
Course Business

• Homework 5 Released
• Bonus Problem (10 Points)

Homework 4 Statistics
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Minimum Value 26.00
Maximum Value 110.00
Range 84.00
Average 86.16
Median 90.00
Standard Deviation 19.18



Cryptography
CS 555

Week 14: 
• Digital Signatures Continued
• Multiparty Computation
• Yao’s Garbled Circuits
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4
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Plain RSA Signatures

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒔𝒔 𝒎𝒎 = 𝒎𝒎𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

• Verification Works because
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒔𝒔 𝒎𝒎 𝑒𝑒 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚
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No Message Attack

• Goal: Generate a forgery using only the public key
• No intercepted signatures required

• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q

• Pick random σ ∈ ℤ
N
∗

• Set 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 .
• Output 𝑚𝑚,σ

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒑𝒑 𝒎𝒎,σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
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RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that 
the RSA-Inversion problem is hard and H is modeled as a random 
oracle.

Remark: The domain of H (e.g.,SHA3) may be shorter than ℤ𝑁𝑁∗ .
Solution: Repeated application of H. 
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RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that 
the RSA-Inversion problem is hard and H is modeled as a random 
oracle.
Proof Sketch: Given an RSA-Inversion challenge c = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 we will 
program the value H m = 𝑐𝑐 ∈ ℤ𝑁𝑁∗ into the random oracle to trick the 
signature attacker into revealing Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝑟𝑟𝑒𝑒𝑑𝑑 = 𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁.
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Digital Signature Algorithm (DSA)

DSA: 𝒈𝒈 is subgroup of ℤ𝑝𝑝∗ of order q
ECDSA: 𝒈𝒈 is order q subgroup of elliptic curve

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1
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Digital Signature Algorithm (DSA)

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

= 𝐹𝐹 𝑔𝑔𝐻𝐻 𝑚𝑚 𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1𝑔𝑔𝑥𝑥𝑟𝑟𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔(𝐻𝐻 𝑚𝑚 +𝑥𝑥𝑥𝑥)𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔𝑘𝑘 ≔ 𝑟𝑟
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Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption?
• Theory: DSA Still lack compelling proof of security from standard crypto assumptions
• Practice: DSA has been used/studied for decades without attacks
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Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Remark: If signer signs two messages with same random 𝑘𝑘 ∈ ℤ
q

then attacker can find 
secret key sk!
• Theory: Shouldn’t happen
• Practice: Will happen if a weak PRG is used
• Sony PlayStation (PS3) hack in 2010.
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Certificate Authority

• Trusted Authority (CA)
• 𝑚𝑚𝐶𝐶𝐶𝐶→𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=“Amazon’s public key is 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (date,expiration,###)”
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶→𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝑚𝑚

• Delegate Authority to other CA1
• Root CA signs m= “CA1 public key is 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶 (date,expiration,###) can issue 

certificates”
• Verifier can check entire certification chain

• Revocation List Signed Daily
• Decentralized Web of Trust (PGP)
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Secure Multiparty Computation

20Cryptography: What if we don’t have a trusted third party?

z
H(x,y,z)

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)



Secure Multiparty Computation (Crushes)

21

Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z). 
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey” 

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)



Secure Multiparty Computation (Crushes)
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Alice can infer Y from F(x,y,z) and Bob can infer X from H(x,y,z). 
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey” 

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Key Point: The output H(x,y,z) may 
leak info about inputs. Thus, we 

cannot prevent Mickey from 
learning anything about x,y but 

Mickey should not learn anything 
else besides H(x,y,z)!

Though Question: How can we formalize this 
property?



Adversary Models

• Semi-Honest (“honest, but curious”)
• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully 

Malicious Mode?
• Tool: Zero-Knowledge Proofs
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Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT 

distinguishers D, there is a negligible function negl(n), such that we 
have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

24

Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ means that the 
ensembles are computationally indistinguishable. 



Security (Semi-Honest Model)

• Let 𝐵𝐵𝑛𝑛 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵(𝑛𝑛, 𝑥𝑥,𝑦𝑦) (resp. 𝐴𝐴𝑛𝑛 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴(𝑛𝑛, 𝑥𝑥,𝑦𝑦) ) be the protocol 
transcript from Bob’s perspective (resp. Alice’s perspective) when his input is 
y and Alice’s input is x (assuming that Alice follows the protocol). 

• Security: Assuming that Alice and Bob are both semi-honest (follow the 
protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦, 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s input y and Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦
(similarly, 𝑆𝑆𝐵𝐵 is only shown Bob’s input x and Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥, 𝑦𝑦 )
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Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one 

• Oblivious Transfer with a Trusted Third Party

26

1 out of 2 OT

m0

m1

b

mb
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Vitaly Shmatikov

CS 380S

Yao’s Protocol



slide 32
1

000

Yao’s Protocol
• Compute any function securely 

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs



Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat. 



Intuition

a b

c

AND



Intuition

a b

c

AND

a

a

b

b

a b

ba

a

b
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1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit 

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y



slide 37

2: Encrypt Truth Table

• Alice encrypts each row of the truth table by 
encrypting the output-wire key with the corresponding 
pair of input-wire keys 

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))
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3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth 
table and sends it to Bob 

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of 
garbled table corresponds to 
which row of original table
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4: Send Keys For Alice’s Inputs 

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’ 
is Alice’s input bit, 
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))
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5: Use OT on Keys for Bob’s Input 

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is 
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))
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6: Evaluate Garbled Gate 

• Using the two keys that he learned, Bob decrypts 
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is 
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row 
Bob can decrypt.
He learns K0z
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• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she 
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs



Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow 
the protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 (similarly, 
𝑆𝑆𝐵𝐵 is only shown Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 )

Theorem (informal): If the oblivious transfer protocol is secure, and the 
underlying encryption scheme is CPA-secure then Yao’s protocol is 
secure in the semi-honest adversary model.
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Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then 
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for 
secure computation of any function in the semi-honest 
model

• Number of rounds does not depend on the number of inputs 
or the size of the circuit!



Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their input: cA=com(xlrA) 
and cB=com(ylrB).

• Alice and Bob can use zero-knowledge proofs to convince other party that they are 
behaving honestly.

• Example: After sending a message A Alice proves that the message she just sent is 
the same message an honest party would have sent with input x s.t. cA=com(xlrA) 

• Here we assume that Alice and Bob have both committed to correct inputs (Bob 
might use y which does not represent his real vote etc… but this is not a problem we 
can address with cryptography)
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Fully Malicious Security

• Assume Alice and Bob have both committed to their input: cA=com(xlrA) and 
cB=com(ylrB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y 
which does not represent his real vote etc… but this is not a problem we can address with 
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets Cf = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that Cf = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x0,x1
1. Alice and Bob run OT with y0,y1 where yi=EncK(xi)
2. Bob uses a zero-knowledge proof to convince Alice that he received the correct yi (e.g. 

matching his previous commitment cB)
3. Alice sends K to Bob who decrypts yi to obtain xi
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