
Homework 5 Statistics
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Minimum Value 40
Maximum Value 110.00
Range 110.00
Average 78.95
Median 95.00
Standard Deviation 31.79



Course Business

• Please Complete Your Course Evaluations
• Your feedback is valuable!
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Final Exam

• Time: Tuesday, December 12th at 1PM 
• Location: LWSN 1106

• Comprehensive
• …but heavier coverage of material covered in second half of semester

• Format
• Multiple choice
• Fill in the blank
• true/false/more information

• Solutions to practice exam distributed on Thursday
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Cryptography
CS 555

Week 16: 
• Zero-Knowledge Proofs, 
• Hot Topics in Cryptography
• Review for Final Exam
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

4Fall 2017



CS 555:Week 15: Zero-
Knowledge Proofs
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Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique
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Zero-Knowledge Proof for all NP
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A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐿𝐿,𝐿𝐿

A L

L

A



Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover selects a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first 

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … ,𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.
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Zero-Knowledge Proof Simulator
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Dishonest (verifier); 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸), 

Simulator
Cheat bit b,
𝐺𝐺 = (𝑉𝑉,𝐸𝐸),
A= 𝜎𝜎 𝐺𝐺
(random 𝜎𝜎)

Zero-Knowledge:  For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

Response 𝒓𝒓 =
�

𝑟𝑟1,1 ⋯ 𝑟𝑟1,𝑛𝑛
⋮ ⋱ ⋮

𝑟𝑟𝑛𝑛,1 ⋯ 𝑟𝑟𝑛𝑛,𝑛𝑛
𝒂𝒂𝒂𝒂𝒂𝒂 𝛔𝛔 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃

⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 , 𝒄𝒄, 𝒓𝒓)

𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 =
H 𝐴𝐴1,1, 𝑟𝑟1,1 ⋯ H 𝐴𝐴1,𝑛𝑛, 𝑟𝑟1,𝑛𝑛

⋮ ⋱ ⋮
H 𝐴𝐴𝑛𝑛,1, 𝑟𝑟𝑛𝑛,1 ⋯ H 𝐴𝐴𝑛𝑛,𝑛𝑛, 𝑟𝑟𝑛𝑛,𝑛𝑛

if b=0



Zero-Knowledge Proof Simulator
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Dishonest (verifier); 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸), 

Simulator
Cheat bit b,
𝐺𝐺 = (𝑉𝑉,𝐸𝐸),
A= 𝜎𝜎 𝐺𝐺
(random 𝜎𝜎)

Zero-Knowledge:  For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

𝒓𝒓 =

𝑟𝑟𝜎𝜎(1),𝜎𝜎(1) ⋯ 𝑟𝑟𝜎𝜎(1),𝜎𝜎(𝑘𝑘)
⋮ ⋱ ⋮

𝑟𝑟𝜎𝜎(1),𝜎𝜎(𝑘𝑘) ⋯ 𝑟𝑟𝜎𝜎(𝑘𝑘),𝜎𝜎(𝑘𝑘)
𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃

⊥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 ) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒅𝒅 = 𝑽𝑽𝑽(𝑮𝑮,𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 , 𝒄𝒄, 𝒓𝒓)

𝐶𝐶𝐶𝐶𝐶𝐶 𝐾𝐾𝑛𝑛 =
H 0, 𝑟𝑟1,1 ⋯ H 1, 𝑟𝑟1,𝑛𝑛

⋮ ⋱ ⋮
H 1, 𝑟𝑟𝑛𝑛,1 ⋯ H 0, 𝑟𝑟𝑛𝑛,𝑛𝑛

if b=0



Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and 

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong 
adjacency matrix or cannot reveal clique. Repeat until we produce a  
successful transcript. Indistinguishability of transcripts follows from 
hiding property of commitment scheme.
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Secure Multiparty Computation (Adversary 
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully 

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party
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CS 555:Week 15: Hot Topics
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Shor’s Algorithm

• Quantum Algorithm to Factor Integers

• Running Time 
O((log N)2(log log N)(log log log N))

• Building Quantum Circuits is challenging, but...
• RSA is broken if we build a quantum computer

• Current record: Factor 21=3x7 with Shor’s Algorithm
• Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using 

Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm


Quantum Resistant Crypto

• Symmetric key primitives are believed to be safe

• Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not 
safe

• All public key encryption algorithms we have covered
• RSA, RSA-OAEP, El-Gamal,….

https://en.wikipedia.org/wiki/Lattice-based_cryptography

https://en.wikipedia.org/wiki/Lattice-based_cryptography


Post Quantum Cryptography

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝑣𝑣𝑣𝑣 2𝑛𝑛)
• Solution: Double Key Lengths 

• Hashed Based Signatures
• Lamport Signatures and extensions

• Lattice Based Cryptography is a promising approach for Quantum 
Resistant Public Key Crypto

• Ring-LWE
• NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

and
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• Proposed Application: Export confidential computation to cloud 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• We now have candidate constructions!

• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be 
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖
𝑘𝑘

= 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐴𝐴 𝑘𝑘 × 𝑥𝑥𝑗𝑗
• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem


Program Obfuscation (Theoretical Cryptography)

• Program Obfuscation
• Idea: Alice obfuscates a circuit C and sends C to Bob
• Bob can run C, but cannot learn “anything else”
• Lots of applications…

• Indistinguishability Obfuscation
• Theoretically Possible

• In the sense that 𝑓𝑓 𝑛𝑛 = 2100000000𝑛𝑛100000 is technically polynomial time

• Secure Hardware Module (e.g., SGX) can be viewed as a way to 
accomplish this in practice

• Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai) 

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a


Differential Privacy



Release Aggregate Statistics?
• Question 1: How many people in this room have cancer?

• Question 2: How many students in this room have cancer?

• The difference (A1-A2) exposes my answer!



Differential Privacy: Definition
• n people
• Neighboring datasets:

• Replace x with x’

Name CS Prof? …   STD?

J Blocki +1 …      -1

[DMNS06, DKMMN06]

D

Name CS Prof? …      STD?

Bjork -1 …        ???

D’
23



Differential Privacy vs Cryptography

• 𝜀𝜀 is not negligibly small. 
• We are not claiming that, when D and D’ are neighboring datasets,

𝑨𝑨𝑨𝑨𝑨𝑨(𝑫𝑫) ≡𝐶𝐶 𝑨𝑨𝑨𝑨𝑨𝑨(𝑫𝑫′)
• Otherwise, we would have 𝑨𝑨𝑨𝑨𝑨𝑨(𝑿𝑿) ≡𝐶𝐶 𝑨𝑨𝑨𝑨𝑨𝑨(𝒀𝒀′) for any two data-sets X 

and Y.
• Why?

• Cryptography
• Insiders/Outsiders 
• Only those with decryption key(s) can reveal secret
• Multiparty Computation: Alice and Bob learn nothing other than f(x,y)

24



Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy.  (True Answer, Noise)

Traditional Differential Privacy Mechanism

25





Resources

• $99

Free PDF: 
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf


Password Storage and Key Derivation Functions

28

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Goal: Moderately Expensive Hash Function

Fast on PC and 
Expensive on ASIC?



Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 100,000 SHA256 computations
(iterative)

Estimated Cost on ASIC: $1 per billion password guesses [BS14]



The Challenge

User Patience

Disclaimer: This slide is entirely for humorous effect. 

Time
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Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



https://password-hashing.net/

(2013-2015)

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…
There are two main versions of 
Argon2, Argon2i and Argon2d. 
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/


Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs



Question

Are existing iMHF candidates based on depth-
robust DAGs?



Answer: No



Can we build a secure iMHF?

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph

https://github.com/Practical-Graphs/Argon2-Practical-Graph
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