Course Business

• Homework 5 Due Thursday in Class

• Practice Final Released Next Week

Homework 4 Statistics

Minimum Value	26.00
Maximum Value	110.00
Range	84.00
Average	86.16
Median	90.00
Standard Deviation	19.18

Cryptography CS 555

Week 15:

- Oblivious Transfer
- Yao's Garbled Circuits
- Zero-Knowledge Proofs

Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Oblivious Transfer (OT)

• 1 out of 2 OT

- Alice has two messages m₀ and m₁
- At the end of the protocol
 - Bob gets exactly one of m₀ and m₁
 - Alice does not know which one
- Oblivious Transfer with a Trusted Third Party

Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_{α} in which CDH problem is hard

• Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_a in which CDH is Hard

• Oblivious Transfer withou Alice does not learn b because

• g is a generator for a prime • $z_1 = c(z_0)^{-1}$ and • $z_0 = c(z_1)^{-1}$ and • z_1, z_0 are distributed uniformly at random subject to these condition.

This is an information theoretic guarantee!

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{r_b} = g^{kr_b}$

$$z_b = g^k, z_{1-b} = cg^{-k}$$

= $c(z_b)^{-1}$

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{\prime b} = g^{kr_b}$

7

Yao's Protocol

Vitaly Shmatikov

Yao's Protocol

- Compute any function securely
 - ... in the semi-honest model
- First, convert the function into a boolean circuit

Overview:

- 1. Alice prepares "garbled" version C' of C
- 2. Sends "encrypted" form **x'** of her input **x**
- 3. Allows Bob to obtain "encrypted" form y' of his input y via OT
- 4. Bob can compute from C', x', y' the "encryption" z' of z=C(x,y)
- 5. Bob sends z' to Alice and she decrypts and reveals to him z

Crucial properties:

- 1. Bob never sees Alice's input x in unencrypted form.
- 2. Bob can obtain encryption of y without Alice learning y.
- 3. Neither party learns intermediate values.
- 4. Remains secure even if parties try to cheat.

Intuition

Intuition

1: Pick Random Keys For Each Wire

- Next, evaluate <u>one gate</u> securely
 - Later, generalize to the entire circuit
- Alice picks two random keys for each wire
 - One key corresponds to "0", the other to "1"
 - 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

 Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

3: Send Garbled Truth Table

• Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
 - Alice's input is the two keys corresponding to Bob's wire
 - Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
 - For each wire in the circuit, Bob learns only one key
 - It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

• Bob does not tell her intermediate wire keys (why?)

Security (Semi-Honest Model)

- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n\in\mathbb{N}} \equiv_C \{S_A(n, x, f_A(x, y))\}_{n\in\mathbb{N}}$ $\{B_n\}_{n\in\mathbb{N}} \equiv_C \{S_B(n, y, f_B(x, y))\}_{n\in\mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's output $f_B(x, y)$)

Theorem (informal): If the oblivious transfer protocol is secure, and the underlying encryption scheme is CPA-secure then Yao's protocol is secure in the semi-honest adversary model.

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge
- If m gates in the circuit and n inputs from Bob, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!

Fully Malicious Security?

- 1. Alice could initially garble the wrong circuit C(x,y)=y.
- 2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
- 3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: $c_A = com(xlr_A)$ and $c_B = com(ylr_B)$.

- Alice and Bob can use zero-knowledge proofs to convince other party that they are behaving honestly.
- **Example**: After sending a message A Alice proves that the message she just sent is the same message an honest party would have sent with input x s.t. c_A=com(xlr_A)
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)

Fully Malicious Security

- Assume Alice and Bob have both committed to their input: c_A=com(xlr_A) and c_B=com(ylr_B).
 - Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)
 - Alice has c_B and can unlock c_A
 - Bob has c_A and can unlock c_B
- 1. Alice sets C_f = GarbleCircuit(f,r).
 - 1. Alice sends to Bob.
 - 2. Alice convinces Bob that C_f = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)
- 2. For each original oblivious transfer if Alice's inputs were originally x_0, x_1
 - 1. Alice and Bob run OT with y_0, y_1 where $y_i = Enc_k(x_i)$
 - 2. Bob uses a zero-knowledge proof to convince Alice that he received the correct y_i (e.g. matching his previous commitment c_B)
 - 3. Alice sends K to Bob who decrypts y_i to obtain x_i

CS 555:Week 15: Zero-Knowledge Proofs

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Computational Indictinguishability

- Consider two d
- Let D be a distinuition X_l

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

ℓ). came from

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

P vs NP

- P problems that can be solved in polynomial time
- NP --- problems whose solutions can be verified in polynomial time
 - Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
 - DDH
 - Input: $A = g^{\chi_1}$, $B = g^{\chi_2}$ and Z
 - **Goal:** Decide if $Z = g^{x_1x_2}$ or $Z \neq g^{x_1x_2}$.
 - NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
- Witness
 - A short (polynomial size) string which allows a verify to check for membership
 - DDH Witness: x₁,x₂.

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)

(P is given witness for claim e.g.,)

- **Completeness:** If claim is true honest prover can always convince honest verifier to accept.
- Soundness: If claim is false then Verifier should reject with probability at least ½. (Even if the prover tries to cheat)
- Zero-Knowledge: Verifier doesn't learn anything about prover's input from the protocol (other than that the claim is true).
- Formalizing this last statement is tricky
- Zero-Knowledge: should hold even if the attacker is dishonest!

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

- V' is given input X (the problem instance e.g., $X = g^{x}$)
- P is given input X and w (a witness for the claim e.g., w=x)
- V' and P use randomness r_p and r_v respectively
- Security parameter is n e.g., for encryption schemes, commitment schemes etc...

 $X_n = \text{Trans}(1^n, V', P, x, w)$ is a distribution over transcripts (over the randomness r_p, r_v)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

• V' is given input x (the problem instance e.g., $A = g^{x_1}$, $B = g^{x_2}$ and z_b)

P
V Simulator S is not given witness W
X_n

Oracle V'(x,trans) will output the next message V' would output given current transcript trans

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Correctness: If Alice and Bob are honest then Bob will always accept

Correctness: If Alice and Bob are honest then Bob will always accept

Correctness: If Alice and Bob are honest then Bob will always accept

37

Zero-Knowledge Proof for some x,y then $A = g^x$ for

38

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats)

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats)

Transcript: $View_{V'} = (A, (B, C), c, r, d)$

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} & \text{otherwise} \end{cases}$	
	challenge $c = V'(A, (B, C)) \in \{0, 1\}$	
	Response $r = \begin{cases} y & if c = b \\ \bot & otherwise \end{cases}$	Simulator
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	<i>Cheat bit b,</i> $A = g^x$,
		$B = g^{\mathcal{Y}}$, (random y)
Zero-Knowledge:	For all PPT V' exists PPT Sim s.t $View_{V'} \equiv_C Sim$	$n^{V'(.)}(A)$

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} \text{ otherwise} \end{cases}$	
	challenge $c = V'(A, (B, C)) \in \{0, 1\}$	
Dishonest (verifier);	Response $r = \begin{cases} y & if \ c = b \\ \bot & otherwise \end{cases}$	Simulator
$A = g^x, \qquad \qquad$	Decision $d = V'(A, (B, C), c, r)$	
		$B = g^{\mathcal{Y}}$, (random y)

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until $r \neq \perp$)

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} & \text{otherwise} \end{cases}$	
	<i>challenge</i> $c = V'(A, (B, C)) \in \{0, 1\}$	
	Response $oldsymbol{r} = egin{cases} y & if \ c=b \ ot & otherwise \end{cases}$	Simulator
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	$Cheat bit b,$ $A = g^{x},$
		$A = g^{y},$ $B = g^{y},$ (random y)

Zero-Knowledge: If $A = g^{\chi}$ for some χ then $View_{V'} \equiv_C Sim^{V'(.)}(A)$

- CLIQUE
 - Input: Graph G=(V,E) and integer k>0
 - Question: Does G have a clique of size k?
- CLIQUE is NP-Complete
 - Any problem in NP reduces to CLIQUE
 - A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction
- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that form a clique

- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that for a clique
- 1. Prover commits to a permutation σ over V
- 2. Prover commits to the adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$
- 3. Verifier sends challenge c (either 1 or 0)
- 4. If c=0 then prover reveals σ and adjacency matrix $A_{\sigma(G)}$
 - 1. Verifier confirms that adjacency matrix is correct for $\sigma(G)$
- 5. If c=1 then prover reveals the submatrix formed by first rows/columns of $A_{\sigma(G)}$ corresponding to $\sigma(v_1), \dots, \sigma(v_k)$
 - 1. Verifier confirms that the submatrix forms a clique.

- Completeness: Honest prover can always make honest verifier accept
- **Soundness**: If prover commits to adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$ and can reveal a clique in submatrix of $A_{\sigma(G)}$ then G itself contains a k-clique. Proof invokes binding property of commitment scheme.
- Zero-Knowledge: Simulator cheats and either commits to wrong adjacency matrix or cannot reveal clique. Repeat until we produce a successful transcript. Indistinguishability of transcripts follows from hiding property of commitment scheme.

Secure Multiparty Computation (Adversary Models)

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs
 - Prove: My behavior in the protocol is consistent with honest party