
Course Business

• Homework 5 Released
• Bonus Problem (10 Points)

Homework 4 Statistics

1

Minimum Value 26.00
Maximum Value 110.00
Range 84.00
Average 86.16
Median 90.00
Standard Deviation 19.18

Cryptography
CS 555

Week 14:
• Digital Signatures Continued
• Multiparty Computation
• Yao’s Garbled Circuits
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

2Fall 2017

Plain RSA Signatures

• Plain RSA
• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒔𝒔 𝒎𝒎 = 𝒎𝒎𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

• Verification Works because
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒔𝒔 𝒎𝒎 𝑒𝑒 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚

3

No Message Attack

• Goal: Generate a forgery using only the public key
• No intercepted signatures required

• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q

• Pick random σ ∈ ℤ
N
∗

• Set 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 .
• Output 𝑚𝑚,σ

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

4

RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that
the RSA-Inversion problem is hard and H is modeled as a random
oracle.

Remark: The domain of H (e.g.,SHA3) may be shorter than ℤ𝑁𝑁∗ .
Solution: Repeated application of H.

5

RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that
the RSA-Inversion problem is hard and H is modeled as a random
oracle.
Proof Sketch: Given an RSA-Inversion challenge c = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 we will
program the value H m = 𝑐𝑐 ∈ ℤ𝑁𝑁∗ into the random oracle to trick the
signature attacker into revealing Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝑟𝑟𝑒𝑒𝑑𝑑 = 𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁.

6

Digital Signature Algorithm (DSA)

DSA: 𝒈𝒈 is subgroup of ℤ𝑝𝑝∗ of order q
ECDSA: 𝒈𝒈 is order q subgroup of elliptic curve

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

15

Presenter
Presentation Notes
𝐹 𝑔 𝐻(𝑚) 𝑠 −1 ℎ 𝑟 𝑠 −1
=𝐹 𝑔 𝐻 𝑚 𝑘 𝑥𝑟+𝐻(𝑚)−1 𝑔 𝑥𝑟𝑘 𝑥𝑟+𝐻(𝑚)−1
=𝐹 𝑔 (𝐻 𝑚 +𝑥𝑟)𝑘 𝑥𝑟+𝐻(𝑚)−1
=𝐹 𝑔 𝑘 =𝑟

Digital Signature Algorithm (DSA)

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

= 𝐹𝐹 𝑔𝑔𝐻𝐻 𝑚𝑚 𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1𝑔𝑔𝑥𝑥𝑟𝑟𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔(𝐻𝐻 𝑚𝑚 +𝑥𝑥𝑥𝑥)𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔𝑘𝑘 ≔ 𝑟𝑟

16

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption?
• Theory: DSA Still lack compelling proof of security from standard crypto assumptions
• Practice: DSA has been used/studied for decades without attacks

17

Presenter
Presentation Notes
𝐹 𝑔 𝐻(𝑚) 𝑠 −1 ℎ 𝑟 𝑠 −1
=𝐹 𝑔 𝐻 𝑚 𝑘 𝑥𝑟+𝐻(𝑚)−1 𝑔 𝑥𝑟𝑘 𝑥𝑟+𝐻(𝑚)−1
=𝐹 𝑔 (𝐻 𝑚 +𝑥𝑟)𝑘 𝑥𝑟+𝐻(𝑚)−1
=𝐹 𝑔 𝑘 =𝑟

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Remark: If signer signs two messages with same random 𝑘𝑘 ∈ ℤ
q

then attacker can find
secret key sk!
• Theory: Shouldn’t happen
• Practice: Will happen if a weak PRG is used
• Sony PlayStation (PS3) hack in 2010.

18

Presenter
Presentation Notes
s1≔ 𝑘 −1 𝑥𝑟+𝐻(𝑚1) 𝑚𝑜𝑑 𝑞
s2≔ 𝑘 −1 𝑥𝑟+𝐻(𝑚2) 𝑚𝑜𝑑 𝑞
s1−s2= 𝑘 −1 𝐻 𝑚1 −𝐻(𝑚2) 𝑚𝑜𝑑 𝑞
𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑘

Certificate Authority

• Trusted Authority (CA)
• 𝑚𝑚𝐶𝐶𝐶𝐶→𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=“Amazon’s public key is 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (date,expiration,###)”
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶→𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝑚𝑚

• Delegate Authority to other CA1
• Root CA signs m= “CA1 public key is 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶 (date,expiration,###) can issue

certificates”
• Verifier can check entire certification chain

• Revocation List Signed Daily
• Decentralized Web of Trust (PGP)

19

Secure Multiparty Computation

20Cryptography: What if we don’t have a trusted third party?

z
H(x,y,z)

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Secure Multiparty Computation (Crushes)

21

Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z).
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey”

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Secure Multiparty Computation (Crushes)

22

Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z).
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey”

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Key Point: The output H(x,y,z) may
leak info about inputs. Thus, we

cannot prevent Mickey from
learning anything about x,y but

Mickey should not learn anything
else besides H(x,y,z)!

Though Question: How can we formalize this
property?

Adversary Models

• Semi-Honest (“honest, but curious”)
• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs

23

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

24

Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ means that the
ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

• Let 𝐵𝐵𝑛𝑛 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵(𝑛𝑛, 𝑥𝑥,𝑦𝑦) (resp. 𝐴𝐴𝑛𝑛 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴(𝑛𝑛, 𝑥𝑥,𝑦𝑦)) be the protocol
transcript from Bob’s perspective (resp. Alice’s perspective) when his input is
y and Alice’s input is x (assuming that Alice follows the protocol).

• Security: Assuming that Alice and Bob are both semi-honest (follow the
protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦, 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s input y and Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦
(similarly, 𝑆𝑆𝐵𝐵 is only shown Bob’s input x and Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥, 𝑦𝑦)

25

Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one

• Oblivious Transfer with a Trusted Third Party

26

1 out of 2 OT

m0

m1

b

mb

slide 31

Vitaly Shmatikov

CS 380S

Yao’s Protocol

slide 32
1

000

Yao’s Protocol
• Compute any function securely

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

Intuition

a b

c

AND

Intuition

a b

c

AND

a

a

b

b

a b

ba

a

b

slide 36

1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

slide 37

2: Encrypt Truth Table

• Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

slide 38

3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 39

4: Send Keys For Alice’s Inputs

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 40

5: Use OT on Keys for Bob’s Input

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 41

6: Evaluate Garbled Gate

• Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row
Bob can decrypt.
He learns K0z

slide 42

• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 (similarly,
𝑆𝑆𝐵𝐵 is only shown Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦)

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.

43

slide 44

Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

• Number of rounds does not depend on the number of inputs
or the size of the circuit!

Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their input: cA=com(xlrA)
and cB=com(ylrB).

• Alice and Bob can use zero-knowledge proofs to convince other party that they are
behaving honestly.

• Example: After sending a message A Alice proves that the message she just sent is
the same message an honest party would have sent with input x s.t. cA=com(xlrA)

• Here we assume that Alice and Bob have both committed to correct inputs (Bob
might use y which does not represent his real vote etc… but this is not a problem we
can address with cryptography)

45

Fully Malicious Security

• Assume Alice and Bob have both committed to their input: cA=com(xlrA) and
cB=com(ylrB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc… but this is not a problem we can address with
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets Cf = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that Cf = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x0,x1
1. Alice and Bob run OT with y0,y1 where yi=EncK(xi)
2. Bob uses a zero-knowledge proof to convince Alice that he received the correct yi (e.g.

matching his previous commitment cB)
3. Alice sends K to Bob who decrypts yi to obtain xi

46

	Course Business
	Cryptography�CS 555
	Plain RSA Signatures
	No Message Attack
	RSA-FDH
	RSA-FDH
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Certificate Authority
	Secure Multiparty Computation
	Secure Multiparty Computation (Crushes)
	Secure Multiparty Computation (Crushes)
	Adversary Models
	Computational Indistinguishability
	Security (Semi-Honest Model)
	Oblivious Transfer (OT)
	Yao’s Protocol
	Yao’s Protocol
	Slide Number 33
	Intuition
	Intuition
	1: Pick Random Keys For Each Wire
	2: Encrypt Truth Table
	3: Send Garbled Truth Table
	4: Send Keys For Alice’s Inputs
	5: Use OT on Keys for Bob’s Input
	6: Evaluate Garbled Gate
	7: Evaluate Entire Circuit
	Security (Semi-Honest Model)
	Brief Discussion of Yao’s Protocol
	Fully Malicious Security?
	Fully Malicious Security

