world flaws
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Week 2: Topic 1: 
Computational Security
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Recap

•Perfect Secrecy, One-time-Pads

Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption 
scheme then

𝒦𝒦 ≥ ℳ
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What if we want to send a longer message?
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Enc𝑘𝑘𝑘 "𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷, 𝐼𝐼 𝑤𝑤𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷 𝑤𝑤𝑡𝐴𝐴𝑡𝑡 𝑝𝑝𝑤𝑤𝐷𝐷𝑝𝑝 𝑓𝑓𝑤𝑤𝐷𝐷 𝑦𝑦𝑤𝑤𝑦𝑦"

K1,K2,K3
K1,K2,K3

Enc𝑘𝑘𝑘 "𝑅𝑅𝑤𝑤𝑡𝑡𝐷𝐷𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑟𝑟, … . "

Enc𝑘𝑘𝑘 "𝐼𝐼 𝐷𝐷𝑝𝑝 𝑤𝑤𝑦𝑦𝑤𝑤 𝑤𝑤𝑓𝑓 𝑡𝑡𝑝𝑝𝐷𝐷𝐴𝐴𝐷𝐷, 𝑏𝑏𝑦𝑦𝑤𝑤 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝐷𝐷𝑡𝑡𝑤𝑤 𝑤𝑤𝐷𝐷𝑡𝑡 𝐷𝐷𝑤𝑤𝐷𝐷𝑡𝑡𝑤𝑤𝑝𝑝𝐷𝐷"



What if we want to send many messages?
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Enc𝑘𝑘𝑘 "𝑊𝑊𝑡𝐷𝐷𝑤𝑤𝑡𝑡 𝑦𝑦𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷? "

K1,K2,K3
K1,K2,K3

Enc𝑘𝑘𝑘 "𝑁𝑁𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑦𝑦𝐴𝐴𝑡,𝑦𝑦𝑤𝑤𝑦𝑦? "

Enc𝑘𝑘𝑘 "𝐽𝐽𝑦𝑦𝑡𝑡𝑤𝑤 𝐴𝐴𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 𝑤𝑤𝑦𝑦𝑤𝑤? "



Can we save their relationship?
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Enc𝑘𝑘𝑘 "𝑊𝑊𝑡𝐷𝐷𝑤𝑤𝑡𝑡 𝑦𝑦𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷? "

K1,K2,K3 K1,K2,K3

Enc𝑘𝑘𝑘 "𝑁𝑁𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑦𝑦𝐴𝐴𝑡,𝑦𝑦𝑤𝑤𝑦𝑦? "

Enc𝑘𝑘𝑘 "𝐽𝐽𝑦𝑦𝑡𝑡𝑤𝑤 𝐴𝐴𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 𝑤𝑤𝑦𝑦𝑤𝑤"



Perfect Secrecy vs Computational Security

• Perfect Secrecy is Information Theoretic
• Guarantee is independent of attacker resources

• Computational Security 
• Security against computationally bounded attacker

• An attacker with infinite resources might break security
• Attacker might succeed with very small probability

• Example: Lucky guess  reveals secret key
• Very Small Probability: 2−𝑘00, 2−𝑘000, …
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Current Goal

• Define computational security in presence of eavesdropper who 
intercepts a single (long) message
If you don’t understand what you want to achieve, how can you possibly know 

when (or if) you have achieved it?

• Show how to build a symmetric encryption scheme with 
computational security in the presence of an eavesdropper.

• Define computational security against an active attacker who might 
modify the message

• Define computational security for multiple messages in presence of 
an eavesdropper
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Concrete Security

“A scheme is (t,ε)-secure if every adversary running for time 
at most t succeeds in breaking the scheme with probability 
at most ε”

• Example: t = 260 CPU cycles
• 9 years on a 4GHz processor
• < 1 minute on fastest supercomputer (in parallel)

• Full formal definition needs to specify “break”
• Important Metric in Practice

• Caveat 1: difficult to provide/prove such precise statements
• Caveat 2: hardware improves over time
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• Two Key Concepts
• Polynomial time algorithm
• Negligible Function 

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)

Intuition: If we choose the security parameter n to be sufficiently large 
then we can make the adversaries success probability very small 
(negligibly small).
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is 
an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)

Which functions below are negligible?
• 𝑓𝑓 𝑐𝑐 = 2−𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 𝑐𝑐−𝑘

• 𝑓𝑓 𝑐𝑐 = 2−𝑘0001000𝑐𝑐𝑘000

• 𝑓𝑓 𝑐𝑐 = 2𝑘002− 𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 2− log 𝑛𝑛
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is 
an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)

Which functions below are negligible?
• 𝑓𝑓 𝑐𝑐 = 2−𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 𝑐𝑐−𝑘
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Asymptotic Approach to Security

Definition: An (randomized) algorithm A runs in polynomial time if 
there exists a polynomial p such that for every n-bit input x, A(x) 
terminates in at most p(n) steps in expectation.

Intuition: If an algorithm A does not run in polynomial time then, for 
sufficiently large n, it will quickly become impractical for any attacker to 
run the algorithm A. 
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• General Attack 1: Test all possible secret keys k′ ∈ 𝒦𝒦
• Doesn’t run in polynomial time, since 𝒦𝒦 = 2𝑛𝑛

• General Attack 2: Select random key k′ ∈ 𝒦𝒦, check if it is 
correct (otherwise output ⊥ for “fail”). 

• Only successful with negligible probability 2−𝑛𝑛
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Advantages of Asymptotic Approach

• Closure
• If subroutine B runs in polynomial time and algorithm A makes p(n) queries to B then 

A also runs in polynomial time.
• If f and g are negligible functions then h(n) = f(n)+g(n) is a negligible function
• If p is a positive polynomial, and f is a negligible function then the function 

g(n)=f(n)p(n) is also negligible.
• Church-Turing Thesis: “reasonable” model of computations are all 

polynomially equivalent. 
• Implication: No need to worry about different models of computation 

(circuits, random access machines, etc…)
• Disadvantage: Limited guidance on how big to make security parameter n 

in practice.
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Private Key Encryption Syntax (Revisited)

• Message Space: ℳ
• Key Space: 𝒦𝒦
• Three Algorithms

• Gen(𝟏𝟏𝒏𝒏;𝑅𝑅) (Key-generation algorithm)
• Input: 1n (security parameter in unary) + Random Bits R, 
• Output: Secret key k ∈ 𝒦𝒦

• Enck(𝑝𝑝;𝑹𝑹) (Encryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ +   Random Bits R, 
• Output: ciphertext c

• Deck(𝐴𝐴) (Decryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and a ciphertex c
• Output: a plaintext message m ∈ ℳ or ⊥ (𝒊𝒊.𝒆𝒆“Fail”)

• Invariant: Deck(Enck(m))=m

Typically picks k ∈ 𝒦𝒦
uniformly at random

Trusted Parties (e.g., Alice and Bob) 
must run Gen in advance to obtain 

secret k. 

Requirement: all three algorithms run 
in probabilistic polynomial time
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∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Adversarial Indistinguishability Experiment

22

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐



∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Adversarial Indistinguishability Experiment
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m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐

𝐹𝐹𝑤𝑤𝐷𝐷𝑝𝑝𝐷𝐷𝐴𝐴𝐴𝐴𝑦𝑦, 𝐴𝐴𝐷𝐷𝑤𝑤 Π = 𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 𝑟𝑟𝐷𝐷𝑐𝑐𝑤𝑤𝑤𝑤𝐷𝐷 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷𝑦𝑦𝑝𝑝𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐 𝑡𝑡𝐴𝐴𝑡𝐷𝐷𝑝𝑝𝐷𝐷,
𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝑒𝑒𝑝𝑝𝐷𝐷𝐷𝐷𝐴𝐴𝑝𝑝𝐷𝐷𝑐𝑐𝑤𝑤 𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝑐𝑐𝑟𝑟 𝑟𝑟𝐷𝐷𝑓𝑓𝐴𝐴𝑐𝑐𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷𝑐𝑐𝑟𝑟𝑤𝑤𝑝𝑝 𝑃𝑃𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝑏𝑏𝐴𝐴𝐷𝐷

𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 = 1 𝐴𝐴𝑓𝑓 𝑏𝑏 = 𝑏𝑏′

𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 = 0 𝑤𝑤𝑤𝑤𝑡𝐷𝐷𝐷𝐷𝑤𝑤𝐴𝐴𝑡𝑡𝐷𝐷

Π 𝑡𝐷𝐷𝑡𝑡 𝐴𝐴𝑐𝑐𝑟𝑟𝐴𝐴𝑡𝑡𝑤𝑤𝐴𝐴𝑐𝑐𝑐𝑐𝑦𝑦𝐴𝐴𝑡𝑡𝑡𝐷𝐷𝑏𝑏𝐴𝐴𝐷𝐷 𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷𝑦𝑦𝑝𝑝𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐𝑡𝑡 𝐴𝐴𝑐𝑐 𝑤𝑤𝑡𝐷𝐷 𝑝𝑝𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷 𝑤𝑤𝑓𝑓
𝐷𝐷𝑐𝑐 𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑡𝑡𝑟𝑟𝐷𝐷𝑤𝑤𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷 𝐴𝐴𝑓𝑓 𝑓𝑓𝑤𝑤𝐷𝐷 𝐷𝐷𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝑟𝑟𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑦𝑦 𝐴𝐴, 𝑤𝑤𝑡𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝑡𝑡 𝐷𝐷
Negligible function 𝜇𝜇 such that Pr[𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 = 1] ≤ 𝑘
𝑘

+ 𝜇𝜇(𝑐𝑐)



∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Semantic Security
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m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐



Aside: Message and Ciphertext Length

• In the previous game we typically require that |m0|=|m1|. Why?

• It is impossible to support arbitrary length messages while hiding all 
information about plaintext length

• Limitation: When could message length be sensitive?
• Numeric data (5 figure vs 6 figure salary)
• Database Searches: number of records returned can reveal information about 

the query
• Compressed Data: Short compressed string indicates that original plaintext 

has a lot of redundancy. (CRIME attack on session cookies in HTTPS)

25



Implications of Indistinguishability

Theorem 3.10: Let (Gen, Enc, Dec) be a fixed-length private key 
encryption scheme for message of length ℓ that satisfies 
indistinguishability (prior definition) then for all PPT attackers A and 
any i ≤ ℓ we have

Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 = 𝑝𝑝𝑖𝑖 ≤
1
2

+ negl(𝑐𝑐)

Where the randomness is taken over K ← Gen 1𝑛𝑛 , uniform m ∈
0,1 ℓ and the randomness of Enc and A. 
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Semantic Security

Definition 3.12: Let (Gen, Enc, Dec) be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure 
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT 
algorithm Sample all any polynomial time computable functions f and h we have

|Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 ,𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝)

27

A’ doesn’t even get to see an 
encryption of m! Just the length 

of m!

Example: 
f(m) = 1   if m > 100,000;
f(m) = 0   otherwise       .

h(m) background knowledge the 
attacker might have about m.



Homework 1 Released Thursday

• Due in class on Thursday, September 14th (2 weeks)

• Solutions should be typeset (preferably in Latex)

• You may collaborate with classmates, but you must write up your own 
solution and you must understand this solution

• Clarification questions: fall-2017-cs-55500-le1@lists.purdue.edu

28
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Week 2: Topic 2: Constructing 
Secure Encryption Schemes
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Recap

•Sematic Security/Indistinguishable Encryptions
•Concrete vs Asymptotic Security

• Negligible Functions
• Probabilistic Polynomial Time Algorithm
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∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Recap: Semantic Security

31

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐



Semantic Security

Definition 3.12: Let (Gen, Enc, Dec) be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure 
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT 
algorithm Sample all any polynomial time computable functions f and h we have

|Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 ,𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝)

32

A’ doesn’t even get to see an 
encryption of m! Just the length 

of m!

Example: 
f(m) = 1   if m > 100,000;
f(m) = 0   otherwise       .

h(m) background knowledge the 
attacker might have about m.



Another Interpretation of Semantic Security

• World 2: Perfect Secrecy (Attacker doesn’t even see ciphertext).
• For all attackers A’ (even unbounded) with background knowledge h(m) we have

Pr 𝐴𝐴′ 1𝑛𝑛, 𝑝𝑝 ,𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝) = Pr 𝑓𝑓(𝑝𝑝)| 𝑡 𝑝𝑝 , 𝑝𝑝

• World 1: Attacker is PPT and sees ciphertext
• Best World 1 attacker does no better than World 2 attacker

• Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 ,𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝) − Pr 𝐴𝐴′ 1𝑛𝑛, 𝑝𝑝 ,𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝) ≤
negl(𝑐𝑐)

• What is probability over?
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New Goal

• Define computational security
If you don’t understand what you want to achieve, how can you possibly know 

when (or if) you have achieved it?

• Show how to build a symmetric encryption scheme with semantic 
security.

• Define computational security against an attacker who sees multiple 
ciphertexts or attempts to modify the ciphertexts

34



Building Blocks

• Pseudorandom Generators
• Stream Ciphers

35



Pseudorandom Generator G

• Input: Short random seed s ∈ 0,1 𝑛𝑛

• Output: Longer “pseudorandom” string 𝐺𝐺 𝑡𝑡 ∈ 0,1 ℓ(𝑛𝑛) with ℓ 𝑐𝑐 > 𝑐𝑐
• ℓ 𝑐𝑐 is called expansion factor

• PRG Security: For all PPT attacker A there is a negligible function negl s.t
Prs∈ 0,𝑘 𝑛𝑛 𝐴𝐴 𝐺𝐺 𝑡𝑡 = 1 − Pr𝑅𝑅∈ 0,𝑘 ℓ(𝑛𝑛) 𝐴𝐴 𝑅𝑅 = 1 ≤ negl 𝑐𝑐
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∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

PRG Security as a Game

37

Random bit b
If b=1
r ← 0,1 𝑛𝑛

R = G(r)
Else 
𝑅𝑅 ← 0,1 ℓ 𝑛𝑛

b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐

R



A Bad PRG

G(s) = s|1.
• What is the expansion factor?

• Answer: ℓ 𝑐𝑐 =n+1

• Task: Construct a distinguisher D which breaks PRG security for G

• One Answer:  D(x|1)=1 and D(x|0)=0 for all x.
• Analysis: Pr[D(G(s)) = 1] = ?
• Analysis: Pr[D(R) = 1] = ?
• Prs∈ 0,𝑘 𝑛𝑛 𝐷𝐷 𝐺𝐺 𝑡𝑡 = 1 − Pr𝑅𝑅∈ 0,𝑘 ℓ(𝑛𝑛) 𝐷𝐷 𝑅𝑅 = 1 = 𝑘

𝑘
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One-Time-Pads + PRGs

• Encryption:
• Secret key is the seed (K=s)

Encs(m) = G(s)⨁𝑝𝑝
Decs(c) = G(s)⨁𝐴𝐴

• Advantage: m = ℓ 𝑐𝑐 ≫ 𝑡𝑡 = 𝑐𝑐
• Computational Security vs Information Theoretic (Perfect) Security
• Disadvantage: Still can only send one message

Theorem 3.18: If G is a pseudorandom generator then the above 
encryption scheme has indistinguishable encryptions in the presence of 
an eavesdropper.
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One-Time-Pads + PRGs

Encs(m) = G(s)⨁𝑝𝑝
Decs(c) = G(s)⨁𝐴𝐴

Theorem 3.18: If G is a pseudorandom generator then the above encryption 
scheme has indistinguishable encryptions in the presence of an 
eavesdropper.

Proof by Reduction: Start with and attacker A that breaks security of 
encryption scheme and transform A into distinguisher D that breaks PRG 
security of G. 

Why is this sufficient? 
40



Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≥
1
2

+ 𝑓𝑓(𝑐𝑐)

Breaking Semantic Security

41

m0, m1

Random bit b
Random seed s

c = G(s)⨁𝑝𝑝𝑏𝑏

b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝑤𝑤𝑐𝑐 − 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐
(possibly still small)



The Reduction

• What is Pr b’’ ≠ b’|b=0 ?
• Hint: What encryption scheme is used?

• What is Pr b’’ = b’|b=1 ?

42

m0, m1

PRG Attacker

Encryption Attacker Random bit b
If b=1
r ← 0,1 𝑛𝑛

R = G(r)
Else 
𝑅𝑅 ← 0,1 ℓ 𝑛𝑛

R

c = R⨁𝑝𝑝𝑏𝑏′ Random b’

b’’ g

g = 1     if b”=b’
0    otherwise



Analysis

Prs∈ 0,𝑘 𝑛𝑛 𝐷𝐷 𝐺𝐺 𝑡𝑡 = 1 − Pr𝑅𝑅∈ 0,𝑘 ℓ(𝑛𝑛) 𝐷𝐷 𝑅𝑅 = 1
= Pr b’’ = b’|b=1 − Pr b’’ ≠ b’|b=0
= Pr b’’ = b’|b=1 − ½
≥ ½ + f(n) − ½ ≥ f(n)

Recall: f(n) was (non-negligible) advantage of encryption attacker.

Implication: PRG G is also insecure (contrary to assumption). 

QED
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Candidate PRG

• Notation: Given string x ∈ 0,1 𝑛𝑛 and a subset S ⊂ 1, … ,𝑐𝑐 let          
xS ∈ 0,1 |𝑆𝑆| denote the substring formed by concatenating bits at the 
positions in S.

• Example: x=10110 and S = {1,4,5}         xS=110

𝑃𝑃 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5 = 𝑒𝑒1 +𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4𝑒𝑒5 mod 2

• Select random subsets 𝕊𝕊 =S1,…,𝑆𝑆ℓ 𝑛𝑛 ⊂ 1, … ,𝑐𝑐 of size |Si|=5 and 
with ℓ 𝑐𝑐 = 𝑐𝑐𝑘.4

𝐺𝐺𝕊𝕊 𝑒𝑒 = �𝑃𝑃 𝑒𝑒𝑆𝑆1 … �𝑃𝑃 𝑒𝑒𝑆𝑆ℓ 𝑛𝑛
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Stream Cipher vs PRG

• PRG pseudorandom bits output all at once

• Stream Cipher
• Pseudorandom bits can be output as a stream
• RC4, RC5 (Ron’s Code)

st0 := Init(s)
For i=1 to ℓ:  

(yi,sti):=GetBits(sti-1)
Output: y1,…,yℓ
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CS555 Spring 2012/Topic 5 46

The RC4 Stream Cipher
• A proprietary cipher owned by RSA, designed by Ron Rivest in 

1987. 
• Became public in 1994.
• Simple and effective design. 
• Variable key size (typical 40 to 256 bits), 
• Output unbounded number of bytes. 
• Widely used (web SSL/TLS, wireless WEP). 
• Extensively studied, not a completely secure PRNG, when 

used correctly, no known attacks exist
• Newer Versions: RC5 and RC6
• Rijndael selected by NIST as AES in 2000



Spring 2012/Topic 5 47

The RC4 Cipher
• The cipher internal state consists of 

• a 256-byte array S, which contains a permutation of 0 to 
255

• total number of possible states is 256! ≈ 21700

• two indexes: i, j
i = j = 0 
Loop

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
output S[S[i] + S[j]] (mod 256) 

End Loop

CS555



Limitations of Current Security Definition

• Assumes adversary observes just one ciphertext

• What if adversary observes two ciphertexts?

𝐴𝐴𝑘 = Encs(𝑝𝑝𝑘) = G(s)⨁𝑝𝑝𝑘
𝐴𝐴𝑘 = Encs(𝑝𝑝𝑘) = G(s)⨁𝑝𝑝𝑘

• How could the adversary (Joe) attempt to modify c=Enck(m) below?
m = “Pay Joe the following amount (USD): 000000101”
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∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Multiple Message Eavesdropping Experiment

49

(m0,1,…,m0,t), (m1,1,…,m1,t)

Random bit b
K = Gen(.)
ci = EncK(mb,i)

(c1,…,ct)

b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐



∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Multiple Message Eavesdropping Experiment

50

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐

𝐹𝐹𝑤𝑤𝐷𝐷𝑝𝑝𝐷𝐷𝐴𝐴𝐴𝐴𝑦𝑦, 𝐴𝐴𝐷𝐷𝑤𝑤 Π = 𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 𝑟𝑟𝐷𝐷𝑐𝑐𝑤𝑤𝑤𝑤𝐷𝐷 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷𝑦𝑦𝑝𝑝𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐 𝑡𝑡𝐴𝐴𝑡𝐷𝐷𝑝𝑝𝐷𝐷,
𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝑒𝑒𝑝𝑝𝐷𝐷𝐷𝐷𝐴𝐴𝑝𝑝𝐷𝐷𝑐𝑐𝑤𝑤 𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝑝𝑝𝑦𝑦𝐴𝐴𝑤𝑤 𝐷𝐷𝑐𝑐𝑟𝑟 𝑟𝑟𝐷𝐷𝑓𝑓𝐴𝐴𝑐𝑐𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷𝑐𝑐𝑟𝑟𝑤𝑤𝑝𝑝 𝑃𝑃𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝑏𝑏𝐴𝐴𝐷𝐷

𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 𝐴𝐴𝑓𝑓 𝑏𝑏 = 𝑏𝑏′

𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0 𝑤𝑤𝑤𝑤𝑡𝐷𝐷𝐷𝐷𝑤𝑤𝐴𝐴𝑡𝑡𝐷𝐷

Π 𝑡𝐷𝐷𝑡𝑡 𝐴𝐴𝑐𝑐𝑟𝑟𝐴𝐴𝑡𝑡𝑤𝑤𝐴𝐴𝑐𝑐𝑐𝑐𝑦𝑦𝐴𝐴𝑡𝑡𝑡𝐷𝐷𝑏𝑏𝐴𝐴𝐷𝐷 𝑝𝑝𝑦𝑦𝐴𝐴𝑤𝑤𝐴𝐴𝑝𝑝𝐴𝐴𝐷𝐷 𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷𝑦𝑦𝑝𝑝𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐𝑡𝑡 𝐴𝐴𝑐𝑐 𝑤𝑤𝑡𝐷𝐷 𝑝𝑝𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷 𝑤𝑤𝑓𝑓
𝐷𝐷𝑐𝑐 𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑡𝑡𝑟𝑟𝐷𝐷𝑤𝑤𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷 𝐴𝐴𝑓𝑓 𝑓𝑓𝑤𝑤𝐷𝐷 𝐷𝐷𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝑟𝑟𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑦𝑦 𝐴𝐴, 𝑤𝑤𝑡𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝑡𝑡 𝐷𝐷

Negligible function 𝜇𝜇 such that Pr[𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1] ≤ 𝑘

𝑘
+ 𝜇𝜇(𝑐𝑐)



A Simple Observation

If Π has indistinguishable multiple encryptions in the presence of an 
eavesdropper 
then 
Π also has indistinguishable encryptions in the presence of an 
eavesdropper. 

• In fact indistinguishable multiple encryptions is a strictly stronger 
security notion.
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Example

Encs(m) = G(s)⨁𝑝𝑝
Decs(c) = G(s)⨁𝐴𝐴

Recall: Π = 𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 has indistinguishable encryptions in the 
presence of an eavesdropper.

Claim: Π = 𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 does not have indistinguishable multiple 
encryptions in the presence of an eavesdropper. 
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Multiple Message Eavesdropping

53

(0ℓ(𝑐𝑐), 0ℓ(𝑐𝑐)), (0ℓ(𝑐𝑐), 1ℓ(𝑐𝑐))

Random bit b
s = Gen(.)
ci = EncK(mb,i)

(G(s)⨁mb,1, G(s)⨁mb,2)

b’

b’ = 0     if 𝐴𝐴𝑘 ≠ 𝐴𝐴𝑘
1      otherwise

Analysis: If b=1 then c1= G(s)⨁ 0ℓ(𝑐𝑐) =c2

Analysis: If b=0 then c1= G(s)⨁0ℓ(𝑐𝑐) ≠ G(s)⨁ 1ℓ(𝑐𝑐) =c2



Did We Cheat?

• Attack specifically exploited the fact that we can ask to see 
multiple encryptions of the same message…

• The above argument might appear to show that no encryption 
scheme provides secure indistinguishable multiple 
encryptions in the presence of an eavesdropper. 

Theorem: If Π is (stateless) encryption scheme and Enc is 
deterministic then Π does not provide secure indistinguishable 
multiple encryptions
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Did We Cheat?

Option 1: Weaken the security definition so that attacker cannot 
request two encryptions of the same message.
• Undesirable! 
• Example: Dataset in which many people have the last name “Smith”
• We will actually want to strengthen the definition later…

Option 2: Consider randomized encryption algorithms
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Week 2: Topic 3: CPA-Security
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Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest 
parties encrypt.

• During World War 2 the British placed mines at specific locations, 
knowing that the Germans, upon finding the mines, would encrypt 
the location and send them back to headquarters. The encrypted 
messages helped cryptanalysts at Bletchley Park to break the German 
encryption scheme.
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Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest 
parties encrypt.

• Battle of Midway (WWII). US Navy cryptanalysts intercept and 
encrypted message which they are able to partially decode (May 
1942).

• The message stated that the Japanese were planning an attack on 
AF?

• Cryptanalysts could not decode ciphertext fragment AF.
• Best Guess: AF = “Midway Island.”
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Battle of Midway (WWII).

• US Navy cryptanalysts intercept and encrypted message which they 
are able to partially decode (May 1942).

• Message stated that the Japanese were planning a surpise attack 
on “AF”

• Cryptanalysts could not decode ciphertext fragment AF.
• Best Guess: AF = “Midway Island.”
• Washington believed Midway couldn’t possibly be the target.
• Cryptanalysts then told forces at Midway to send a fake message 

“freshwater supplies low”
• The Japanese intercepted and transmitted an encrypted message 

stating that “AF is low on water.”
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Battle of Midway (WWII).

• US Navy cryptanalysts intercept and encrypted message which they 
are able to partially decode (May 1942).

• Message stated that the Japanese were planning a surpise attack 
on “AF”

• Cryptanalysts could not decode ciphertext fragment AF.
• Best Guess: AF = “Midway Island.”
• Washington believed Midway couldn’t possibly be the target.
• Cryptanalysts then told forces at Midway to send a fake message 

“freshwater supplies low”
• The Japanese intercepted and transmitted an encrypted message 

stating that “AF is low on water.”
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Multiple Message Security and CPA-Attacks

• Multiple Message Security 
• Attacker must select all messages at the same time.
• Significant Limitation!

• In the WWII attacks cryptanalysts selected the message adaptively 
• Selected message(s) to encrypt after observing target ciphertext
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CPA-Security (Single Message)
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m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑐𝑐)



CPA-Security (Single Message)
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m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑐𝑐)

Formally, let Π = Gen, Enc, Dec denote the encryption scheme,
call the experiment PrivKA,Π

cpa
and define a random variable

PrivKA,Π
cpa

= 1 if 𝑏𝑏 = 𝑏𝑏′

PrivKA,Π
cpa

= 0 otherwise

Π 𝑡as indistinguishable encryptions under a chosen plaintext attack
if for all PPT adversaries A, there is a negligible function µ such that 

Pr PrivKA,Π
cpa

= 1 ≤ 𝑘
𝑘

+ 𝜇𝜇(𝑐𝑐)



CPA-Security (Multiple Messages)
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m0,1,m1,1

Random bit b
K = Gen(.)

c1 = EncK(mb,1)

b’

m0,2,m1,2

c2 = EncK(mb,2)

c3 = EncK(mb,3)
m0,3,m1,3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑐𝑐𝑐𝑐𝑒𝑒
≤

1
2

+ 𝜇𝜇(𝑐𝑐)



CPA-Security
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Theorem: An encryption scheme Π = 𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 that is CPA-Secure 
for single encryptions is also CPA-secure for multiple encryptions.

• We will simply say CPA-security for simplicity

• To show CPA-Security it suffices to show CPA-security for single 
encryptions.

• To reason about security of a protocol using Π we can use game with 
multiple encryptions.



CPA-Security

• CPA-security vs Multiple Message Encryption
• CPA-security is stronger guarantee
• Attacker can select messages adaptively

• CPA-security minimal security notion for a modern cryptosystem

• Limitations of CPA-Security: Does not model and adversary who
• Attempts to modify messages
• Can get honest party to (partially) decrypt some messages
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CPA-Security and Message Length

Observation: Given a CPA-secure encryption scheme Π =
𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 that supports messages of a single bit (ℳ = 0,1 )  it 

is easy to build a CPA-secure scheme Π’= 𝐺𝐺𝐷𝐷𝑐𝑐′,𝐸𝐸𝑐𝑐𝐴𝐴′,𝐷𝐷𝐷𝐷𝐴𝐴′ that 
supports messages m = m1,…,mn∈ 0,1 𝑐𝑐 of length n.

Enck′ 𝑝𝑝 = Enck′ 𝑝𝑝1 , … , Enck′ 𝑝𝑝𝑐𝑐

Exercise: How would you prove Π’ is CPA-secure?
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Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that 
breaks CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
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Next Week

• Read Katz and Lindell 3.5-3.7
• Constructing CPA-Security with Pseudorandom Functions
• Block Cipher Modes of Operation
• CCA-Security (Chosen Ciphertext Attacks)
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